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Abstract

Numerous studies have investigated the direct retrieval of soil properties, including soil tex-
ture, using remotely sensed images. However, few have considered how soil properties
influence dynamic changes in remote images or how soil processes affect the characteris-
tics of the spectrum. This study investigated a new method for mapping regional soil texture
based on the hypothesis that the rate of change of land surface temperature is related to
soil texture, given the assumption of similar starting soil moisture conditions. The study area
was a typical flat area in the Yangtze-Huai River Plain, East China. We used the widely
available land surface temperature product of MODIS as the main data source. We ana-
lyzed the relationships between the content of different particle soil size fractions at the soll
surface and land surface day temperature, night temperature and diurnal temperature
range (DTR) during three selected time periods. These periods occurred after rainfalls and
between the previous harvest and the subsequent autumn sowing in 2004, 2007 and 2008.
Then, linear regression models were developed between the land surface DTR and sand (>
0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm) contents. The models for each
day were used to estimate soil texture. The spatial distribution of soil texture from the stud-
ied area was mapped based on the model with the minimum RMSE. A validation dataset
produced error estimates for the predicted maps of sand, clay and physical clay, expressed
as RMSE of 10.69%, 4.57%, and 12.99%, respectively. The absolute error of the predictions
is largely influenced by variations in land cover. Additionally, the maps produced by the
models illustrate the natural spatial continuity of soil texture. This study demonstrates the
potential for digitally mapping regional soil texture variations in flat areas using readily avail-
able MODIS data.
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Introduction

Detailed soil resource information is essential for fully satisfying the requirements of agricul-
tural development and environmental management. Quickly and accurately obtaining such
soil information is a key challenge facing soil science. As a relatively stable natural property of
soil, soil texture is an important factor that influences a series of physical and chemical proper-
ties, such as soil structure, soil porosity, hydraulic properties, and nutrient retention ability. All
of these factors affect soil quality. Conventional soil texture measurement methods depend on
physical analyses in a laboratory, are expensive, require a large number of samples and involve
a lengthy analysis to obtain the spatial distribution of soil texture over large areas. To overcome
this problem, we propose the use of soil mapping and prediction based on quantitative soil-
landscape models [1] and geo-statistics [2]. However, the methods based on geo-statistics [3—
6] also require a large amount of measurement data. Soil information acquisition methods that
utilize soil-landscape relationship theory [7-13] require several predicting factors that are diffi-
cult to obtain due to restrictions of the observing instrument. McBratney et al. [14] observed
that 80% of studies on digital soil mapping in a recent 10-year period (1994-2003) used topo-
graphic indices as key predictors, while 25% of studies used vegetation as the key predictor.
However, the use of topography and vegetation to estimate soil properties may not be suitable
for plains and gently undulating topographic areas due to the high variability of soil properties
that occur in similar topographic and vegetation conditions.

Remote sensing has become an increasingly important data source for earth science. Several
researchers have attempted to demonstrate methods for estimating soil texture based on
remote sensing. Some of these identify soil texture through image classification techniques
using multiband remotely sensed data. Using this approach, Zhai et al. [15] identified an artifi-
cial neural network (ANN)-based method of soil texture classification based on remote sensing
data from bare soils. Many other studies have explored the feasibility of estimating soil texture
by establishing regression models between the reflected spectrum and percent content of sand
or clay without considering the physical linkage between them [16-18]. However, only single-
temporal remote sensing data were used in these studies, and few have considered how soil
properties influence dynamic changes in remote images.

A large number of recent studies have shown that near-surface soil moisture can exhibit a
direct linkage with remotely sensed information. In addition, methods for obtaining soil mois-
ture content by remote sensing have become increasingly accepted [19-24]. Microwaves, ther-
mal inertia and thermal infrared information-based remote sensing are the major data sources
used to monitor soil moisture [19]. Thermal inertia is a key parameter influencing the rate of
change of land surface temperature, which is closely related to soil water content. Land surface
diurnal temperature range (DTR), apparent thermal inertia and real thermal inertia are the
three forms of thermal inertia that can be used to estimate soil water content [20]. Mattikalli
et al. [25] suggested that changes in soil moisture could be used as indicators of soil texture.
The above relations illustrate that changes in microwave images and land surface temperature
after a homogeneous rainfall mainly depend on the soil water content. Thus, they can be used
as a proxy to identify a texture class.

Studies have been performed to estimate soil texture using microwave-based images. Santa-
nello et al. [26] examined a straightforward method that used microwave remote sensing of
near-surface soil moisture to calibrate an offline land surface model and infer soil texture and
hydraulic properties at high spatial resolutions. Chang and Islam [27] and Chang et al. [28]
explored the use of a multi-temporal remotely sensed brightness temperature from the South-
ern Great Plains in the United States. They classified soils into different textures based on the
assumption that the dry-down curves of brightness temperature and soil moisture with the
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similar soil textures at different locations would exhibit similar behaviors. Mattikalli et al. [29]
developed regression relationships for the ratio of percent sand to percent clay, which were
based on brightness temperature and soil water content changes and the hypothesis that the
change rates of brightness temperature and water content are related to soil texture. However,
it is expensive to obtain airborne remotely sensed information. Zhu et al. [30] examined the
idea that dynamic feedback patterns of the land surface, such as those captured daily by
MODIS images during a short period after a major rain event, can be used to differentiate soil
types. Liu et al. [31] further mapped soil texture using dynamic feedback patterns extracted
from MODIS. Recently, Wang et al. [32] mapped soil texture by using fuzzy-c-means (FCM)
clustering to obtain the changing diurnal temperature difference (from MODIS) patterns for
the case of a relatively homogeneous rainfall input event. However, few studies have examined
the relationship between soil texture and land surface temperature (including day temperature,
night temperature and diurnal temperature range) during different periods, which correspond
to different antecedent rainfall events, and estimated soil texture directly from land surface
temperature.

A key objective of this study is to examine the feasibility of estimating soil texture using
available MODIS land surface temperature data based on the hypothesis that the content and
changes in soil water, and hence land surface temperature, are related to soil texture. This
study explored a method for retrieving soil texture by studying the relationships between the
content of different soil particle size fractions and land surface temperature. We then estab-
lished predictive regression models and applied those for digital soil texture mapping.

Materials and Methods
Ethics statement

All sample sites were distributed on private land, and permission was granted by the land
owner to access each site (Jinling Yang can be contacted for future permissions). The field stud-
ies did not involve endangered or protected species because all of the sample sites were located
in farmland. The coordinates of sample sites ranged from 32°01’57"N to 33°10'59"N and 119°
38/24"E to 120°32/20"E.

Characterization of the area

In selecting a study area, the variation of soil texture within the area should be significant. The
area should not be too large to minimize the influence of variation related to climate. Based on
the above principles, an area in the Yangtze-Huai plain, China, including Taizhou, Xinghua,
Jiangyan and Taixing, was chosen as the study area (Fig 1). The 5130 km” area is located in the
middle of Jiangsu Province. This region was formed by alluvial deposits from the Yangtze and
Huaihe Rivers. Elevations are relatively higher in the middle of the plain and lower in the
northern and southern portions. The absolute elevation is typically 2-5 m in the southern
areas, 5-7 m in the middle area and 1.5-5 m in the northern Lixiahe bog area. The mean
annual air temperature is 14.4-15.1°C. The mean annual precipitation is 1037.7 mm. The main
crops grown in the area include wheat and maize.

Data collection

The topsoil texture data were collected from soil profile samples of the second national soil sur-
vey in Taizhou, Taixian, Xinghua and Taixing [33]. Soil texture included four fractions: sand
(> 0.05 mm), coarse silt (0.01-0.05 mm), clay (< 0.001 mm) and physical clay (< 0.01 mm).
The fractions were measured using the sieve-pipette method [34]. Because there is no
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Fig 1. Location, sampling sites and NDVI distribution on DOY 324 in the year of 2007. NDVI: Normalized Difference Vegetation Index; DOY: Day of

Year.

doi:10.1371/journal.pone.0129977.g001

geography coordinate data available in the 2nd soil survey data. The position of samples was
determined based on the descriptions of each sampling location. Topographic and land use
maps of the study area were used to collect the corresponding site attributes. A total of 62 soil
samples were collected.

The daily land surface temperature data from MODIS (MOD11A1) were freely available
(http://modis.gsfc.nasa.gov/data/dataprod/mod11.php). Temperature data images from
MODIS were re-projected (Universal Transverse Mercator) to match the sample sites using the
MODIS Reprojection Tool (MRT) software. Every sample was identified in the image, and its
corresponding temperature data were extracted.

As some locations lacked remotely sensed data for one or more days, we only selected loca-
tions with daily data for all days in the study period to use for model development. Locations
with partially corresponding temperature data were used as validation data. In 2009, 15 addi-
tional locations were sampled in areas of Taizhou and Jiangyan, which have both sand and clay
soils, to validate the predictive results (Fig 1). The numbers of data points used as the training
data were 43, 38 and 39 in 2004, 2007 and 2008, respectively.

Selection of the study periods

One of the problems of utilizing remote sensing for soil studies is the lack of ability to reduce
the effects of land cover differences. Thus, it is necessary to avoid the land cover effect by
choosing appropriate study periods. In addition, there should be several dry days following the
rainfall event to see how soil moisture changes with time. Therefore, we chose three study peri-
ods that correspond to different rainfall events. Each occurred between the previous harvest
and the following late autumn sowing. At that time, crops in the study area had not emerged or
had little coverage. Some data were not available due to the influence of cloud cover. The
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periods were chosen as follows: 2004.11.1-11.3,2004.11.5-11.7; 2007.11.18-11.21, 2007.11.23
and 2008.11.9-11.11. The antecedent rainfalls from the three periods were 4.2 mm, 12.0 mm
and 6.1 mm, respectively. The available land surface temperature data were MOD11A1.A2004-
306,307,308,310,311,312,MOD11A1.A2007-322,323,324,325,327 and MOD11A1.A2008-
314,315,316.

Development of prediction models

The relationships between the content of different soil particle size fractions and land surface
day temperature, night temperature and DTR were analyzed. Linear regression models were
established between the land surface DTR and the sand (> 0.05 mm), clay (< 0.001 mm) and
physical clay (< 0.01 mm) contents. The Statistical Program for Social Sciences (SPSS 13.0 for
Windows) was used to conduct the analyses.

Predictive soil texture mapping

We assumed that the variation in the change rate of DTR following a homogeneous rainfall
event can be used to estimate soil texture, and the variation at a certain point may become the
most significant soil texture indicator. Therefore, we used the models for each day to estimate
soil texture and compared the prediction results. Maps of sand, clay and physical clay were cre-
ated based on the model with the minimum Root Mean Squared Error (RMSE). Based on the
predictive regression models, the spatial distribution patterns of sand, clay and physical clay
were estimated for the entire study area and mapped using ArcInfo9.2.

Validation

Values of sand, clay and physical clay predicted by the models were compared to the observed
values from validation sites to assess model performance. The indicators used to evaluate the
success of the predictions were R?, Mean Error (ME), Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE).

1 n
ME = ;Z(P] -0) 1
j=1
1 n
MAE ==Y "|P, - 0| 2
n
j=1

'/

n

RMSE = EZ (P,— O’

j=1

where P; and O; are the predicted value and observed value, respectively and n is the number of
observations. ME is a preferred function for estimating the general accuracy of models. The
closer the value is to 0, the smaller the general deviation. MAE and RMSE are functions that
estimate the accuracy and stability of models. The smaller the value, the better are the accuracy
and stability of the models.

Furthermore, to illustrate the distribution of the absolute error (AE) in the study area, the
interpolated maps of AE were created using the kriging method for both training samples and
validation samples.
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Results and Discussion

Relationships between the land surface day temperature and content of
soil particle size fractions

Land surface day temperature responds to the water content of the topsoil. Specifically, soils
with a lower water content exhibit higher land surface temperatures. Soils with higher water
content have lower land surface temperatures. Table 1 shows the relationships between land
surface day temperature and content of different soil particle size fractions. The content of
sand shows a significant positive relationship with land surface day temperature (except DOY
2008 314-316), while the clay and physical clay contents exhibit a strong negative relationship
with land surface day temperature. There is no significant relationship between the coarse silt
content and land surface day temperature.

Following a rainfall event, and assuming constant climate conditions, the soil water content
is expected to vary based on differences in soil structure and water holding capacity, which in
turn depend on the soil texture [29]. During the dry-down period, a sandy soil with a lower
water holding capability is expected to have a faster depletion rate and a lower soil water con-
tent, leading to a higher land surface temperature. A clay soil with a higher water holding capa-
bility will have a slower depletion rate and higher soil water content, resulting in a lower land
surface temperature. Consequently, we observe a close relationship between land surface day
temperature and soil texture.

Relationships between the land surface night temperature and content
of soil particle size fractions

Table 2 shows the relationships between the land surface night temperature and content of dif-
ferent soil particle size fractions. There appears to be a significant negative relationship
between the sand content and land surface night temperature. A significant positive relation-
ship exists between clay and physical clay contents and land surface night temperature. There
is no significant relationship between the coarse silt content and land surface night

Table 1. Linear correlations between the land surface day temperature and content of soil particle size fractions.

DOY Size fractions (mm) Taoazor Taoa3os Taoaz1o Tao4312
2004(307,308,310,312) 0.01-0.05 -0.224 -.329(*) -0.211 -0.291
>0.05 443(*¥) 457(*¥) 528(*%) 596(*¥)
<0.001 -.354(%) -357(%) - 503(**) - 543(**)
<0.01 -0.346(*) -0.280 - 456(*¥) - 478(*¥)
2007(323-325,327) Size fractions (mm) Tuorazs Tuorane Tuorass Tuorser
0.01-0.05 -.233 -0.131 -.408(*) -0.306
>0.05 623(**%) 637(**) 753(**) 661(**)
<0.001 -451(%) -628(**) - 505(**) - 487(*%)
<0.01 -601(*¥) -706(**) -616(*¥) - 587(*¥)
2008(314-316) Size fractions (mm) Tqoss14 Taos3is Taos316
0.01-0.05 0.130 0.020 0.010
> 0.05 0.180 0.140 0.310
<0.001 -0.241 -0.189 -351(%)
<0.01 -0.156 -0.165 -.364(%)

DOY = day of year; Td = day temperature;
* **gsignificant at p < 0.05, p < 0.01, respectively.

doi:10.1371/journal.pone.0129977.1001
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Table 2. Linear correlations between the land surface night temperature and content of soil particle size fractions.

Doy Size fractions(mm) Thoaaos Thoasor Thoasos Thoasto Thoas11 Thosz12
2004(306-308,310-312) 0.01-0.05 0.09 0.078 0.142 -0.244 -0.134 0.126
>0.05 -.610(*%) -.665(*%) -.568(**) -0.224 -.550(*%) -.632(*%)
< 0.001 .594(**) .653(**) 546(**) 0.221 .580(**) .B15(*%)
<0.01 .656(**) T731(%*) .566(**) .465(%) .758(**) .645(**)
2007(322-325,327) Size fractions(mm) Tno7az2 Tho7azs Tho7az4 Thozazs Thozazz
0.01-0.05 0.053 0.093 0.158 .425(%) 0.161
> 0.05 -.545(**) -.455(*%) -.499(**) -.620(**) -.463(**)
< 0.001 .505(**) 484(**) 0.352(*) 416(*) 428(**)
<0.01 .B55(**) .500(**) 0.498(**) 423(*) A51(**)
2008(314-316) Size fractions (mm) Thos314 Thos3zis Thos3z1s
0.01-0.05 0.09 0.10 0.21
>0.05 -.418(*) -.623(**) -.439(*%)
< 0.001 374(%) .543(**) .533(**)
<0.01 .528(**) 756(**) .654(**)

DOY = day of year; Tn = night temperature;

* **significant at p < 0.05, p < 0.01, respectively.

doi:10.1371/journal.pone.0129977.t002

temperature. As the land surface is no longer receiving heat at night, evenings result in a cool-
ing process. Soil thermal inertia, one of the soil thermal characteristics, is closely related to soil
water content, which in turn influences changes in land surface temperature. After a rainfall
event, a sandy soil with a lower water holding capability will have a faster depletion rate and
lower soil water content. Hence, the sandy soil has a smaller thermal inertia, which leads to a
faster heat depletion rate and lower land surface night temperature. A clay soil with a higher
water holding capability will have a slower depletion rate and higher soil water content. There-
fore, the clay has a larger thermal inertia, which leads to a slower heat depletion rate and higher
land surface night temperature.

Relationships between the land surface DTR and content of soil particle
size fractions

Table 3 shows the relationships between the land surface DTR and content of different soil par-
ticle size fractions. There is a positive relationship between the sand content and land surface
DTR. Conversely, there is a negative relationship between the clay and physical clay contents
and land surface DTR. There is no significant correlation between the coarse silt content and
land surface DTR. This is expected because thermal inertia, which is a function of the soil
water content, mineral content and organic composition, controls land surface DTR. There-
fore, soils with higher clay contents often hold more water and promote soil organic matter
accumulation [35]. After a rain, a sandy soil will have a lower soil water content and higher
land surface DTR than a more clayey soil.

Overall, we see significant relationships between land surface day temperature, night tem-
perature and DTR with sand, clay and physical clay contents. The relationships between the
land surface DTR and sand, clay and physical clay contents are the strongest. Of these, the
relationships in 2007 with the maximum rainfall input (12 mm) exhibit the best correlation
(all significant at p<0.01 level), and the scatter plots of content of soil particle size fractions
vs. DTR value (Fig 2) show diffuse but highly-significant linear correlations. This suggests
that the antecedent rainfall of the study period was sufficient for analyzing the water content
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Table 3. Linear correlations between the land surface diurnal temperature range and content of soil particle size fractions.

Doy Size fractions (mm) Toazor Toazos Toasz1o Toaz12
2004(307,308,310,312) 0.01-0.05 -0.147 -0.243 -0.082 -0.243
> 0.05 .622(**) .565(**) .609(**) .B67(**)
< 0.001 -577(**) -.505(**) -.584(**) -.625(**)
< 0.01 -.623(**) -.481(%) -.658(**) -.598(**)
2007(323-325,327) Size fractions (mm) To7a23 To7soa To7325 To7as7
0.01-0.05 -0.210 -0.157 -461(**) -0.265
> 0.05 .696(**) .585(**) 728(**) .640(**)
< 0.001 -.606(**) -0.484(**) -.489(**) -.523(**)
< 0.01 - 712(**) -.612(**) -.533(**) -.592(**)
2008(314-316) Size fractions (mm) Tosz14 Tos3is Tosate
0.01-0.05 0.044 0.068 0.131
> 0.05 435(*%) .554(**) A431(*%)
< 0.001 -414(%) -521(**) -510(**)
< 0.01 -.528(**) -.668(**) -.595(**)

DOY = day of year; T = diurnal temperature range;
* **significant at p < 0.05, p < 0.01, respectively.

doi:10.1371/journal.pone.0129977.t003

variations and corresponding changes in the soil surface moisture of different soil texture
classes. Although the relationships are significant, there is no clear regularity as the number
of days after a rainfall increases. We theorize that the rainfall events were not intense enough,
resulting in a very low soil surface water content after the first two days. In addition, the ther-
mal properties of different soil textures are also different [35]. Therefore, two soils with simi-
lar water contents may have different land surface DTRs. More simulation experiments are
needed to clarify the relationship between soil water content and land surface temperature for
different soil texture classes. The relationships between the land surface day temperature and
night temperature and sand, clay and physical clay contents were not always significant. This
may be because the land surface day and night temperatures are not always sufficient indica-
tors of soil water content. Consequently, this study used land surface DTR to estimate sand,
clay and physical clay contents.

Retrieval and mapping of soil texture based on land surface DTR

Based on an analysis of the relationships between the land surface day temperature, night tem-
perature, DTR and content of different soil particle size fractions, we selected the land surface
DTR from 2007 for further soil texture analysis. It was chosen because it exhibited the strongest
relationship with soil texture. The results show that the sand, clay and physical clay contents
exhibit close linear regression relationships with land surface DTR (Tables 4 and 5). The tables
show that the regression relationships vary daily. We used the daily models to estimate soil tex-
ture. We then compared the prediction results.

Independent locations were available for validation. The numbers of data points used in the
validation dataset were 33 on DOY 323, 36 on DOY 324, 20 on DOY 25 and 39 on DOY 27.
Table 6 displays the results of the evaluation of the predictive results of sand, clay and physical
clay contents. The maximum R” values for sand, clay and physical clay contents are 0.45, 0.35
and 0.36, respectively. The minimum RMSEs are 10.69%, 4.57% and 10.94%, respectively. The
minimum MAEs and MEs are 8.72%, 3.44% and 8.87% and 2.76%, 0.10% and -2.93%, respec-
tively. According to the validation results, the model with the highest R* value may not always

PLOS ONE | DOI:10.1371/journal.pone.0129977 June 19,2015 8/14
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Fig 2. Scatter plots of DTR value and content of soil particle size fractions on DOY 323-325,327 in the year of 2007. For respective correlation
coefficients refer to Table 3. DOY: Day of Year.

doi:10.1371/journal.pone.0129977.9002

Table 4. Predictive models of sand content on different days

DOY (2007) Predictive models R?

323 Sand = 7.7408xT g7505-39.664 0.48
324 Sand = 4.7151xTg7324-31.417 0.34
325 Sand = 5.4945xT7325-47.293 0.53
327 Sand = 7.0039xTy7357-51.152 0.41

DOY = day of year; T = diurnal temperature range.

doi:10.1371/journal.pone.0129977.t004
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Table 5. Predictive models of clay and physical clay contents on different days.

DOY(2007)

323
324
325
327

Clay Physical clay
Predictive models R? Predictive models R?
Clay = -2.6113xTy7323+38.418 0.37 Physical clay = -6.0875xT7323+84.604 0.51
Clay = -1.5115xTy7324+34.755 0.23 Physical clay = -3.7913xTg7324+79.047 0.37
Clay = -1.4297xTy7325+35.715 0.24 Physical clay = -3.0943xTy7325+75.331 0.28
Clay =-2.221 7XT07327+40.839 0.27 PhySiCaI Clay = -4.9842XT07327+88.234 0.35

DOY = day of year; T = diurnal temperature range.

doi:10.1371/journal.pone.0129977.t005

provide the best prediction. That is because R only indicates the degree of fit of the model.
However, a good prediction should also have a small prediction RMSE.

Thompson et al. [12] estimated surface sand content in the eastern, central and western
parts of Kentucky based on a soil-landscape model that used a high resolution DEM. The R val-
ues of these predicted values, compared to observed values, were 0.82, 0.54, and 0.61, respec-
tively. The MEs were -0.51%, -6.83% and -0.91%, respectively. The RMSEs were 1.92%, 12.34%
and 3.64%, respectively. Table 6 illustrates that the ME and RMSE in this study are much larger
than those from Thompson et al. However, their method was based on a soil-landscape model,
which is not applicable over areas of low relief. Dematte et al. [16] established regression mod-
els between the remote sensing spectrum from high resolution remote sensing data, ETM
+/LANDSAT-7, and sand and clay contents, to estimate soil surface sand and clay contents.
Their R? values of the predicted values, which were plotted against observed values, were 0.50
and 0.61, which are higher than this study. However, Maselli et al. [17] estimated the soil sur-
face sand content using the static spectrum from TM images over the entire Grosseto Province,
where soil texture showed a wide variety. Their R*> and RMSE were 0.10 and 18.7%, respec-
tively. The accuracy of predictions is often affected by the spatial heterogeneity and the com-
plexity of landscape conditions. Comparisons of these statistics can give a qualitative estimate
of the predictive accuracy.

Maps of sand and clay were generated based on the models developed for DOY324, which
had the minimum RMSE. Because significant data are missing from the DOY325 MODIS
image, the map of physical clay content was also created using the model developed for DOY
324. Calibration and validation scatter plots for the maps created using the model developed
for DOY 324 were shown in Fig 3. The coarse silt content map was not mapped based on the
model because there is no significant correlation between coarse silt content and land surface
DTR. However, the coarse silt content map can be obtained by the raster calculator, using
(coarse silt(%) = 100%-sand(%)—physical clay(%)). The map of the distribution of sand

Table 6. Evaluation of prediction results of sand, clay and physical clay contents.

DOY(2007)
323(N = 33)
324(N = 36)
325(N = 20)
327(N = 39)

Sand

0.37
0.32
0.45
0.37

Clay

0.26
0.29
0.10
0.35

ME (%) MAE (%) RMSE (%)

Physicalclay Sand Clay Physicalclay Sand Clay Physicalclay Sand Clay Physical clay

0.33
0.29
0.26
0.36

378 0.10 -5.93 9.63 436 11.31 1251 527 13.38
459 070 -6.09 872 3.44 10.23 10.69 457 12.99
1110 297 -6.27 11.98 5.74 8.87 1548 6.53 10.94
276 123 -293 890 4.08 10.71 1131 497 13.37

DOY = day of year. N = number of validation data.

doi:10.1371/journal.pone.0129977.t006
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Fig 3. Calibration and validation scatter plots of predictive models of DOY324 in the year of 2007. For respective performance indicators refer to
Table 6. DOY: Day of Year.

doi:10.1371/journal.pone.0129977.9003
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Fig 4. Map of the distribution of sand content (a), clay content (b) and physical clay content (c) based on the prediction.

doi:10.1371/journal.pone.0129977.9004

PLOS ONE | DOI:10.1371/journal.pone.0129977 June 19,2015 11/14



@‘PLOS | ONE

Mapping Soil Texture Using MOD11A1 Data

* City
A County
[_] Nodata

AE of Sand (%)

0.06 - 1.13
1.13-2.44
2.44-4.03
4.03-5.98
5.98 - 8.36
o 8.36 - 11.26
I 11.26 - 14.80
N 14.80 - 19.13
I 19.13-24.42
I 24.42 - 30.88

048

AE of Clay (%) AE of Physical clay (%)

0.12 - 0.64 0.21-3.20
0.64-1.03 3.20-5.10
1.03-1.55 5.10-6.29
1.55-2.25 6.29-7.04
225-3.20 7.04-8.24
I 3.20 - 4.48 o 8.24-10.13
I 4.48-6.21 B 10.13-13.13
N 6.21-854 B 13.13-17.87
I 8.54- 11.69 . 17.87 -25.39
. 11.69 - 15.95 . 25.39 - 37.29

Fig 5. Map of the predictive AE distribution of sand content (a), clay content (b) and physical clay content (c). AE: Absolute Error.

doi:10.1371/journal.pone.0129977.9005

content, clay content and physical clay content illustrate that the sand content gradually
increases from north to south, while the clay and physical clay contents exhibit the opposite
trend. In general, the soil texture is clay in the Lixiahe bog area, while the soil close to the Yang-
tze River is predominantly sandy (Fig 4). According to the second national soil survey, from
the north bank of the Yangtze River to the southern margin of the Lixiahe bog area, where the
parent material is mainly the alluvial material of the Yangtze River, the soils are normally a
sandy loam texture. On the contrary, the parent material in the Lixiahe bog area is mainly
lacustrine sediments and the soil texture is clay [33]. This observation is consistent with the
results of the second national soil survey. Additionally, the maps produced by the models
maintain a soil property spatial continuity pattern better than most traditional soil maps.

To illustrate the distribution of the AEs in the study area, the AEs of both the training and
validation datasets were interpolated using the ordinary kriging method. The maps of the pre-
dictive AE distribution (Fig 5) show that areas of higher AEs coincide with similar areas of
higher NDVI values, especially for clay and physical clay (Fig 1). This is interpreted to mean
that vegetation cover significantly influences the predictive results. Additionally, the areas cov-
ered by water (NDVI < 0 in Fig 1) also show a higher AE because large areas of water strongly
influence land surface temperature.

This study proposed a simple linear regression model based on the DTR available from
MODIS archives to obtain soil texture with adequate accuracy. The method requires a rainfall
event that saturates the soil of the study area homogeneously. Therefore, large areas should be
divided into different sub-areas according to rainfall features, and independent models for
each rainfall zone should be established to obtain soil texture distribution over large areas. The
method is based on the assumption that the surface condition is bare soil. Although we chose
the periods between the previous harvest and the subsequent autumn sowing as the study peri-
ods, the accuracy of the predictive maps was still largely influenced by vegetation. In addition,
the resolution of DTR data from MODIS is relatively low (1 km), the low purity of the mixed
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pixels is of particularly concern, which may lead to weak correlations of the predicted versus
measured (Fig 3). More studies should be done to reduce the effects of land cover differences.
With the development of remote sensing technology, more high spatial and temporal resolu-
tion remote sensing data will be freely available to obtain DTR with high accuracy, which could
greatly enhance the prediction accuracy of the model, and broaden its applications.

Conclusions

Land surface DTR has a strong relationship with sand, clay and physical clay contents. Linear
regression models of land surface DTR and sand, clay and physical clay contents were devel-
oped. In addition, maps of sand, clay and physical clay were generated based on the models
with the minimum RMSE. Validation results suggest that the models can estimate soil texture
with adequate accuracy and stability. Therefore, the method used in this study has significant
potential for improving the digital mapping of soil properties in low relief areas. However, the
method is based on the assumption that the surface condition is bare soil, which is particularly
applicable in intensively cultivated alluvial plains with clear bare-soil periods.
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