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Abstract
Genetic testing, which is now a routine part of clinical practice and disease management

protocols, is often based on the assessment of small panels of variants or genes. On the

other hand, continuous improvements in the speed and per-base costs of sequencing

have now made whole exome sequencing (WES) and whole genome sequencing (WGS)

viable strategies for targeted or complete genetic analysis, respectively. Standard WGS/

WES data analytical workflows generally rely on calling of sequence variants respect to

the reference genome sequence. However, the reference genome sequence contains a

large number of sites represented by rare alleles, by known pathogenic alleles and by

alleles strongly associated to disease by GWAS. It’s thus critical, for clinical applications

of WGS and WES, to interpret whether non-variant sites are homozygous for the refer-

ence allele or if the corresponding genotype cannot be reliably called. Here we show that

an alternative analytical approach based on the analysis of both variant and non-variant

sites fromWGS data allows to genotype more than 92% of sites corresponding to known

SNPs compared to 6% genotyped by standard variant analysis. These include homozy-

gous reference sites of clinical interest, thus leading to a broad and comprehensive char-

acterization of variation necessary to an accurate evaluation of disease risk. Altogether,

our findings indicate that characterization of both variant and non-variant clinically infor-

mative sites in the genome is necessary to allow an accurate clinical assessment of a per-

sonal genome. Finally, we propose a highly efficient extended VCF (eVCF) file format
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which allows to store genotype calls for sites of clinical interest while remaining compatible

with current variant interpretation software.

Introduction
More than 24,000 tests for 5000 conditions are currently available on the NCBI Genetic Testing
Registry (GTR) [http://www.ncbi.nlm.nih.gov/gtr/] and genetic testing has grown from a niche
specialty for rare disorders to routine clinical practice [1,2]. These include groundbreaking
examples of newborn screening tests for highly-penetrant disorders, diagnostic and carrier test-
ing for inherited disorders, risk stratification/screening, and pharmacogenetic testing to guide
individual drug selection and dosage regimens. For some diseases, genetic tests have been
woven into clinical practice and disease management. For example, germline BRCA1/BRCA2
genotyping is used to determine susceptibility to breast and ovarian cancer, and human leuko-
cyte antigen (HLA) genotyping is used to determine susceptibility to celiac disease. Genetic
tests are also used for therapeutic management, e.g. mutation testing in the epidermal growth
factor receptor gene (EGFR) is used to predict the efficacy of the EGFR-targeting antibodies
gefitinib and erlotinib, which are indicated for non-small cell lung cancer [3,4].

Genetic tests are generally based on the analysis of individual or small panels of variants and
are carried out using classical techniques such as allele-specific PCR or ligation-based SNP gen-
otyping assays as implemented, for example, in the Illumina VeraCode platform, Luminex,
Sequenom and TaqMan assays. However, these tests are limited to well-characterized muta-
tions and are often followed by sequencing of the complete gene(s). For example, approxi-
mately 1500 different mutations have been identified in the cystic fibrosis transmembrane
conductance regulator gene (CFTR). Potential cystic fibrosis patients are initially screened
using a standard genetic test based on a panel of the 23 most common mutations [5,6] and if
these tests are negative then the complete CFTR gene is sequenced to identify rare or uncharac-
terized causal mutations. Bidirectional Sanger sequencing is still considered the ‘gold standard’
in clinical genetic testing [7,8] but several amplicons must be sequenced in order to cover the
target region, and this approach has a low sensitivity which becomes limiting when the sample
tissue is scarce, e.g. in the analysis of tumors where the percentage of cells carrying the causal
mutation must be at least 15–20% for efficient detection.

With the introduction of next-generation sequencing (NGS) technologies, the length of
DNA to be sequenced is no longer a limit, and human genome diagnostics now embraces the
targeted sequencing of individual genes and multigene panels [9]. This has given geneticists the
ability to increase the clinical sensitivity for many tests and to investigate the substantial contri-
bution of unique and rare variants to disease. A number of NGS-based panels for clinical can-
cer genomic profiling have been developed [10] and commercial kits are currently used in
clinical practice and as clinical trial assays (CTAs) to guide patients towards the most appropri-
ate treatment [11–13]. Clinical multigene NGS panels comprising from approximately 10 up to
several hundred genes are also available for immunological, neurological, sensory, cardiac, neu-
romuscular and metabolic disorders.

The declining cost and improving coverage of whole exome sequencing (WES) and whole
genome sequencing (WGS) means that these techniques are now useful alternatives to gene
panels, and are becoming increasingly prevalent in the clinic. Panels of molecular assays can be
replaced with “virtual panels” of genes or variants that are used to query the WES/WGS data.
A clear advantage of the WES/WGS approach is that it can be used to test as many virtual
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panels for different diseases and responses as necessary without the need to conduct indepen-
dent assays for each genetic test. Furthermore, as well as identifying the variants underlying the
target disease, WES/WGS can also identify secondary or incidental variants that may be clini-
cally or personally relevant [14]. Finally, WES/WGS is future-oriented because as soon as new
disease markers are identified these can be added to the “virtual panel” and extant sequence
data can be reanalyzed accordingly.

WES requires highly-redundant coverage because its uniformity is affected by GC content,
due to the impact of this property on the efficiency of both amplification and oligonucleotide
hybridization [15]. In contrast, WGS achieves more uniform and comprehensive coverage
even at a read depth of only 30x, including regions generally missed by targeted sequencing
[16], based on the increasing efficiency of PCR-free library preparation methods [17]. WES
andWGS data are typically stored as variant call format (VCF) files, which have been widely
adopted by the community [18]. VCF was developed to support large-scale genotyping and
DNA sequencing projects, specifically the 1000 Genomes Project, because other genetic data
storage formats such as general feature format (GFF) contain complete genetic data, much of
which is redundant because it is shared across genomes, whereas VCF stores only the variants
relative to a reference genome sequence. However, this format was developed primarily to rep-
resent human genetic variation and not to make causal links between variants and human
disease.

We evaluated the genetic predisposition to heart disease in a patient with abnormal cardiac
electric activity, by comparing base calling fromWGS data with the results obtained from a
commercial genetic testing kit (MI Risk plus) based on Illumina VeraCode technology. This
assessment confirmed the power of WGS analysis but revealed that standard variant calling
pipelines based on VCF are limited in their ability to call the patient genotype because they
cannot call the genotype in loci homozygous or hemizygous for the reference allele. We
addressed these limitations by applying an alternative approach based on the use of the genome
VCF (gVCF) file and showed that it allows a much broader characterization of known variants
for individuals undergoing clinical care.

Materials and Methods

Ethics statement
The study has been approved by the "Comitato Etico per la Sperimentazione Clinica (CESC)
delle province di Verona e Rovigo" ethic board and all clinical investigation have been con-
ducted according to the principles expressed in the Declaration of Helsinki. Following a
detailed explanation of the study, written informed consent was obtained from a patient with a
cardiac QT interval (QTc) of 504 ms.

Genotyping using the MI Risk Plus kit and SNP microarray
Genomic DNA was isolated from buccal swabs using the QIAamp DNA mini kit (Qiagen)
according to the manufacturer’s instructions and was quantified using a Qubit fluorimetric
assay (Invitrogen). The sample was processed using the MI Risk Plus kit (Personal Genomics S.
r.l.) based on the VeraCode GoldenGate Genotyping Assay kit (Illumina Inc.) and a custom
Oligo Assay Pool (Illumina Inc.) based on 96 SNPs related to coronary artery disease, accord-
ing to the manufacturer’s instructions. Genomic DNA (2.5 μg) was sent to HelmholtzZentrum
München for genotyping using an Illumina Omni 2.5 microarray followed by analysis with
GenomeStudio (Illumina Inc.) using the original Illumina cluster and manifest files (Huma-
nOmni2.5-4v1_H.egt and HumanOmni2.5-4v1_H.bpm). Genotypes were exported using the
Report Wizard in GenomeStudio Standard format. The output was then converted to VCF
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format and inconsistencies between the expected alleles based on dbSNP (build 141) and alleles
declared in the Illumina manifest files were corrected using an in-house script.

Library preparation and whole-genome sequencing
Control sample NA12892 was obtained from the NIGMS Human Genetic Cell Repository at
the Coriell Institute for Medical Research. Patient genomic DNA was isolated from 10 ml of
whole blood using standard salting-out method. Genomic DNA libraries were prepared using
the TruSeq DNA Sample Preparation Kit (Illumina) and TruSeq DNA PCR-Free Sample Prep-
aration Kit (Illumina) according to the manufacturer’s instructions. The libraries were
sequenced on a HiSeq sequencing system (Illumina) generating 100 bp paired-end reads.

Reads alignment and variant calling
FASTQ files obtained from the sequencing of NA12892 libraries obtained with the standard
library preparation protocol were downloaded from the 1,000 Genomes Project ftp repository
at EBI (ftp://ftp.1000genomes.ebi.ac.uk). Reads generated by genome sequencing or down-
loaded from 1000 Genomes Project repository were aligned to the human hg19 reference
genome sequence using Isaac Genome Alignment Software, and variant calling was performed
using Isaac Variant Caller with default parameters [19].

Variants annotation and data integration
The GWAScat database of snp-trait associations was downloaded (2014-08-19) from the
National Human Genome Research Institute (NHGRI) website (http://www.genome.gov/
gwastudies/) and coordinates were mapped from hg38 to hg19 using dbSNP rs code IDs. Geno-
typing data fromMI Risk plus, the Human Omni 2.5 microarray and genome sequencing
together with dbSNP (build 141), ClinVar (version 4.9.2014) and GWAScat (2014-08-19) were
imported into a relational database (PostgreSQL) for fast data querying and retrieval.

Format conversion
The gVCF format was converted to eVCF by taking vcf files representing known variant sites
from dbSNP (build 141) and converting them with the in-house script gvcf2evcf (http://ddlab.
sci.univr.it/files/gvcf2evcf). Each eVCF was imported without modification into the knoSys 3.1
software-hardware analysis platform (Knome Inc.), into SNP & Variation Suite (SVS) 8.2.1
(Golden Helix Inc.) and into Variant Effect Predictor (VEP release 77). Each eVCF file was
converted to ANNOVAR standard input format with an in-house script (http://ddlab.sci.
univr.it/files/evcf2annovar).

Results

Comparison of standard and PCR-free library preparation protocols for
WGS
We compared WGS sequence data from the NA12892 CEU individual of European ancestry
produced using a standard library preparation protocol (STD) and the PCR-free library prepa-
ration protocol (PCRFree). The two filtered datasets were normalized to 106 estimated X-fold
coverage to allow unbiased comparison. In both cases, more than 90% of the reads were
mapped to the hg19 reference sequence (STD 93.0%, PCRFree 98.5%) and the two datasets
showed overall good uniformity of coverage (S1 Fig). The PCRFree protocol achieved a reduc-
tion of the number of gaps from 134,001 to 78,898, defined as regions longer than 10 bp with a
low read depth (< 5), low alignment score (Q score< 10) and low basecall quality (Q< 10).
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This accounted for a reduction in the number of bases included in gaps from 102.7 Mbp to
54.7 Mbp. The PCRFree dataset also achieved a significant increase in the average read depth
and coverage uniformity in regions with high (�75%) and extreme (�85%) GC content, and in
the presence of repeated AT dinucleotides, ranging from 151% to 664 (S2 and S3 Figs). The
typical WGS coverage generated by the Illumina HiSeq X-Ten run is 30–40 X-fold, so we evalu-
ated the percentage of exonic regions covered (read depth> 5, mapping score> 10 and base-
call quality score> 10) by datasets with different average coverage values ranging from 20 to
100 X-fold generated by sub-sampling the full available dataset. A previous study, based on
sequencing of illumina standard libraries, reported that an average mapped depth of 50 X-fold
is required to produce confident genotype calls for>80% of the exome and showed that a 40–
45 X-fold coverage to detect most of SNPs [20]. We found that the 40 X-fold PCRFree dataset
covered more than 96.7% of the exonic regions with the given thresholds and that increasing
the average genome coverage up to 100 X-fold only increased the percentage of exonic regions
covered by 0.81% (Fig 1). Based on these results, we decided to use the PCRFree protocol for
library preparation and performWGS at a target mean coverage of 35–40 X-fold. It is worth
noting that an higher mean X-fold coverage might be required to genotype INDELs reliably.
Indeed, a recent work by Fang et al. showed that 60 X-fold mean coverage is needed to recover
95% of INDELs [21].

Concordance of WGS with MI Risk plus
A patient showing a disturbance in cardiac electrical homeostasis associated with an increased
risk of sudden cardiac death (QTc = 504) was genotyped with MI Risk plus, an Illumina Vera-
Code-based assay of 96 SNPs associated with cardiac diseases. The MI Risk plus kit successfully
genotyped 95 SNPs using material from the patient (S1 Table). PCRFree WGS was then used
to call variants in the patient’s VCF file generated from 37XWGS (557,165,871 fragments, 100
bp x 2) and the two datasets were compared. Only 54 of the 96 SNPs were represented in the
VCF file, two of which were genotyped as homozygous references by the kit but were called as
heterozygous variants in the VCF file (Table 1 and S1 Table). Sanger sequencing confirmed as
correct the two genotypes detected by WGS.

The 41 SNPs that were not present in the VCF file were detected as homozygous reference
genotypes by the MI Risk plus kit. Sites that are not detected by variant analysis are generally
inferred as homozygous reference sites, but in clinical diagnostics it is mandatory to distinguish
clear homozygous reference sites from those not called as variant because the quality of the call

Fig 1. Exonic regions coverage. Percentage of exonic regions covered at a read depth� 5, an alignment
score� 10, a basecall quality� 10 fromWGS subsets of the original full set with different average X-fold
coverage values.

doi:10.1371/journal.pone.0132180.g001
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is below the filter threshold. We therefore generated a gVCF file from the sequence alignments
representing all the sites on the genome with associated calling confidence score metrics
(https://sites.google.com/site/gvcftools/). Each of the 41 SNPs that were not represented in the
VCF file were found in the high-confidence invariant block records of the gVCF file, represent-
ing homozygous reference regions (Table 1).

Concordance with SNP genotyping arrays and GWAS data
Many of the disease-relevant variants identified during the last 10 years have been found by
SNP genotyping in genome-wide association (GWAS) experiments [22,23]. We therefore
compared the patient genotype data obtained byWGS analysis with that obtained by screening
the Illumina HumanOmni2.5 microarray. Microarray analysis revealed genotypes for
2,356,959 SNPs among 2,366,934 targets whereas only 671,861 (28.6%) positions were called
in the VCF file, 3279 of which were not genotyped by the microarray (S4 Fig). Analysis of
high-confidence invariant block records in the gVCF file allowed us to assign a homozygous
reference genotype to an additional 1,641,412 SNPs targeted by the microarray, thus increas-
ing the total number of targeted SNPs detected by WGS to 2,313,273, among which 9332 were
not genotyped by the array. Thus, gVCF-based genotype calling from the 37XWGS achieved
high sensitivity (97.81%) and high specificity (99.96%) compared with the microarray, and the
concordance of genotypes was 99.3%. We identified 14,948 variants on the microarray that
were called as invariant sites fromWGS data, and 538 variants based on WGS data that were
invariant on the microarray. After removing microarray data from 84,774 probes with INDELs
or SNPs 1–10 bp away from the targeted SNPs (S5 Fig), the number of variant sites on the
microarray that were called as invariant fromWGS data was reduced to 2602 and the sensitiv-
ity increased to 99.6%.

Many common variants have been assessed in GWAS for their association with human
traits such as increased risk of either protection from disease or response to drugs [23,24]. The
NHGRI GWAS Catalog (downloaded on 2014-08-19) contains 13,562 associations between
variants and human traits, including 2070 protective alleles and 1142 risk alleles that are poten-
tially clinically relevant and present in the hg19 reference genome (Table 2) and therefore are
not reported in a VCF file. Indeed, analysis of our patient’s VCF file genotyped only 6700 sites
(Table 2), whereas the gVCF file successfully genotyped 13,357 sites (98.4%) including 6657

Table 1. Concordance of genotypes represented in VCF and gVCF files with those detected by the MI
RISK Plus kit.

VCF gVCF

SNPs genotyped 55 96

Concordant with MI RISK Plus 52 92

Non-concordant with MI RISK Plus 2 2

Not called by MI RISK Plus 1 1

doi:10.1371/journal.pone.0132180.t001

Table 2. Genotyping of GWAS catalog sites using the VCF and gVCF file formats and the number of homozygous reference sites and no-calls
based onWGS data.

Total sites VCF gVCF Homozygous reference No-calls

GWAScat 13,562 6,700 13,357 6657 205

GWAScat protective allele on ref 2070 1004 2040 1036 30

GWAScat risk allele on ref 1142 696 1125 429 17

doi:10.1371/journal.pone.0132180.t002
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homozygous reference sites. For the remaining 205 sites in GWAScat, it was not possible to
infer a genotype with confidence. We then focused on 3212 sites with an associated odds ratio
(OR) and an annotated risk allele. Among the 2070 sites where the reference contains the pro-
tective allele (median OR = 0.54), 2040 could be genotyped from the gVCF file (S2 Table),
among which 1036 were homozygous reference sites and therefore were not called in the VCF
file. Among the 1142 sites where the reference contains the risk allele (median OR = 1.86),
1125 were genotyped in the gVCF file (S3 Table), including 429 homozygous reference sites
not reported in the VCF file.

WGS analysis of variant and invariant sites with known clinical
associations
Although concordance with common variant arrays helps to evaluate the ability of WGS to
detect variant and invariant genotypes, the comparison is limited to a small proportion of the
53,615,998 known SNPs represented in dbSNP build 141, many of which are associated with
human phenotypes as reported in ClinVar [25]. To perform a reliable and comprehensive clini-
cal evaluation of a genome it’s important to genotype not only variant sites but also homozy-
gous reference sites of potential clinical interest. Indeed, we found that a large number of sites
is represented by a minor allele in the hg19 reference genome (S4 Table), out of which 88,428
are rare (MAF< 1%) in the general population and 2765 were detected as homozygous for the
reference allele in our patient (Table 3 and S5 Table). Rare variants are potentially dangerous
candidates which may, for example, impair gene functionality. It is worth noting that among
variants represented by a minor allele in the reference 285 low-frequency alleles with a
MAF< 5% and 132 rare alleles with a MAF< 1% were located in exons.

Of the 19,314 sites for which ClinVar (version 4.9.2014) has an allele annotated as patho-
genic or as drug response, 96% could be read from the gVCF in contrast to only 9% from the
standard VCF (Table 4 and S6 Table). The patient carried a homozygous reference genotype
for 11 pathogenic and 1 drug-response sites represented in the hg19 reference genome by a risk
allele, which could therefore be detected only by the analysis of the gVCF file (Table 4 and S6
Table).

Construction of an extended VCF file
The gVCF file format is not supported by most current variant analysis platforms, including
Annovar, Variant Effect Predictor (VEP) and SnpEff [26–28] (https://atgu.mgh.harvard.edu/
plinkseq/) and the file size often exceeds 1.5 Gb for a WGS dataset and 150 Mb for a WES data-
set. To produce a file format compatible with current analysis pipelines but containing infor-
mation relevant for clinical applications, we built a VCF file with extended content, and named

Table 3. Genotyping of known SNPs from dbSNP 141 using the VCF and gVCF file formats and the number of homozygous reference sites and no-
calls based onWGS data.

Total sites VCF gVCF Homozygous reference (in
exons)

No-calls (in
exons)

Known SNPs (dbSNP 141) 53,615,998 3,301,013 49,651,226 46,350,213 (2,241,575) 3,964,772
(114,639)

Known v. with minor allele on reference 1,836,144 1,467,990 1,681,958 213,968 (3573) 154,186 (2154)

Known v. with minor allele on reference (MAF
<5%)

242,213 219,675 225,333 5664 (80) 16,880 (285)

Known v. with minor allele on reference (MAF
<1%)

88,428 80,386 83,148 2765 (49) 5280 (132)

doi:10.1371/journal.pone.0132180.t003
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it extended VCF (eVCF). The eVCF file contains the genotypes at all the variant positions iden-
tified by variant analysis plus the genotype at all positions defined in a set of interest, for exam-
ple dbSNP. The version of dbSNP (or of any other list of variants) used to generate the eVCF
file is indicated in the file header. We also included annotations “known”, “gwascat_id” and
“odds_ratio” in the INFO field to allow the filtering for disease-associated variants. Typical
sizes and contents for BAM, standard VCF, gVCF and eVCF files are compared in Table 5. We
tested the compatibility of the eVCF format with two commercial platforms for variant annota-
tion and interpretation, knoSys 3.1 (Knome Inc.) and SVS 8.2.1 (Golden Helix Inc.), and with
two open source and widely used platforms, ANNOVAR (version 2014Nov12) [26] and VEP
release 77 [27]. All four packages were compatible with the eVCF file and imported most of the
genotypes (Table 6). Finally we compared the number of known SNPs (dbSNP build 141),
ClinVar-annotated SNPs and GWAScat SNPs genotyped by the eVCF compared to standard
VCF and gVCF. In all cases, the eVCF genotyped the same number of sites as the gVCF file
(Table 7).

Discussion
VCF is a generic file format for storing DNA sequence variants relative to a genome reference
sequence, which was developed in the 1000 Genome Project [18,29,30]. The VCF format is
compact and scalable, allowing rapid data retrieval for variants in a range of genomic positions,
and it has quickly become the de facto standard for the storage of variants data. It has therefore
been adopted by other projects (UK10K, dbSNP and NHLBI Exome Project) and by most

Table 4. Genotyping of known SNPs from ClinVar using the VCF and gVCF file formats and the number of homozygous reference sites and no-
calls based onWGS data.

Total sites VCF gVCF Homozygous reference No-calls

ClinVar 87,087 1,810 83,675 81,865 3412

ClinVar pathogenic 19,280 62 18,965 18,903 315

ClinVar drug response 34 7 34 27 0

ClinVar pathogenic, risk allele on ref. 29 15 26 11 3

ClinVar drug response, risk allele on ref. 3 2 3 1 0

doi:10.1371/journal.pone.0132180.t004

Table 5. Comparison of the content and size of different standard file formats for the storage of geno-
mic data.

File format Content Size

BAM (37 X-fold coverage) Read alignments 81 Gb

VCF Variant genotypes 57 Mb

gVCF Variant genotypes + invariant region blocks 1.3 Gb

eVCF Variant + dbSNP 141 genotypes 75 Mb

doi:10.1371/journal.pone.0132180.t005

Table 6. Compatibility of the eVCF file format with different variation analysis suites.

Software % genotypes imported % homozygous reference genotypes imported

KnoSys 3.1 99.9% 99.9%

SVS 8.2.1 99.9% 99.9%

ANNOVAR 2014Nov12 99.9% 99.9%

VEP (v. 77) 99.9% 99.9%

doi:10.1371/journal.pone.0132180.t006
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variant-calling pipelines [19,31,32]. Although the VCF format matches the needs of projects
aiming to discover polymorphisms in human populations, it was not designed to represent
clinically-relevant homozygous reference regions.

We found that more than 88,428 rare variants (MAF< 1% in the general population) are
represented in the human reference genome and are consequently not reported in a standard
VCF file except when observed heterozygously with another allele. Consistent with the view
that functional allelic variants are subject to purifying selection [33–35], rare variants may be
particularly relevant during the clinical assessment of common and rare diseases [36,37]. The
hg19 genome also carries some well-known pathogenic variants annotated in ClinVar, includ-
ing rs6025, which causes an Arg506Gln substitution (relative to the common “variant” allele)
in the gene F5 that prevents the inactivation of factor V by protein C thus increasing the risk of
thrombosis [38], and rs4784677, a rare variant that causes an Asn70Ser substitution in the
gene BBS2 identified as a putative causative mutation in individuals affected by Bardet-Biedl
syndrome, a genetically heterogeneous disorder characterized by pigmentary retinal dystrophy,
polydactyly, obesity, developmental delay and renal defects [39].

Many disease-relevant variants reported during the last 10 years of research have been iden-
tified by SNP genotyping in GWAS experiments, including late-onset Alzheimer’s disease [40],
Crohn’s disease [41], coronary artery disease [42], hyperlipidemia [43] and cancer [44]. The
hg19 sequence carries many risk alleles, including the A allele for rs956225, which is strongly
associated (OR = 3.3) with Alzheimer’s disease in African-Americans, and the T allele for
rs527409, a locus on chromosome 1p31 strongly associated (OR = 2.9) with Kawasaki Disease,
an acute self-limited vasculitis of infants and children that manifests as fever and signs of
mucocutaneous inflammation. Furthermore, hg19 carries several risk alleles detected by
GWAS that are associated with adverse responses to chemotherapy in breast cancer (e.g.
rs10818894, rs10443215) and acute lymphoblastic leukemia (rs6971925, rs7128311). The lack
of information about homozygous reference genotypes in the VCF file for individual patients is
therefore a limitation of the standard variant analysis because it does not investigate clinically-
relevant pathogenic or response-related variants represented in the reference genome.

It’s worth noting that some of the genomic sites corresponding to well known variants asso-
ciated to disease and represented by the pathogenic allele in the hg19 sequence, such has the
causal variant of Factor V Leiden trombophilia (rs6025) [38], have been corrected in the hg38
reference sequence to represent the non pathogenic allele. Moreover, the reference allele has
been substituted by the major allele in the latest genome release (hg38) in 9.4% of known vari-
ant sites represented by a minor allele (MAF<1%) in the hg19 sequence (dbSNP 141). How-
ever, the majority (*91%) of the genomic sites represented by potentially clinically relevant
sites in the reference sequence, such as rare (<1%), risk or pathogenic alleles, are unchanged in
the hg38 release compared to the hg19 genome. Furthermore, a large part of the scientific com-
munity is still using the hg19 genome waiting for a migration of all the tools and databases to
the hg38 genome release.

We applied the standard variant calling approach to WGS data in a clinical context for a
patient affected by abnormal electrocardiac activity and found that it was unable to provide

Table 7. Comparison of the number of dbSNP, ClinVar and GWAScat sites represented using VCF, gVCF and eVCF files.

VCF gVCF eVCF

dbSNP 3,344,185 49,704,534 49,704,534

ClinVar 1,810 83,675 83,675

GWAScat 6,700 13,357 13,357

doi:10.1371/journal.pone.0132180.t007
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information about sites genotyped as homozygous references, preventing access to genotype
information for 41 of 96 SNPs covered by the commercial MI Risk plus kit, for 93% of the
SNPs present in dbSNP build 141, and for 49% of the SNPs represented in the GWAS catalog.
Such no-variant calls could be inferred as homozygous reference sites, but they may also repre-
sent poor read coverage or low mapping quality [45,46]. Neglecting to investigate the genotype
call for known risk alleles might cause relevant variants to be overlooked, preventing the identi-
fication of genetic predispositions to disease.

In a previously proposed solution heuristic filters such as the absence of known structural
variants and integration of sequencing datasets from different platforms have been used to
make high confidence SNP, indel and homozygous reference genotype calls [47]. However, this
approach is not widely applicable and does not calculate a per-base confidence score for homo-
zygous reference calls. We therefore adopted the recently-proposed gVCF file format (https://
sites.google.com/site/gvcftools/), an extension to the standard VCF format supported by most
recent variant calling software such as Illumina’s variant calling pipeline Isaac [19] and the
Genome Analysis Tool Kit suite (GATK; versions 2.7 and above) developed by the Broad Insti-
tute [31], which store genotypes of variant sites and invariant genomic regions with associated
calling scores. The gVCF-based approach proved to be more comprehensive than standard
approaches based on VCF format because it allowed all 96 sites interrogated by MI Risk plus to
be genotyped as well as the majority of SNPs present in dbSNP and the GWAS catalogs. The
genotype calls from the gVCF file also allowed us to identify 96 exonic homozygous reference
variants with a allele frequency< 5% and 57 with a frequency< 1%, and doubled the number
of SNPs associated with a phenotype by GWAS by adding 6657 homozygous reference sites
that were not detected by classical variant analysis. Among the homozygous reference SNPs
genotyped in the patient and associated with a phenotype by GWAS, we identified 429 sites
homozygous for the risk allele and 1036 sites homozygous for the protective allele, accounting
for 307 and 511 phenotypes, respectively. Risk alleles showed odds ratios up to 36 and protec-
tive alleles showed values as low as 0.01, indicating strong associations with the phenotype. If
we had assumed that a no call corresponds to a homozygous reference call as in standard vari-
ant analysis, we would have overestimated by 3,964,772 the number of homozygous reference
sites corresponding to known SNPs. Furthermore, because 5280 of these variants (132 located
in exons) were represented in the reference genome by rare alleles (MAF< 1%), of which 3
were annotated as pathogenic variants in ClinVar and 17 were annotated as risk alleles detected
by GWAS, the standard approach based on the VCF format would have missed some poten-
tially relevant information for the clinical evaluation of the genomic data.

Standard variant analysis showed that the patient is heterozygous for the pathogenic
rs199473022 T allele, a rare variant causing a Gly1036Asp substitution in the ion channel
encoded by the gene KCNH2. This was first identified in one of 541 Long QT Syndrome
(LQTS) patients, but not in any of 750 controls [48]. The same variant was also reported in an
individual who was resuscitated from cardiac arrest [49]. This variant alters the biophysical
properties of the KCNH2 channel, causing statistically significant reductions in ionic current
and accelerated fast-phase deactivation compared to normal KCNH2 [49]. The patient was
found also to be heterozygous for SNP rs6795970, a non-synonymous variant in the gene
SCN10A encoding a sodium channel isoform expressed in cardiac neurons, myocardium and
the specialized conduction system, indicating a role in cardiac electrophysiological function
[50–52]. The rs6795970 SNP is represented by risk allele A in the reference genome and associ-
ated with variability in the PR interval and QRS duration [53]. These findings correlate with
the clinical phenotype observed in the patient, i.e. abnormal electrical activity characterized by
a long QT interval. However, the analysis of invariant sites using the gVCF file showed that the
patient is also homozygous reference for the risk allele T at site rs10428132, which is located in
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the gene SCN10A and that, according to GWAS data, is the locus most strongly associated
(OR = 2.55; P = 1 x 10-68) with Brugada syndrome, a rare disease with a high risk of sudden car-
diac death reflecting uncoordinated electrical activity in the lower chambers of the heart [54].
This result, which adds further support to the genetic basis of the phenotype observed in the
patient, would not have been achieved using a standard variant calling pipeline.

Given the above result, we foresee (and suggest) the widespread adoption of the gVCF for-
mat in clinical genome sequencing. However, the gVCF format is not yet supported by current
variant analysis platforms such as Annovar, SVA and PLINK/Seq, it does not match the scal-
ability of the VCF format because it does not support multiple samples, and the files generated
fromWGS data tend to be large and thus more difficult to store, transfer and search than VCF
files. With the rapid adoption of cloud storage and cloud-based bioinformatic analysis, the
adoption of larger files means an increase in the time required to transfer and analyze data, and
an increase in storage costs. Therefore, we propose the adoption of an extended VCF (eVCF)
format containing both the genotypes of variants as a standard VCF, plus the genotypes of a set
of sites of interest for the clinical evaluation. This can be processed with standard annotation
and analysis platforms designed for the VCF format while retaining the compact size of stan-
dard VCF files (Table 5). Like the gVCF format, eVCF files contain the information relevant to
all clinical variants of interest allowing a much more comprehensive evaluation of disease risk.

An eVCF file can be generated at the variant calling step by providing a list of genomic sites
of interest to a variant caller such as samtools [55]. However, genotype calling must be repeated
from the original alignment files to maintain an updated reference list of variants whenever
new SNPs have to be interrogated. Regeneration of the eVCF file from the parental gVCF
allows to easily extract genotypes from new sites of interest without having to reprocess the
storage and computationally demanding alignment files. Nevertheless, by matching the perfor-
mance of the gVCF format while remaining compatible with VCF-based applications, the
eVCF format clearly outperforms VCF and should be adopted as the format of choice at least
until the gVCF format is supported by most popular variant analysis platforms.
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