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Abstract
Hierarchical organization of free energy landscape (FEL) for native globular proteins has

been widely accepted by the biophysics community. However, FEL of native proteins is usu-

ally projected onto one or a few dimensions. Here we generated collectively 0.2 milli-second

molecular dynamics simulation trajectories in explicit solvent for hen egg white lysozyme

(HEWL), and carried out detailed conformational analysis based on backbone torsional de-

grees of freedom (DOF). Our results demonstrated that at micro-second and coarser tempo-

ral resolutions, FEL of HEWL exhibits hub-like topology with crystal structures occupying

the dominant structural ensemble that serves as the hub of conformational transitions. How-

ever, at 100ns and finer temporal resolutions, conformational substates of HEWL exhibit

network-like topology, crystal structures are associated with kinetic traps that are important

but not dominant ensembles. Backbone torsional state transitions on time scales ranging

from nanoseconds to beyond microseconds were found to be associated with various types

of molecular interactions. Even at nanoseconds temporal resolution, the number of confor-

mational substates that are of statistical significance is quite limited. These observations

suggest that detailed analysis of conformational substates at multiple temporal resolutions

is both important and feasible. Transition state ensembles among various conformational

substates at microsecond temporal resolution were observed to be considerably disor-

dered. Life times of these transition state ensembles are found to be nearly independent of

the time scales of the participating torsional DOFs.

Introduction
During last two decades, great progress has been made in the study of major conformational
transitions for some functionally important proteins [1–10]. Such transitions usually exhibit
spatial displacement of some structural elements up to a few nanometers, often involve collec-
tive motions of many residues and occur on time scales ranging from microseconds to millisec-
onds and beyond. Computationally, elastic network model (ENM) based methodologies have
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been successfully applied to explain functional relevance of such large scale conformational
change [11, 12]. Unfortunately, the complexity of protein conformational space does not stop
here. For a given protein, each major conformation is compatible with many conformational
substates (CSs) that have different combinations of side chain and backbone torsional states.
Transitions among these CSs manifest themselves as rotation of backbone dihedrals ϕ, ψ and
side chains on time scales ranging from sub-nanoseconds to micro-seconds and beyond. These
motions are qualitatively termed as flexibility, which is widely acknowledged to be important
or sometimes critical in various molecular interactions [13]. However, due to the astronomical-
ly large number of possible CS, not much effort has been invested in studying CS transitions,
distributions and organization in conformational space. A series of seminal experimental stud-
ies on the rebinding dynamics of CO by myoglobin provided strong support for hierarchical
organization of free energy landscape (FEL) in native proteins [14, 15]. However, multi-dimen-
sional native FEL of protein is only projected onto one measurable dimension in these experi-
ments, the topological organization of CS at various temporal resolutions and corresponding
detailed structural information of the whole protein is not available.

Native (functional) protein FEL has been analyzed in detail by utilizing atomistic molecular
dynamics (MD) simulation trajectories that are a few hundred nanoseconds to microseconds-
long [16]. Major methodologies are various forms of principal component analysis (PCA) that
are based upon either cartesian or internal coordinates (mainly dihedral angles). Hierarchical
organization of CS is supported by these studies on the FEL of various proteins in the vicinity
of starting crystal structures. However, in addition to limitation of low dimensions, time scale
is quite limited and conclusions made may not be readily extended to the global organization
of native FEL. The majority of experimental and computational studies of FEL for native pro-
teins up to date are designed to explain how given known functions/properties are related to
the underlying FEL. Reduction of dimension (such as projection of FEL onto certain experi-
mentally measurable quantities [14] or various forms of PCA [16]) is an effective means. With
increasing environmental challenges (e.g. nanomaterials and new drugs) faced by biological
systems, our concern is expanded from interactions among endogenous biological molecular
partners to interactions between interested biomolecules and large number of chemical entities.
Therefore, to transform the role of conformational analysis of proteins from explaining known
to predicting a wide spectrum of molecular interactions, it might potentially be helpful to study
global native FEL of proteins in as high dimensional space that we may understand as possible.
Despite great progresses that have been achieved by the docking community [17, 18], it is well
acknowledged that obtaining accurate structures of complexes from structures of their com-
prising proteins is a difficult task. A sufficiently complete backbone native structural ensemble
was demonstrated to improve docking significantly [19]. Proper treatment of CS (or flexibility)
has become a major bottleneck in improving prediction power of docking (both protein-ligand
and protein-protein) methodologies [13, 20]. Therefore, a deeper fundamental understanding
of the distribution and organization of CS is highly desired.

Great breakthroughs have been achieved in understanding folding mechanisms of small
proteins by millisecond MD simulations [9, 21–24]. Despite acknowledged uncertainties [24–
27], many MD simulation folding studies [24, 28] demonstrated that modern molecular me-
chanical force fields are reasonably accurate to distinguish the native ensemble from many un-
folded ensembles. Inspired by successful folding studies with MD simulations [24], we posed
the following questions: i) how are CS organized within conformational space of native pro-
teins at various temporal resolutions (or free energy hierarchies); ii)how does FEL of native
proteins generated by molecular mechanical force fields compare with available experimental
data and; iii) among astronomically large numbers of possible CS, what fractions are of realistic
significance in determining physiochemical properties and biological functions of a given
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protein. These questions are difficult to tackle in a general sense. We chose to use HEWL as a
model protein and CHARMM22 (with CMAP) as a typical set of force field parameters. This
particular case is likely to serve as a representative for many other globular proteins. We gener-
ated collectively 0.2msMD trajectories for HEWL in explicit solvents (water and NaCl). Based
on distributions of backbone dihedrals, 50,000,000 snapshots were clustered at temporal reso-
lutions ranging from* ns to* 20μs. It is found that at μs and coarser temporal resolutions,
native FEL exhibit a hub-like topology with the dominating ensemble, which harbors nearly all
crystal structures, serving as the hub connecting smaller structural ensembles among which
mutual transitions happen occasionally. At 100ns and finer temporal resolutions, however,
HEWL clusters form network-like organization, and crystal structures are associated with sig-
nificant ensembles that form kinetic traps. The number of backbone CS that is of statistical sig-
nificance is found to be rather limited even at ns temporal resolution, revealing strong
conformational correlations among backbone dihedrals. Comparison with available crystal
structures indicates that backbone torsional state transitions involved in various molecular in-
teractions span time scales ranging from ns to* 10μs.

Results

Sets of HEWL CS ensembles at multiple temporal resolutions
To explore the native conformational space of HEWL, we generated 2000 100 − nsMD trajec-
tories and saved 50,000,000 structures (with 4ps intervals). To verify that our MD trajectories
have achieved sufficient sampling for the native HEWL conformational space, we performed
clustering on various subsets of trajectories. The high level agreement regarding the relative im-
portance of significant clusters indicate that our sampling of the HEWL conformational space
is reasonably sufficient (Fig. A in S1 File). Distributions were plotted for each ϕ and ψ that ex-
hibit multiple-peaks (Table A and Fig. B in S1 File) under given temporal resolutions (Table 1),
and were utilized to assign all the saved structures to different clusters and transition state en-
sembles. Briefly, 127 backbone dihedrals with two-major-peak distributions were defined as
two-state torsional DOFs, and were divided into 5 different temporal resolutions according to
the number of observed transitions between the two torsional state of each selected torsion.
Under a given time resolution (say T2), two snapshots belong to the same cluster if and only if
for each of the torsional DOF that has the same or coarser time resolutions (i.e. two-state tor-
sional DOFs at T0, T1 and T2), they share the same torsional state (see Methods for details).
The number of clusters obtained is listed for five specified temporal resolutions (T0, T1, T2, T3

and T4, see Table 1). At the temporal resolution T4(* ns), the statistical weight (W) of snap-
shots in each cluster (used interchangeably with CS hereafter) is plotted in Fig 1a and the per-
centage of snapshots in the largest n clusters (Wsum) were plotted as a function of n in Fig 1b

Table 1. Five temporal resolutions utilized for hierarchical backbone conformational analysis of
HEWL.Corresponding number of conformational substates is provided in the right column.

Temporal resolution NTrans 200(μs)/NTrans NCS

T0 0< NTrans < = 10 20μs to 200μs 10

T1 10< NTrans < = 100 2μs to 20μs 35

T2 100< NTrans < = 1000 200ns to 2μs 434

T3 1000< NTrans < = 10000 20ns to 200ns 12967

T4 10000< NTrans < = 100000 2ns to 20ns 40356

doi:10.1371/journal.pone.0129846.t001
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(See Fig. C in S1 File for similar plots at other temporal resolutions). Apparently, the number
of CS observed in our simulations is quite limited, and the number of CS that have statistical
significance is much less (with only 868 CSs has a weight larger than 0.01% at the temporal res-
olution T4). These observations suggest that quantitative analysis of significant CS at temporal
resolutions as fine as ns is potentially feasible, at least for backbone conformational space. It is
noted that the number of clusters depends highly on the temporal resolution used to perform
clustering, and is much smaller for coarser temporal resolutions (Table 1). Statistics at tempo-
ral resolution T0 is quite limited, and our analysis and discussion hereafter focus on temporal
resolutions T1 through T4.

The hierarchical organization of obtained HEWL CS in backbone conformational space is
plotted in Fig 2(a-d). At temporal resolution T1, a hub-like topology is observed and the domi-
nating ensemble serves as the hub of conformational transitions. At finer temporal resolutions
(T3 and T4), CSs of HEWL exhibit network-like organization, and both the average number of
neighboring clusters (that have direct transitions to and from a given cluster) and its variation
increases (Fig 2). In Fig 2, Approximately half of the lines represent more than a dozen direct
transitions between clusters, and a significant fraction (20% to 30% dependent upon temporal
resolutions) of lines represent hundreds or more inter-cluster transitions. This fact further sug-
gest that our sampling is reasonably sufficient.

Comparison with wild type crystal structure ensemble
To examine the experimental relevance of our obtained CSs, 120 crystal structures of wild type
HEWL are clustered using the same criteria established for MD snapshots. As shown in Fig 2
and Table B in S1 File, At temporal resolutions T1 and T2, nearly all examined crystal structures
are located in the dominating structural ensemble from our simulations. However, at T3 and
finer temporal resolutions (� 200ns), crystal structures are scattered in more and more clusters
that are significant but not dominant anymore. This observation might indicate the deficiency
of the utilized force fields in differentiating CS on such fine temporal resolutions. Dominance

Fig 1. a) Statistical weight (W) of the largest 23400 (out of 40356) CSs at time resolution T4, the horizontal axis are indices for CS (IndCS). Inset:W for the 50
largest CSs. b)Collective statistical weight (Wsum) of the N largest CSs (NCS) at time resolution T4. Inset: magnification for smallNCS.

doi:10.1371/journal.pone.0129846.g001
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by a structural ensemble that does not correspond to crystal structure(s) has been attributed to
inaccuracy of force fields [9]. Nevertheless, we need to note that the simulation condition is
quite different from crystallization conditions of any utilized crystal structures. Finally a given
crystallization process is not guaranteed to capture the most populous solution conformational
substate at arbitrarily given temporal resolutions. Therefore, the exact reason for mismatch be-
tween dominant simulated ensembles and crystal structural ensemble (CSE) at fine temporal
resolutions is not clear. It is likely that all three factors contribute simultaneously. As shown in
Fig 3a, At temporal resolution T4, clusters harboring CSE are observed to have significantly
less inter-cluster connections when compared with other clusters that have similar statistical
weight (i.e. neighbors on the X axis, inter-cluster connections normalized by statistical weight
are shown in Fig 3b). It is noted that such “kinetic trap” property is only observed on relatively
fine temporal resolutions (T3 and T4). At coarse temporal resolutions (T1 and T2), each major
CSE seems to be “contaminated” by many non-CSE solution states on finer temporal resolu-
tions (Fig. D in S1 File).

We analyzed distributions of crystal structures among the clusters established fromMD tra-
jectories at time resolutions T1 through T4 (see supporting text for details). Briefly, for back-
bone torsional transitions associated with various molecular interactions that were captured by
crystal structures, their corresponding time scales were found to vary from* ns to multiple μs.

Fig 2. CS organization at temporal resolutions T0, T1, T2, T3 and T4. Each line (edge) between the two defining nodes (representing CSs) indicates
occurrence of direct transitions between these two CSs. Sizes of nodes are indicative of CS’s statistical weight and thickness of lines are indicative of the
number of direct transitions (but not strictly to the proportion). Blue lines represent transitions betweens clusters that merge to the same cluster on the
preceding coarser temporal resolution, while green lines represent transitions between clusters that belong to different clusters on the preceding coarser time
resolution. Yellow nodes harbor HEWL crystal structures in both single and complex forms, gray nodes harbor HEWL crystal structures in complexes with
other proteins, and the remaining nodes in pink represent CSs that do not harbor any crystal structures. Only significant CSs are shown.

doi:10.1371/journal.pone.0129846.g002
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Functionally relevant substrate-bound and inhibitor-bound structures, while sharing large hy-
drophobic solvent accessible surface area (hSASA) (Fig 4), locate in different clusters at tempo-
ral resolutions T3 and T4. Site for change of backbone torsional states associated with
molecular interactions do not necessarily co-localize with corresponding interaction residues.
This observation is in agreement with the concept that all dynamic proteins are potentially allo-
steric [29]. All HEWL crystal structures that are in complexes with antibodies and a few other
small proteins locate in significant clusters obtained from our simulations of free form HEWL.

Fig 3. Extent of inter-cluster transitions for the largest 100 CSs at temporal resolution T4, CSs that harboring crystal structures are indicated by
arrows. a) The total number of transitions (Nconn), b)upon normalization with the corresponding statistical weight (Nconn/W).

doi:10.1371/journal.pone.0129846.g003

Fig 4. Probability distribution of hSASA for the crystal structure ensemble and MD simulation
ensembles.Green line a): from trajectories that originate from crystal structures without sugar substrates/
inhibitor bound; Blue line b): from trajectories that originate from crystal structures with sugar substrates/
inhibitor bound; Purple impulses c): from crystal structure ensemble without sugar substrates/inhibitor bound;
Black impulses d): from crystal structures with sugar substrates/inhibitor bound.

doi:10.1371/journal.pone.0129846.g004
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Therefore, the conformational selection mechanism [30] seems to dominate for interactions of
HEWL and its protein partners.

Comparison with mutant crystal structure ensemble
There are many crystal structures available in PDB for a wide variety of HEWL mutants (see
Table C in S1 File). We were interested in examining how point mutations impact selection of
potential CSE by crystallization. To this end, we performed the same clustering procedure with
29 mutant structures and listed the results in Table C in S1 File. It is found that mutants crystal
structures are located in the same clusters as the wild type ones under similar crystallization
conditions. As shown in Fig. E in S1 File, analyzed mutations are distributed across the whole
protein. Therefore, at least for this set of mutants, single (and multiple) point mutations do not
significantly influence the net result of CSE selection during crystallization. This observation
suggests that for HEWL, crystallization conditions are more important than point mutations
in selecting CSE. Therefore, caution has to be applied in explaining any structural change ob-
served in mutant crystal structures under different crystallization conditions. In crystallization
attempts, adjusting solution condition is a more widely utilized strategy than point mutations.
Such practice is consistent with our current observation. The rational might be that solution
conditions directly impact many surface residues that are more relevant in crystal contacts,
and consequently has a larger probability to result in significant change of interaction networks
that determine selection of CSE in target protein molecules. This observation is likely to be true
for other globular proteins.

Physical properties of major CS and transition state ensembles
To examine structural differences within each and among different clusters. We calculated the
pair-wise root mean squared deviation (pwRMSD) based on backbone atoms, and the results
are shown in Fig 5a. At temporal resolution T4, inter-cluster structural differences as measured
by pwRMSD are on average slightly larger than that within each cluster, as one would intuitive-
ly expect. However, distributions for inter-cluster and intra-cluster pwRMSD are both single-
peaked and largely overlap. A few other molecular scale physical quantities, including the num-
ber of hydrogen bonds (nHB), the number of native contacts (nNC), radius of gyration (Rg),
and hSASA were calculated for major CSs at multiple temporal resolutions. As shown in Fig 5
(b)–5(d) and Fig. F in S1 File, CSs occupied by crystal structures exhibit significantly larger
nHB, nNC and smaller hSASA than other ones, while sharing similar average Rg.

We also calculated these quantities for transition state ensembles (between CSs). As shown
by Fig 6, At temporal resolution T2, transition state ensembles at various temporal resolutions
exhibits larger hSASA, larger Rg, smaller nHB and nNC. Similar but less significant observations
were made at other temporal resolutions (see Fig. G in S1 File). These observations suggest that
transition structural states corresponding to change of backbone torsional states are more dis-
ordered and expanded. Disordering within native state of well-structured protein is not an es-
tablished concept. Due to their small statistical significance in equilibrium conformational
distributions, these transition state ensembles have trivial impact on thermodynamic proper-
ties. For the same reason, direct experimental comparison is extremely difficult at present.
However, large-amplitude backbone dihedral rotations are important in protein conformation-
al dynamics. Therefore, further investigation in this aspect is necessary.

Life time of transition state ensembles at multiple temporal resolutions
Life time for TSEs of protein folding have been investigated extensively by experimental, theo-
retical and computational studies and found to vary from multiple ps to hundreds of ns [31–
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Fig 5. A few physical properties of major clusters at temporal resolution T4, a) Distributions of intra-cluster (red) and inter-cluster (green) pwRMSD. b)
hSASA, c) nHB and d) nNC of the 50 largest clusters. Arrows in b), c) and d) indicate clusters harboring crystal structures.

doi:10.1371/journal.pone.0129846.g005

Fig 6. Distributions of a)Rg, b)hSASA, c)nHB and d)nNC for major clusters (the 50 largest ones) and TSEs at temporal resolution T2.

doi:10.1371/journal.pone.0129846.g006
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34]. No quantitative characterization of life time for TSE of backbone torsional transitions in
native protein is available to the best of our knowledge, however. We calculated averages and
distributions of life times for TSEs at various temporal resolutions and plotted the results in
Fig 7. It is interesting that both distributions and averages of torsional transition times are simi-
lar for all backbone torsions that were used in clustering, regardless of the average waiting
times, which are used to define time scales for corresponding torsional DOFs and range over
five orders of magnitude. As cluster splitting backbone torsions at various temporal resolutions
are distributed across the whole primary sequence (Table A in S1 File), this observation implies
that life time of backbone torsional transition state is insensitive to local environment. While
specific life times for transition state of backbone torsional DOFs might vary for different force
fields, its observed invariance across primary sequences implies insensitivity to local environ-
ment, which is likely to be a general feature of proteins.

Side chain torsional degrees of freedom
Side chain torsional DOFs, together with backbone ones, are generally termed “soft” DOFs and
have been demonstrated to be the major source of protein configurational entropy [35]. We
calculated distributions of χ1 for all rotatable side chains that have at least one heavy atom be-
yond Cβ. It is found that each χ1 significantly populate all three major rotameric states (Fig. H
in S1 File). Waiting time for these interconvertions ranging from a few nanoseconds to micro-
seconds and beyond (See Fig. I in S1 File). Addition of χ1s in the clustering results in a dramatic
increase of cluster number at each temporal resolution, and NCS amounts to 7382009 at tempo-
ral resolution T4. Further addition of χ2 increases NCS to 38437034 at T4. These observations re-
flect significantly less correlations among side chains when compared with backbone dihedrals
as calculated by us (Fig. J in S1 File) and reported elsewhere [36], and confirm the conclusion
from an earlier study [37] that globular proteins have solid like backbone DOFs and liquid like
side chain DOFs. These side chain based clusters are not helpful in understanding experimental
observables and function of proteins since each single cluster has negligible statistical weight.
Therefore, we did not perform further analysis on them. This observation by no means negates
the importance of side chain flipping in function of some proteins (e.g. open/close of a channel)
[38, 39], where it is the marginal probability of a specific one or a few side chain torsional state
(s), not the probability of a unique side chain torsional state combination (which is always

Fig 7. Distributions of TSE life times at temporal resolution a) T1 and b) T4. The green impulses indicate estimated averages (LTavg).

doi:10.1371/journal.pone.0129846.g007

Hierarchical Conformational Analysis of Native Lysozyme

PLOSONE | DOI:10.1371/journal.pone.0129846 June 9, 2015 9 / 17



negligible in statistical weight), that accounts for the corresponding structural, dynamical or
functional importance.

Discussion

Selection of clustering criteria and methodology
In folding and design studies, RMSD from a specific native structure (usually a crystal struc-
ture) or pwRMSD is widely utilized for clustering and a number of accelerated methods are de-
veloped for this purpose [40–42]. This is quite effective as structural differences between native
ensemble and various unfolded ensembles are significant. Another type of widely used quanti-
ties are principal components (PC) obtained from diagonalizing the covariance matrix [43].
Principal component analysis (PCA) has been shown to be effective in reducing dimension of
protein FEL as first few PCs usually dominate the whole FEL that is explored by simulations on
the order of hundreds of nanoseconds [16]. This is not necessarily true for very large number
of snapshots exhibiting strong structural diversity. When PCA is applied to snapshots from
single or a few 100−nsHEWL trajectories, in agreement with many previous studies, the first
few PCs dominate the whole FEL. However, when snapshots from hundreds of 100−ns trajec-
tories were used, strong structural diversity renders the first few PCs much less dominant
(Fig. K in S1 File). It is important to note that PCA analysis is based on the structural covari-
ance matrix, which does not have any time scale related information. The dominating eigen-
vectors corresponding to collective motions that are of the largest spatial magnitude, not
necessarily the longest time scale. Therefore, both RMSD and PCs (from PCA) are not in line
with our major goal of analyzing the explored conformational space at multiple temporal
resolutions.

Markov state models (MSM) is a powerful technique with explicit temporal resolution con-
sideration, and has been successfully applied to analyze major functionally important metasta-
ble states for many proteins [44]. There have been significant improvement of kinetic network
models, such as the super-level-set hierarchical clustering [45] and Hierarchical Nyström
methods [46] for multiple resolution analysis of bimolecular dynamics, since earlier days of
MSM [47]. We initially chose to use distributions of backbone dihedrals for clustering based
on the well-acknowledged importance of these torsional DOFs for protein conformational
transitions, the deterministic clustering results, and explicit consideration of temporal resolu-
tion. When combined with the radix sort algorithm [48] and bit-encoded torsional states, the
clustering process may be accomplished with trivial computational cost. The above discussed
results indicate that clustering based on backbone torsional states divide crystal structure en-
semble into physically meaningful sub-clusters. Additionally, each backbone torsional DOF is
associated with a specific residue, potentially rendering easy integration of conformational
analysis with sequence analysis and mutation experiments. Explicit knowledge of time scales
and distributions of individual backbone torsions in specific environment may be utilized by
machine learning methods for prediction of CS distribution and dynamics. Therefore, given its
low computational cost, conceptional simplicity and practical utility, backbone dihedral distri-
bution based clustering is a useful approach for conformational analysis of proteins. Apparent-
ly, MSM is a more theoretically advanced methods for multiple-resolution analysis of MD
trajectory sets. However, specifying number of clusters for different hierarchies, which we do
not have much information a priori, becomes a challenge. Additionally, the clustering itself be-
come computationally intensive for large number of snapshots as in our case. It would be inter-
esting to have a detailed comparison between our backbone dihedral based clustering and
MSM analysis in the future.
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The significance of MD simulation results and the crystal structural
ensemble
While admitting that each current force field parameter set has its own limitations, it is certain-
ly true that they describe very realistic models of proteins. The significance of simple lattice
model [49–51] and Go model [52, 53] studies can not be over emphasized in developing pro-
tein folding theories. Recent atomistic simulations of the folding of many small globular pro-
teins [24], while greatly enriched original simple models, proved rather than negated the
significance of their major conclusions. At microsecond temporal resolution (T2), dozens of
transitions are observed between the dominating cluster that harboring nearly all crystal struc-
tures and other small clusters, suggesting that the force fields is effective in locating the major
native structural states. Therefore we believe that our results, despite the fact that it does not
strictly reflecting the global FEL of HEWL under physiological conditions, give a highly realis-
tic model, and the conclusions regarding the topology and organization of CS are likely to be
representative for many globular proteins.

Crystal structures of proteins, despite their being obtained from non-physiological condi-
tions, have beautifully rationalized numerous critical molecular biological processes (e.g. cen-
tral dogma related processes, energy production, signal transduction). This is consistent with
our remarkable observation that 114 out of 120 crystal structures, which were obtained under
widely different conditions, are located within a central 2 μs bottom region of the native
HEWL FEL explored by 0.2ms MD simulations. Five out of the remaining six crystal structures
are obtained under extreme conditions such as low hydration and high sodium nitrate concen-
tration (see supporting information for details). Our simulation results, together with the large
crystal structural ensemble, suggest that HEWL is likely to have only one narrow major native
FEL well (within a few microseconds) that harbors structural states to bind substrates and in-
teract with other proteins. Since force fields are always defective to some extent, very long tra-
jectories might get lost in unrealistic conformational states, running multiple moderately long
trajectories in the vicinity of high resolution experimental structures may alleviate this artifact
to some degree. Therefore, to sample conformational space of proteins with similar type of na-
tive FEL in the vicinity of a crystal structure, utilizing multiple independent microseconds-long
MD trajectories might be a better strategy than running a single milli-second or longer MD
trajectory.

Conclusions and the prospects
In this study we performed a hierarchical conformational analysis for HEWL, a typical globular
protein with sufficient structural complexity, at multiple temporal resolutions ranging from ns
to μs. We observed hub-like topology at microsecond and coarser temporal resolutions, and in-
creasingly diversified structural states and more connectivity among CS at increasingly finer
temporal resolutions. Various molecular interactions captured in CSE were found to associate
with CS transitions covering time scales from nanoseconds to microseconds. CSE for HEWL
are found to be associated with kinetic-trap clusters at* 10–100ns temporal resolution. The
number of CS that have non-negligible statistical weight is quite limited, even at ns temporal
resolution. These observations suggest that to study CS of native globular proteins at temporal
resolutions ranging from ns to μs is both important and potentially feasible for prediction of
molecular interactions. However, our study is limited to one specific protein. The apparent im-
mediate questions needs to be answered are: i)How is distribution and organization of CS relat-
ed to specific protein size, folds and sequences; ii)What are the roles of hierarchical CS in
protein-protein and protein-ligand interactions. We are working on a few more proteins with
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different sizes and folds to further increase our understanding in these directions. we hope that
this work will stimulate more investigations in this line.

Methods

Molecular dynamics simulations
MD simulations systems were setup and equilibrated with VMD [54] and NAMD [55]. Pro-
duction runs were performed using ACEMD [56]. 120 crystal structures of HEWL, including
44 in protein-protein-interaction complexes and 76 in free form (or with bound small mole-
cules), were taken from PDB (www.pdb.org). Each structure is solvated with 6575 TIP3P water
molecules and neutralized with 5 Na+ and 13 Cl− ions, resulting in a system with 21703 atoms.
The 120 HEWL simulation systems were first equilibrated for 200ps in NVT ensemble and for
1ns in NPT ensemble, both harmonic restraint on protein heavy atoms. After that, restraints
were released and 3ns of NPT run were performed to obtain a proper volume (a cubic box with
59.582 Å sides) that is used in the following NVT production runs. Starting configurations for
production NVT runs were selected from the last 1ns of the previous NPT run with the criteria
of having right box size (within 0.01Å). CHARMM22 (with CMAP) force fields were utilized
with a 9Å non-bonded cutoff distance in production runs. The simulation time step is 2fs for
equilibration with NAMD and 4fs with hydrogen repartition for production run with ACEMD.
Electrostatics were treated by PME with gird size being approximately 1Å. 20 independent tra-
jectories were started from each equilibrated PDB structure by using 20 different random num-
ber seeds for initial atomic velocity assignment, resulting in 2400 initial trajectories.
Trajectories stopped due to machine failure (mainly writing error due to full disks, GPU mem-
ory error and operating system failing) were discarded. 2000 100 − ns trajectories, with collec-
tively 50,000,000 snapshots, were utilized for final analysis.

Clustering of structural and transition state ensembles at various
temporal resolutions
Backbone dihedral distributions and torsional states. Distribution of each backbone dihedral
angle (ϕ, ψ) is constructed by using histograms with bin size being 1°. To perform clustering,
local minima are found for each backbone dihedral distribution. Whenever the angle distance
between two local minima of a given dihedral is smaller than 60, the minimum with smaller
probability is taken as an effective. After this initial filtering, a backbone dihedral is selected as
a potential clustering dihedral if two or more effective local minima exist. Each region between
two neighboring local minima is defined as a torsional state for that torsional DOF. As dihedral
angles are cyclic variables, the number of state is equal to the number of local minima utilized
for splitting corresponding dihedrals. We found that 127 backbone dihedrals (out of the total
of 256) exhibit two-peak distributions and are defined as two-state torsional DOFs that were
used in clustering.

Time scales. The time scale for each specific two-state backbone dihedral is defined by the
average waiting time between two transition events regardless of its specific directions and
routes (For circular two-state system with state A, B and minimaMINA,MINB, there are two
possible directions and four possible routes, A!MINA! B, A!MINB! B, B!MINA !
A, B!MINB ! A,). Specifically, within our collective trajectory time of 200μs, if N transitions
(Ntrans) happened between the two states of an given dihedral, then the average waiting time is
tw ¼ 200

Ntrans
ms, which is used to define time scale of the corresponding torsional DOF.

Clustering at five temporal resolutions. To establish backbone based hierarchical clustering,
we first divided all 127 two-state backbone dihedrals into five groups corresponding to five
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different temporal resolutions T0 (20μs< tw < 200μs), T1 (2μs< tw < 20μs), T2 (200ns< tw <

2μs), T3 (20ns< tw < 200ns) and T4 (2ns< tw < 20ns). Two structures are assigned to the
same cluster only if for each clustering participating torsional DOF, both structures are in the
same torsional state. When performing clustering at a given temporal resolution, two-state
backbone dihedrals with shorter time scales are treated as single-state DOF and are excluded.
For example, when clustering at temporal resolution T2, we use backbone dihedrals that have
time scales within the range of T0, T1 and T2, but ignore those with time scales within the range
of T3 and T4. Due to limited statistics, we did not perform detailed analysis at temporal resolu-
tion T0. Backbone torsional DOFs utilized for each temporal resolution is listed in Table A in
S1 File.

Transition state ensembles. First we define transition state ensemble for effective local mini-
mum of all two-state backbone torsional DOFs (ϕ and ψ) as follows. At temporal resolutions
T3 and T4, a 5 degree region (2.5 degree to each side of an effective local minimum) is defined
as the transition state. At temporal resolutions T0, T1 and T2, for a given local minimum of a
specific torsional distribution, number of snapshots in 2.5 degree bins to each side of the mini-
mum are assigned to N+1, N+2, N+3, � � � and N−1, N−2, N−3, � � �. If N±(i+2) − N±(i+1) � N±(i+1) −
N±i, (i = 1, 2, 3, � � �), then bins 1, � � �, i + 1 are defined as the transition state region of the corre-
sponding local minimum. Due to finite sampling, limited connectivity on each level of hierar-
chical conformational space, and correlations between (among) different backbone torsional
DOF, local minima in distributions of each two-state torsional DOF do not necessarily corre-
spond to the transition ensembles between different clusters. Only when transition state of a
specific DOF coincide with transition between two clusters at a given temporal resolution, it is
taken as transition state of corresponding clusters and snapshots within that state are counted
as transition state structures.

Principal component analysis. Dihedral principal component analysis (dPCA) is utilized in
this study. To tackle the circular property of dihedral angles, we used the following trigonomet-
ric functions to represent backbone dihedrals (ϕ and ψ) [57]. q2i−1 = cos ϕi, q2i = sin ψi, with i
running through the number of residues. Subsequently, covariance matrices σij = h(qi − hqii)(qj
− hqji)i are constructed for selected (or all) trajectories and diagonalized to obtain principal
components. We also performed PCA analysis based on cartesian coordinates for protein back-
bone atoms.

Calculation of various physical properties

Radius of gyration. Radius of gyration for each snapshot is calculated as rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnatom

i¼1
mir

2
iPnatom

i¼1
mi

r
, with

mi and ri being the mass and the distance to the molecular center of mass for atom i respective-
ly, natom is the total number of atoms in HEWL.

Native contacts. A residue contact is defined for two non-sequential residues with Cα dis-
tance being smaller than 6.5Å. Residue contacts that are shared by two thirds (80) or more of
the 120 crystal structures utilized in this study are defined as native contacts.

Hydropobic solvent accessible surface area (hSASA). A 1.4Å-diameter sphere is used to
probe HEWL surface of hydrophobic residues (as defined by VMD) with VMD [54].

Hydrogen bonds. Existence of a hydrogen bond is defined by a distance between a donor
and an acceptor being smaller than 3.5Å (cutoff distances ranging from 3.0Å to 3.5Å gives simi-
lar ordering among different clusters when the number of hydrogen bonds is compared), and
by the corresponding “donor!H! acceptor” bend angle being larger than 130.
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