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Abstract

Random effect in cellular systems is an important topic in systems biology and often simu-
lated with Gillespie’s stochastic simulation algorithm (SSA). Abridgment refers to model
reduction that approximates a group of reactions by a smaller group with fewer species and
reactions. This paper presents a theoretical analysis, based on comparison of the first exit
time, for the abridgment on a linear chain reaction model motivated by systems with multiple
phosphorylation sites. The analysis shows that if the relaxation time of the fast subsystem is
much smaller than the mean firing time of the slow reactions, the abridgment can be applied
with little error. This analysis is further verified with numerical experiments for models of bis-
table switch and oscillations in which linear chain system plays a critical role.

Introduction

With the rapid development in systems biology, biological models have become more and
more complex. In many complex biochemical systems, stochastic effects in cells are of particu-
lar concern because some species, such as genes and RNAs, present with small copy numbers
in those systems. In order to study the stochastic effects, stochastic biochemical models have
been built and simulated. Gillespie’s stochastic simulation algorithm (SSA) [1, 2] is one of the
most important stochastic methods. However, the computational cost of the SSA can be very
high, particularly for systems with the multi-scale feature, which highlights the scale differences
among reactions: Some reactions fire much faster than others, and those fast reactions often
quickly reach equilibrium. Since the SSA tracks every reaction firing, in an SSA simulation
most computational costs are spent on fast reactions. On the other hand, slow reactions may
be more important because very often they drive the dynamics of a system when fast reactions
are in equilibrium.

Several approximation methods have been proposed to utilize this multiscale feature. The
key idea of these approximation methods is to approximate the propensities of slow reactions
by taking account of the effect of fast reactions while avoiding full simulation of them. A com-
mon practice is to reduce a complex system to a simpler model that well approximates the orig-
inal system. A well-known example of such a reduction is the Michaelis-Menten equation of
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the enzyme-substrate reactions, which has played an important role in biochemistry. Following
Gillespie et al. [3], we will call such a reduction abridgment. An abridgment replaces a reaction
network with a network with fewer reactions and chemical species. An obvious advantage of an
abridgment is the reduction in the numbers of reactions and species that we have to deal with.
Another advantage might be speeding up the numerical simulation. But we also have to realize
the drawback. An abridgment is still an approximation by nature. We have to study conditions
that an abridgment is valid. In Gillespie et. al. [3], a detailed discussion was given on the condi-
tion that the system

$,=8, %5, (1)
€2

can be reduced to a simple one
S, =S, (2)

where ¢ is given some “suitable” value depending on ¢y, ¢,, and ¢;. It was concluded that the
abridgment is valid if and only if one of the following conditions is satisfied:

>, >, >c, O 6> (3)

In this paper we consider a more general problem: Given a linear chain reaction model

h P fa-r o f,
§;=8="=§, =S, (4)
by " by b,y

where rate constants fs and b;’s may depend on other variables in the system but not on §;’s,
what is the condition that this system can be reduced to

$,—=S,.1, (5)

where ¢ depends on the values of f;’s and b,’s?

System (4) is not just a simple generalization of (1). It represents an important module in
biological systems as well. For example, one of the most interesting and well studied biological
systems is the cell cycle model, which aims to accurately model the repetitive sequence of
events that a cell grows, replicates its components, and divides into two daughter cells. A key
component in the cell cycle model is bistable switch, such as the one shown in Fig 1, where
Cdhl and CIb2 are regulative proteins inhibiting each other to form a positive feedback loop.
One typical setting of the two enzyme-substrate reactions can be the Michaelis-Menten rate
law equation, which assumes that the concentration of the enzyme species be much smaller
than that of the substrate. However, this assumption may not always be true in cell cycle mod-
els. Particularly in this example, since Cdh1 and Clb2 serve as enzyme to each other. There is
no way that the aforementioned assumption will be valid for both directions. Thus different
kinetic laws have to be adopted to solve this dilemma. Elementary reactions [1, 2] are particu-
larly desired in stochastic modeling and simulations.

One effort to solve this dilemma is to break down simple switch systems constructed with
Michaelis-Menten rate laws into elementary reaction rate laws. Kar et al. [4] managed to
replace a simple version of the budding yeast cell cycle model with a quite complex network of
elementary chemical reactions with corresponding rate laws. Another interesting discovery by
Qu et al. [5] shows that, modeling the regulative protein with multiple site phosphorylation
may also produce the “nonlinearity” in the system and generate bistable switch behavior. The
idea is to assume that the regulative protein have multiple phosphorylation levels, which enable
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Fig 1. An example of bistable switch in the cell cycle model. Each dashed line indicates the enzyme
species on one enzyme-substrate reaction.

doi:10.1371/journal.pone.0133295.g001

it to undergo multiple (de)phosphorylation reactions between different levels. Fig 2 shows an
example of a bistable switch based on this idea. It manages to achieve the required nonlinearity
with only elementary reactions at the cost of a relatively more complicated network. Note that
it is not clear in reality which rate law does apply in molecular regulatory networks. It might be
neither Michaelis-Menten nor elementary reaction rate laws. However, multisite phosphoryla-
tion based on elementary reaction rate laws does provide a convenient mechanism that can be
easily modeled either deterministically or stochastically. This idea was originally proposed by
Kapuy et al. [6], who proposed that multisite phosphorylation sequences may be modeled by
elementary reaction rate laws and are suitable for both deterministic and stochastic simula-
tions. Later Barik et al. [7] developed a model of yeast cell cycle regulation based on multiple
site (de)phosphorylation reactions and elementary reaction rate laws. Their model was com-
pared with experimental measurements [8]. However, this modeling technique presents chal-
lenges for current stochastic simulation algorithms. Most reaction firings are for the (de)
phosphorylation reactions, which typically result in frequent but “back-and-forth” changes
that cancel each other’s effect. The overall stochastic characteristics of the model is mostly
driven by other slow reactions. It would be ideal if one could reduce the system in Fig 2 to the
simpler version in Fig 1. Studying reduction condition for the system (4) will help us achieve
this goal.

Another biochemical example of system (4) comes from one dimensional reaction-diffusion
system, where diffusion is usually much faster than reaction. Given a particular partition (with

Cdh1 T_:thﬂj :th1P2<4_ - <= Cdh1P_,
~ X < ) 4

~ ~ -~
~ ~ N\ / ~
~ NG N /- -
@) O A
03 <« Clb2 =

Fig 2. A bistable switch converted from the model in Fig 1 based on multiple site phosphorylation. Cdh1 is assumed to have 11 phosphorylation
levels, as described as Cdh1 (the unphosphorylated form) and Cdh1P through Cdh1P4,.

doi:10.1371/journal.pone.0133295.g002
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n linear bins), the diffusion can be formulated as a chain reaction. Suppose the diffusion rates
are uniform and the bins are equally spaced, if we can reduce system (4) to the simple system
(1), then we basically reduce a spatially inhomogeneous system to a spatially homogeneous sys-
tem. Thus in this case the condition for the reduction of system (4) is also related to the condi-
tion for the famous “well-stirred” assumption given in Gillespie’s pioneering paper [1, 2].

In this paper we present an error analysis of abridgment based on comparison of the first
exit time. Although our analysis focuses on the chain reaction system (4), the result can be
extended to more complicated linear systems. Details of the analysis is given in the Methods
section and we demonstrate one specific application on bistable switch and oscillation models
in the Results section.

Methods
Background

In this section, we briefly review the simulation methods: SSA and SQSSA/ssSSA.

SSA. Suppose the system involves N molecular species {S;, . . ., Sn}. The state vector is
denoted by X(¥) = (X;(#), . . ., Xn(1)), where X(¢) is the number of molecules of species S; at
time ¢. M reaction channels {Ry, . . ., Ry} are involved in the system. Assume that the system is
well stirred and is in thermal equilibrium. The dynamics of reaction channel R; is characterized
by the propensity function a; and the state change vector v; = (vyj, . . ., vn,): aj(x)dt gives the
probability that one R; reaction will occur in the next infinitesimal time interval (¢, ¢ + dt), and
v;; gives the change in the S; molecule population induced by one R; reaction.

The dynamics of the system can be simulated by the SSA. With X(¢) = x, let
a,(x) = Z,A; a,(x). In each step, the SSA generates two random numbers r, and r, in U(0,1),
the uniform distribution in the interval (0,1). The time for the next reaction to occur is given
by t+1, where 7 is given by

e (r). (©)

The index j for the next reaction is given by the smallest integer satisfying
j
> _a(x) > ray(x). (7)
=1

The system states are updated by X(t+7) = x+v;. The simulation proceeds to the next occurring
time, until it reaches the final time or other stop criteria.

SQSSA/ssSSA. The stochastic quasi-steady-state approximation (SQSSA) [9] and slow-
scale SSA (ssSSA) [10, 11] were proposed to reduce the size of a stochastic biological model
and to improve the stochastic simulation efficiency. The ssSSA is based on the partial equilib-
rium (PE) assumption, while the SQSSA is based on the quasi steady state (QSS) assumption.
The PE and QSS assumptions are both important multiscale features in biochemical systems.
PE refers to the situation where some reactions fire much faster than others and the corre-
sponding subsystem reaches a partial equilibrium state [10]. QSS refers to the situation where
some state variables fluctuate very quickly around their quasi steady states [9]. If a subsystem is
at PE, then all its involved species are in QSS.

To implement the SQSSA or ssSSA method, a system is partitioned into fast and slow sub-
systems, and the state variables are partitioned into fast and slow variables. The fast subsystem
is assumed at an equilibrium state, while the state variables in the fast subsystem are in QSS.
Then the simulation procedure is very similar to the original SSA procedure, except that in
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each simulation step, a set of algebraic equations is solved to find the QSS of all fast variables.
Then these fast variables are considered (temporary) constant parameters in the slow subsys-
tem and the SSA procedure is applied only the slow subsystem. Because the number of reaction
firings in the slow subsystem is much less than the one for the fast subsystem, high simulation
efficiency is achieved. However, if the time scale difference is not large enough, the QSSA
method may lead to large errors. On the other hand, even if timescale separation holds, SQSSA
may also lead to significant errors. Thomas et al. studied this problem in the work [12].

Analysis for the Chain Reaction System with One Particle

Error analysis for abridgment in the stochastic regime is a subtle business [3]. The justification
in SQSSA [9] and ssSSA [10, 11] were both based on distribution distance of ensembles col-
lected with multiple runs of the original SSA and the corresponding approximation methods.
But that is not good enough, in Thomas et. al [13], it was shown that “reduced master equation
approach can overestimate the variance of the fluctuations by as much as ~ 30%. Thus a more
rigorous error analysis is needed when dealing with abridgment in the stochastic regime. In
Gillespies et. al’s work [3], a novel error analysis method was proposed based on the first exit
time analysis. To study the condition so that reaction (2) is an accurate reduction of system (1)
with given populations of S; and S,, the distribution of the first exit time, the time when the
first S is generated, was analyzed for both Eqs (1) and (2). For the abridgment to be valid, the
two distributions should be very close. In the simple system (2), the first exit time has an expo-
nential distribution. Thus the abridgment is accurate only when the distribution of the first exit
time for system (1) is close to an exponential distribution with a mean value close to the one
from the simple system (2). Otherwise, production of S in (2) significantly differs from the
one in (1) and as a result abridgment cannot be applied. Conditions (3) are thus derived based
on this analysis [3].

In this paper, we follow a strategy similar as what was utilized in Gillespie et al. [3] and
study the general case (4). In order to study the chain reaction system (4), we start with a sim-
ple case. Suppose there is only one particle starting at state S;. We will study the distribution
function of the exit time T, the first time that this particle becomes S,,,;. Following the analysis
of Theorem 1 in Gillespie et. al [3], if the system (4) can be reduced to (5), the distribution for
T should follow an exponential distribution, i.e.

cdf(T;t) =Prob(T < t)=1—¢, )
or equivalently
Prob(T >t) = e ™. o)
Denote
p(t) =Prob(X,(t) =1), fori=1,...,n+1, (10)

and let P(¢) = (p1 (%), . . ., pn(t))T. Note that for this one particle, it takes one and only one state
at any given time. Thus we always have

> plt) =1 (11)
When X,,;,(#) = 1, it implies that the exit time T < ¢. Thus we have

Prob(T < t) = p,,,(t) =1 — Z":pi(t),
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or equivalently,

Prob(T > t) Zp =17P(t) (12)

where 1 = (1, ..., 1)”. Therefore, in order to obtain the analytic distribution function of T we
need to study the equation for IP(f). We can write down the chemical master equation for PP as:

dP
hil— 13
= ap, (13)
where
[—f, b, 0 0 0 b
fi (b, +1,) b, 0 0
0 f (by+f;) by 0
A= ; (14)
0 0
0 T 0 fn—? —(bn—2 +.fn—1) bn—l
L 0 e 0 0 Juca —(b,., +1,)

with the initial condition P(0) = (1,0, ...,0)".

A has n negative eigenvalues [14, 15]. We denote them as 4; <4, < ... <4, <0, and the
corresponding eigenvectors as &, . . ., £,. For the linear ODE (13), we can formulate its analytic
solutionas P(t) = > | c,e"'&,, where ¢;s are determined by the initial state. Thus
Prob(T >t) = 1"P(t) = >, ¢,1" &%, which can be well approximated by an exponential
function as shown in (9) if the following condition is satisfied:

|4,] < |4], foralll1<i<n-—1. (15)

Moreover, when the condition (15) is satisfied, the reaction rate for the reduced system (5) is ¢
= Mnl-

Condition (15) is a sufficient condition for the abridgment to be valid. But how is the condi-
tion (15) related to the fast/slow partitioning of the original system (4)? Next we will reveal a
connection between the condition (15) and the relaxation time of the fast subsystem.

Fast Subsystem and its Relaxation Time

We assume that reactions in system (4) are all fast except the last step, and then consider the
fast subsystem:

f fn—l
slgl. g (16)
by by by—1

with only one particle in the system. For this subsystem, we denote its state variables as
X,(t),i=1,...,n Let

p.(t) =Prob(X,(t)=1), fori=1,...,n, (17)
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and P(t) = (p,(t),...,p,(t))". We have a corresponding CME for P:

g BP, (18)
where
[—f, b, 0 0 0 7
fi =y +£) b, 0 0
o 0 f —(by+£;) by 0 (19)
0 0
0 0 fio =+ fi) by
0 0 0 fus —(b, 1) ]

Similar to matrix A, B has n — 1 negative eigenvalues and one zero eigenvalue [14, 15]. There-

fore, we can denote B’s eigenvalues as ) . < 22 <...< 1”71 < ;In = 0, and the corresponding
eigenvectors as 7y, . . ., 1y, Define

—_

1
Trelax = lglKan)El ) = j : (20)
| z| ‘ “n—1|

Do

Treiax is called the relaxation time of the fast subsystem (16). It is an important characteristic
for the subsystem (16). The relaxation time represents the time scale for a system to “relax” to
its steady state. It also can be viewed as the time scale after which the fast subsystem will “for-
get” a previous perturbation. To see this, we study the solution of the Eq (18), given by

n n—1
I/P\) = Zaie;ﬁtni = 27111}1 + Zéieiitni' (21)
1 1

When | 4t > 1for1<i<n-1,P — P* = ¢ 1,. In other words, when > T, P reaches
its equilibrium state P*.

To see the connection between the relaxation time and the abridgment, let E= A — B. E’s ele-
ments are all zero except the last diagonal element —f,.. E can be considered as a rank one per-

turbation matrix. Thus for the eigenvalues 4,’s and J ;’s, we have (page 101 in Wilkinson [16])

0<i—A<f, fori=1,... n. (22)

Thus [A,| <f,and | 2, |>| 4, |fori=1,...,n - 1.So condition (15) will be valid if the follow-
ing condition is satisfied:

fo < min |1] =4, ] (23)

1<i<n—1

The condition (23) has a special feature. On the left side, f,, is the reaction rate for the slow reac-

tion, while on the right side, | 4, , | is a characteristic for the fast subsystem. We can also
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rewrite condition (23) as its equivalent condition:

1 1
=<K

ﬂ VRl
|/L‘n—1| f"

where fi is the mean firing time for the slow reaction.

Based on the previous analysis, we can conclude that if the condition (23) is satisfied, the
abridgment from system (4) to system (5) is valid with the reaction rate ¢ = |1,,|.

(24)

relax

Reaction Rate for the Reduced System

The above section reveals the connection between the abridgment and the relaxation time. But
from a practical point of view, we still need to calculate the reaction rate ¢ for the reduced sys-
tem (5). Moreover, we need to calculate or estimate T.j,.

First, we need to solve the equilibrium state P* of the system (16), which satisfies
BP* = 0. (25)

B is singular. (25) does not uniquely give a solution for the equilibrium state. We need to realize
that for system (16),

Zﬁi =1 (26)

We apply (26) and substitute p, to obtain a nonsingular matrix. From (26) we have

n—1

ﬁn =1- Zi)i' (27)

i=1

Let P denote the vector {p,,...,p, ,}. We then have the equation

®_ 550y 29
where
[ —f b, 0 0 0 1
fi o = +f) b, 0 0
B - 0 fz _(bz +f3) bs 0
0 T 0 ]Cnfi? _(bn—3 +f;172) bn72
L _bn—l T _bn—l _bn—l .fn—2 - bn—l _(bn—Z +fn—1 + bn—l) J

andy=(0,...,0, b,_1)". One can verify that Bis nonsingular and the solution f of the equilib-
rium equation

BP+y=0 (29)
gives the unique stable equilibrium state for the system (16).

As shown in section, when the condition (15) is satisfied, the reaction rate for the reduced
system (5) is ¢ = A,,. But how do we calculate 1,2 Let  denote the solution for (29) and y =
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—£,(1-17 B). When condition (23) is satisfied, 1,, can be well approximated by y in terms of
Bauer and Fike theorem [17] and Corollary 2.2 in Eisenstat and Ipsen [18] (see S1 Appendix)
with a relative error

14, —
17

= O(f;a Trelux) .

ol

General Case

Now we can loosen the condition that there is only one particle in the system (4). Suppose
there are totally m particles. Then each particle has its own exit time T}, j= 1, . . ., m. The earli-
est exit time T is the minimum of all exit times. Ty is of concern because it represent the first
time one of the particles will exit from the system and may lead to significant event that is not
included in the system. To formulate it, we have

T, = fglgrfan (30)
We have
Prob(T, > t) = Prob(Tj >t forall 1 <j<m)= HProb(Tj >t). (31)

j=1

When condition (23) is satisfied, as shown in previous section, for each j, the corresponding
exit time T; well approximates an exponential distribution with the same rate A,,. Thus we have

Prob(T; > t) ~ e, (32)

and

Prob(T, > t) = HProb(Tj >t) ~ e (33)

j=1

Thus for system (4) with m particles, when condition (23) is satisfied, it can be reduced to sys-
tem (5) with reaction rate ¢ = m|4,|.
Remark.

o A does not have to be a constant matrix. The above analysis is based on a linear chain reac-
tion system of fast variables but not necessary of slow variables. Between slow reaction fir-
ings, slow variables do not change. The reaction rates may be nonlinear functions of slow
variables. In that case, the eigenvalues of the matrix A will change with slow reaction firings.
This will be the case in our numerical experiments.

o The analysis can be easily extended to a system that is slightly different from (4). For exam-
ple, one can change the system to

h £ Ja-1
S, =S.=-. =
lbl : by by
and
I
Si_>sn+17

where i could be any integer between 1 and n. It is easy to verify that our analysis is still valid.
The only difference is where the extra diagonal term f,, is located. Furthermore, we will show
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in S2 Appendix that our analysis can also be extended to systems like

(34)

where the chain reactions are fast and the degradation reaction for E is slow. Here E, as an
enzyme, does not change its value in the chain reaction, and each individual forward reaction
has the form

S;+E—S,,+E, for i=1---,n—-1,
with elementary reaction rate laws, while S;’s do not change values in the enzymic reactions
E 4 §,—S,,

either.

Results

In this section we test the accuracy of abridgment with a bistable switch model consisting of a
chain reaction system. Numerical experiments on two oscillation models based on this bistable
switch model are also presented. These simulations were performed on a 3.0GHz Intel Core
Linux workstation.

Bistable Switch Model
This is the bistable switch model in Fig 2. We rewrite it as

kxCIb2 kxCIb2 kxCIb2
Cdh1P, == Cdh1P, == ... == Cdh1P,,
keky, kexkyy kexky, ’
0 cip2, (35)

ky 9 (10—i)Cdh1P;
Clb2 Loy 0.

where k; and k, are constants corresponding to Clb2’s synthesis and degradation. k is a scalar
that controls the reaction scale of the chain system. These enzymic reactions all follow elemen-
tary reaction rate laws. Note that our analysis can be applied to this system (see S2 Appendix)
although the format appears different than (4). We will test the accuracy when this system is
reduced to

0 Lciwe,
(36)

Cdhl1x1

Clb2 —= (),

where Cdh1 is the total population of Cdh1P; and 4 is calculated accordingly. By intuition,
when k is large, all reactions in the linear chain system are fast, the quasi steady state assump-
tion is applicable and as a result the reduction is valid. By contrast, if k is so small that propen-
sities of chain reactions are comparable to the two slow reactions, great errors will be
introduced.
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el e
@ : PLOS | ONE The Abridgment and Relaxation Time for a Linear Multi-Scale Model

A B
0.07 T T T u u 0.07 T T T - -
— SSA — G G A
== == Reduced Model == == Reduced Model
0.06 E 0.06} g
0.05f R 0.05} i
C C
el o
o 0.04r 1 5 0.04f E
[©] ©
— —
L [T
g o03f, 1 g 0.03H .
= =
0.02 1 0.02 1
0.01 1 0.01 1
0 . . . . 0 . . .
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Molecule Number of Clb2 Molecule Number of Clb2
C D
0.12 - - - - : 0.18 - - - . .
== == Reduced Model 0.16} == == Reduced Model ||
0.1f g
0.14f E
0.08f E 0.12f E
C c
=t o
O o 01t E
@ ©
& 006} g s
o @ 0.08f g
= £
[ [
F 004 g 0.06 E
0.04 PRGN .
0.02 E VAN Vs N
002fy N s’ S g
~
— 0 1 T ~ L "
00 10 20 30 40 50 60 0 10 20 30 40 50 60
Molecule Number of Clb2 Molecule Number of Clb2

Fig 3. Distributions of Clb2 time fraction from original model and reduced model. (A)k = 5 and the distribution density error is 4.53%. (B)k = 0.5 and the
distribution density error is 7.81%. (C)k = 0.05 and the distribution density error is 51.7%. (D)k = 0.01 and the distribution density erroris 147%.

doi:10.1371/journal.pone.0133295.g003

Accuracy of the reduction is studied with four groups of numerical experiments. Let k, =
8.0, k, = 5.5 x 107% k, = 350k, and the total population of Cdh1 and the initial value of CIb2 be
10. k is chosen to be 5, 0.5, 0.05 and 0.01 respectively. In each experiment the system is simu-
lated till 10° time units. Distributions of CIb2 are shown in Fig 3.

Relaxation time of the chain reaction in this model can be calculated as a function of the
parameter k and the population of CIb2. Theoretical results with respect to k along with differ-
ent CIb2 are given in Fig 4. The curve describing time intervals between two slow reaction fir-
ings is also plotted.

When k = 5, the dashed green curve (for k = 5) in Fig 4 is below the solid curve. Thus the
chain reaction system reaches steady states quickly before Clb2 gets updated. The condition
(23) holds and the reduction is valid (see Fig 3(A)); When k = 0.5, the diamond yellow curve
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Relaxation Time for k=5

Relaxation Time for k=6.
—©0-— Relaxation Time for k=0.05
=g Relaxation Time for k=0.01 4
Firing between Slow Reactions

Time

10_2 1 1 1 1 1
0 10 20 30 40 50 60

Molecule Number of Clb2

Fig 4. Relaxation time of the chain reaction system. Relaxation time and time interval between two slow
reaction events are computed with different parameters of k and molecule numbers of Clb2.

doi:10.1371/journal.pone.0133295.9g004

(for k = 0.5) has two intersections with the solid curve at about Clb2 = 5 and CIb2 = 15. When
CIb2 stays within this range, population of Clb2 changes slightly faster than the chain reaction
system. In the bistable switch model, Clb2 changes between two steady states and has to cross
this region ([5, 15]), within which the condition (23) does not hold. The time distribution in
Fig 3(B) shows mismatch to some extent; When k = 0.05, in Fig 4, the dotted red curve (for

k =0.05) is always above the solid curve. The condition (23) is not satisfied. In Fig 3(C), the
time distribution given by the reduced model shows much greater errors, although bistable
states are still observable; When k reduces to 0.01, the squared black curve (for k = 0.01) shows
much larger relaxation times for the chain reaction system, well above the solid blue curve. The
condition (23) is broken, and errors from the reduction result in difference in system character-
istics (Fig 3(D)). The original model (solid red curve) has only one stable state, but the reduced
model shows two stable states.

Meanwhile, CPU times for the original model and for the reduced model are shown in
Table 1. We can see that the CPU times of the original model are proportional to the value of k,
while the CPU times of the reduced model are approximately the same. When k = 5, the simu-
lation on the reduced model is at least 1,000 times faster than on the original model.

To sum up, the abridgment is valid for this model when the condition (23) is satisfied. In
this case the abridgment shows much better efficiency and reasonable accuracy compared with
the original model. However, if (23) is not satisfied, abridgment may cause large errors with lit-
tle efficiency gain. Particularly if the relaxation time of the chain reaction system is much larger

PLOS ONE | DOI:10.1371/journal.pone.0133295 August 11,2015 12/19



el e
@ : PLOS ‘ ONE The Abridgment and Relaxation Time for a Linear Multi-Scale Model

Table 1. CPU time comparison on the bistable switch model.

k Original model Reduced Model
5 157.98s 0.0441s
0.5 15.62s 0.0456s
0.05 1.46s 0.0442s
0.01 0.48s 0.0454s

doi:10.1371/journal.pone.0133295.1001

than the mean time for slow reactions, the error could be so large that important system char-
acteristics may get changed.

Oscillation Models

Biochemical oscillations occur in many biological systems. The above bistable switch is an
important module in biochemical oscillations. To test the abridgment on oscillation models,
we construct two oscillation models based on the Clb2 bistable switch model. We introduce a
third reactant z and design negative feedback loops involving two or three of the species.
Numerical experiments for abridgment are analyzed as follows.

Oscillation Model One. The first oscillation model consists a negative feedback loop in
terms of Clb2 and Z. The interaction motif is given in Fig 5, where CIb2 4 Z means “Clb2
inhibits Z” and Z — CIb2 means “Z actives Clb2”. Detailed reactions are given in S3 Appendix,
and the oscillations of Clb2 and Z are plotted in Fig 6.

With initial values Clb2 = 20, Cdhl = 10 and Z = 20, we run simulations for k =5,k = 0.5
and k = 0.05 (when k = 0.01, there is no oscillation in the deterministic model (Figure A in S3
Appendix), thus we did not simulate this case in the oscillation model). To measure the accu-
racy of the reduced model, we recorded 20,000 oscillation periods of Clb2 and Z and compared
the distribution of oscillation periods with results simulated with the original model. Corre-
sponding results are plotted in Figs 7, 8 and 9.

When k = 5, the reduced model almost has the same behavior as the original model. When
k decreases to 0.5, we can see in Fig 8, the distribution density errors for Clb2 and Z are close to
the results of the case k = 5. When k = 0.05, the difference is obvious.

/\/\

Cdh1 Clb2

A

Fig 5. Motif of oscillation model one. In this motif, Clb2 and Cdh1 form a positive feedback loop and Clb2
and Z construct a negative feedback loop.

doi:10.1371/journal.pone.0133295.g005
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Deterministic simulation results. Right: Stochastic simulation results.
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Fig 7. Distributions of oscillation periods of CIb2 and Z in oscillation model one with k = 5. Left: Plots for CIb2. The distribution density error is 4%.
Right: Plots for Z. The distribution density error is 3.3%.

doi:10.1371/journal.pone.0133295.g007

Oscillation Model Two. For the second oscillation model, the motif is given in Fig 10. The
simulation results of Clb2 and Z oscillation are plotted in Fig 11. Corresponding reactions are
described in S4 Appendix. Different from previous models, in this chain reaction system, the
dephosphorylation reaction rate is not a constant. Z here acts as an enzyme activating the phos-
phorylation of Cdh1.

With initial values of CIb2 = 20, Cdh1 = 10 and Z = 20, we run simulations for k=5, k=0.5
and k = 0.05. To measure the accuracy of the reduced model, 20,000 oscillation periods of Clb2
and Z are recorded. The distribution of oscillation periods for the reduced model is compared
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Fig 9. Distribution of oscillation periods of CIb2 and Z in oscillation model one with k = 0.05. Left: Plots for CIb2. The distribution density error is
47.57%. Right: Plots for Z. The distribution density error is 33.27%.

doi:10.1371/journal.pone.0133295.g009

with that for the original model in Figs 12, 13 and 14. Similar with the pattern shown in oscilla-
tion model one, when k = 5 and k = 0.5 the abridgment gives great approximation on the oscil-
lation model. Larger error comes from k = 0.05, where the distribution density errors are
about 10%.

To check the efficiency of abridgment of these two oscillation model, CPU times are given
in Table 2. The CPU time for the original model is approximately proportional to the value of
parameter k for both models. But the CPU times for the reduced model are close. For the first
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Clb2

Cdh1

Fig 10. Motif of oscillation model two. In this motif, Clb2 and Cdh1 form a positive feedback loop. Cdh1,
CIb2 and Z construct a negative feedback loop.

doi:10.1371/journal.pone.0133295.g010
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Fig 11. Simulation results of oscillation model two. Left: Deterministic simulation results. Right: Stochastic simulation results.

doi:10.1371/journal.pone.0133295.g011

oscillation model, abridgment shows advantage for all three cases. However, for the second
model, when k = 0.05, the CPU time for the reduced model is almost the same as that for the

original time.

Conclusion and Discussion

In this paper we present a theoretical analysis for the abridgment from a chain reaction system
to a simple reaction. Starting from the CME of a simple particle, we demonstrate that the
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condition for the abridgment is related to the scale difference between the relaxation time and
the mean reaction time for slow reactions. Our analysis shows that if the relaxation time of the
fast subsystem is much smaller than the mean firing time of the slow reaction, the abridgment
can be applied with little errors. Numerical experiments on a bistable switch demonstrate that
when this condition is broken, great errors may appear. On the other hand, we test the abridg-
ment on two biochemical oscillation models based on the same bistable switch module. We
can see that even though there could be greater errors on the bistable switch module resulted
from abridgment, the overall results for these two oscillation models could still be close. There
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Table 2. Algorithm execution time comparison on oscillation models.

k Oscillation Model One Oscillation Model Two
Original Model Reduced Model Original Model Reduced Model
5 87946s 67.60s 41766s 318.47s
0.5 8738s 67.19s 3821s 369.93s
0.05 1274s 65.07s 421s 364.95s

doi:10.1371/journal.pone.0133295.t002

might be other system properties that help to reduce the errors caused by the abridgment. Fur-
ther study is still needed to study what these system properties are.
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