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Abstract
Phototoxicity consists in the capability of certain innocuous molecules to become toxic

when subjected to suitable illumination. In order to discover new photoactive drugs or char-

acterize phototoxic pollutants, it would be advantageous to use simple biological tests of

phototoxicy. In this work, we present a pilot screening of 37 dyes to test for phototoxic ef-

fects in the roundworm Caenorhabditis elegans. Populations of this nematode were treated

with different dyes, and subsequently exposed to 30 min of white light. Behavioral outcomes

were quantified by recording the global motility using an infrared tracking device (WMicro-

tracker). Of the tested compounds, 17 dyes were classified as photoactive, being phloxine

B, primuline, eosin Y, acridine orange and rose Bengal the most phototoxic. To assess

photoactivity after uptake, compounds were retested after washing them out of the medium

before light irradiation. Dye uptake into the worms was also analyzed by staining or fluores-

cence. All the positive drugs were incorporated by animals and produced phototoxic effects

after washing. We also tested the stress response being triggered by the treatments through

reporter strains. Endoplasmic reticulum stress response (hsp-4::GFP strain) was activated

by 22% of phototoxic dyes, and mitochondrial stress response (hsp-6::GFP strain) was in-

duced by 16% of phototoxic dyes. These results point to a phototoxic perturbation of the

protein functionality and an oxidative stress similar to that reported in cell cultures. Our work

shows for the first time the feasibility of C. elegans for running phototoxic screenings and un-

derscores its application on photoactive drugs and environmental pollutants assessment.

Introduction
The phototoxic properties of many compounds were demonstrated long ago [1], consisting in
the capability of certain molecules to be activated when subjected to suitable illumination.
When this effect requires molecular oxygen it has been named photodynamic action, and al-
lowed the development of a new cancer treatment called “photodynamic therapy” (“PDT”) [2].
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In a PDT treatment patients are treated with the drug and, once absorbed, the tumor area is
subjected to light irradiation in order to activate drug phototoxicity and destroy cancer cells.
The molecular mechanism of photoactivation is based on the generation of reactive oxygen
species (ROS, and mainly singlet oxygen, 1O2), which damage cellular structures and induce
cell death, either by apoptosis or necrosis [3–5]. Specific photoactivable drugs have been dis-
covered and are currently used in human healthcare [6], and several common dyes have shown
photodynamic activity. Some well characterized molecular structures with photoactive proper-
ties are thiazine [7–9], xanthene [10], acridine [11, 12], and triarylmethane [13] derivatives.

At the moment, most of the work on photoactivity of dyes has been concerned with bio-
medical applications [14], particularly PDT of cancer [4, 15, 16]. However, this particular effect
spreads to other fields of interest such as photosterilization of water and blood products [9,
12], and environmental pollution [17–20]. It is worth to note that dyes used in industrial activi-
ties often present mutagenic, carcinogenic, and genotoxic photoactivity [15, 21, 22], which can
result in a relevant risk for both human and environmental health.

In addition, xenobiotics such as herbicides, pesticides, aromatic hydrocarbons, cosmetics
and personal care products are also photoactive environmental pollutants that, when illuminat-
ed, exert adverse effects on the quality of river and lake water, soil sediments and living organ-
isms [23–29].

Biological models, from microorganisms to higher organisms, have been thoroughly em-
ployed to evaluate phototoxic effects of chemicals in order to explore the potential of new
drugs for PDT or to prevent environmental damage from xenobiotics. Several bioassays for the
detection of photodynamic effects are currently on use, examples being Paramecium [30], Can-
dida [31], Allium [32], Drosophila [22], Daphnia, sea urchin [10], amphibian embryos [33],
cell cultures [34], erythrocyte hemolysis [35], and intradermal tests [36].

In order to assess more precisely the phototoxicity of compounds such as drugs or pollut-
ants, the use of a small translucent whole organism seems to be advantageous for simple, rapid
and cheap bioassays. One of the simplest animal models is the nematode Caenorhabditis ele-
gans, which has a fully sequenced genome, rudimentary organs similar to those found in mam-
mals, and highly conserved cellular signaling pathways [37]. Also, the ease to culture, growth
and reproduction of this organism has helped to establish it as a very suitable biological model
for a variety of assessments. The main attraction of C. elegans for use in pharmacological and
toxicological screening consists in the capability to be cultured in microplates (96 or 384 well
plates), with small amounts of liquid medium, where animals can be incubated with experi-
mental compounds [38].

In a whole animal approach, treatment with toxic doses will cause death, whereas subtoxic
effects will affect animal behavior. Based on this premise, we employed here a motility tracking
system, previously developed in our laboratory [39], to characterize the effects of thirty seven
dyes, some already known to have phototoxic properties. As far as we know, this is the first
time that the C. elegansmodel has been used for screening of this kind of compound.

Materials and Methods

Animal culture and strains
For the phototoxicity, uptake assays, and for qRT-PCR experiments, synchronized populations
of Caenorhabditis elegans SS104 strain (glp-4 [bn2], a temperature sensitive sterile mutant)
were cultured at non permissive temperature (25°C) in Nematode Growth Medium as de-
scribed previously [40]. On the 1st day of adult stage, animals were washed twice in saline solu-
tion (modified K-medium: 52 mMNaCl and 32 mM KCl [41] + 0.01% Triton X-100) and
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transferred to flat bottomed 96-well microplates (Greiner Bio-one Cat. 655101). An average of
50 animals was used per well with a final volume of 100 μl.

For the stress response assays the reporter lines used were zcIs4 [hsp-4::GFP], zcIs9 [hsp-
60::GFP], zcIs13 [hsp-6::GFP] (SJ4005, SJ4100 and SJ4058 strains, respectively). For worm
cultures the same protocol was followed but at 20°C. All strains were obtained from the Cae-
norhabditis Genetic Center, University of Minnesota, USA.

Behavioral phototoxicity measurement
One hour after pipetting, basal motility of worms within the wells was assessed using an infra-
red tracking device (WMicrotracker, Designplus SRL, Argentina) [39]. This basal activity was
recorded to normalize any subsequent activity variations to that initial activity, eliminating dif-
ferences between wells due to population size. After basal measurement, dyes were added to
the culture medium at final concentrations of 0.1, 1, 10 or 100 μM and incubated for 1 h before
light irradiation (where applied). Dye photoactivation was carried out exposing the microplates
for 30 min under a fluorescent white light source (2700°K white fluorescent lamp R7s 20W,
Sica, Argentina) at 10 mW/cm2 of intensity. An additional water IR-filter (3-cm wide) was
used to avoid heating, as previously reported [20].

Locomotor activity was tracked continuously in darkness during the incubation with the
dye and for 4 h after dye activation. At least 4 replicate wells were used for each experiment,
and the reported concentration was repeated independently three times, unless otherwise men-
tioned in the text.

Chemical treatment
The dyes employed in this study, as well as their characteristics and known properties, are
shown in Table 1. After a preliminary determination, compounds were used at 100 μM concen-
tration (unless otherwise indicated).

Statistical analysis
In order to quantify the toxic properties of the compounds in worms, a parameter called Vitali-
ty Rate (VR) was calculated as the ratio between dye treated worms and contol animals in the
same assay. Based on previous experience on tracking C. elegans, where 10% variations in loco-
motor activity are common over continous 30 min periods of activity tracking (S1 Table), an
activity drop below 0.8 of the control population level (significantly different from 1, p< 0.05
ONE sample t-test) was set to be considered a positive toxic effect.

Dye uptake
Worms were exposed to dyes as described previously, with the difference that the culture medi-
um with the chemical was removed from the medium after the 1 h incubation, and worms
were washed inside microplates 4 times with saline solution (modified K-medium). After this
treatment, the dye accumulated inside the animal body was photoactivated for 30 min, and lo-
comotor activity was recorded for 4 hours as described previously. In parallel, 3 replicate wells
were observed using bright-field and fluorescence microscopy under blue or green excitation
light with the purpose of visually assessing dye uptake. The accumulation of dyes was arbitrari-
ly quantified by the intensity of fluorescence or staining using a 4 color scale.
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Table 1. List of dyes used in the present work, with reference to the chemical group, Colour Index number (C.I.), electric charge (Z), source, and
previously reported photoactivity (if any, and only for well known cases).

Dye (abbreviation) Chemical group C.I. Z Source Photo
Activity

Reference a

1. Acridine orange (AO) Acridine 46005 + Merck + Zdolsek et al. 1990, Herkovits et al. 2007, Alvarez el al. 2011

2. Alizarin red S (ARS) Anthraquinone 58005 − Fluka − Seliger & McElroy 1965, Redmond & Gamlin 1999

3. Auramine O (AuO) Diphenylmethane 41000 + Analema + Stockert et al. 1990

4. Berberine (Ber) Isoquinoline 75169 + Sigma + Molero et al. 1985, Inbaraj et al. 2001

5. Bismarck brown Y
(BBY)

Bis-azo 21000 2+ R.A.
Lamb

− Barbosa & Peters 1971

6. Carmine (Car) Anthraquinone 75470 0 Gurr nd

7. Chrysoidine (Chr) Mono-azo 11270 + G.T. Gurr nd

8. Congo red (CR) Bis-azo 22120 2− Merck nd

9. Curcumin (Cur) β-Diketone 75300 0 Merck + Bruzell et al. 2005

10. Eosin Y (EY) Hydroxyxanthene 45380 2− Sigma + Seliger & McElroy 1965, Knox & Dodge 1985, Deerinck et al.
1994

11. Fast green FCF (FG) Triphenylmethane 42053 2− Sigma nd

12. Fluorescein (F) Hydroxyxanthene 45350 2− Sigma − Gandin et al. 1983, Devanathan et al. 1990

13. Hematoxylin (H) Neoflavone 75290 − Panreac nd

14. Indigocarmine (IC) Indigoid 73015 2− Serva − Herkovits et al. 2007

15. Janus green B (JGB) Mono-azo-azine 11050 + Grübler nd

16. Luxol fast blue MBSN
b

Phthalocyanine 74180 2− Merck −

d Redmond & Gamlin 1999

17. Mercurochrome (Mer) Hydroxyxanthene − 2− Merck + Redmond & Gamlin 1999

18. Methylene blue (MB) Thiazine 52015 + Sigma + Stockert & Herkovits 2003, Smijs et al. 2004, Herkovits et al.
2007

19. Morin (Mor) Flavonol 75660 0 Merck nd

20. Naphtol Blue Black Bis-azo 20470 2− Serva nd

21. Neutral red (NR) Azine 50040 + Panreac + Seliger & McElroy 1965, Barbosa & Peters 1971, Gutter et al.
1977

22. NiPcS4 c Phthalocyanine − 4− Aldrich −

d

23. Nuclear fast red
(NFR)

Anthraquinone 60760 − Merck + Kuramoto & Kitao 1981, Robertson et al. 2009

24. Phloxine B (PhB) Hydroxyxanthene 45410 2− Panreac + Rasooly & Weisz 2002, Herkovits et al. 2007

25. Primuline (Pri) Benzothiazole 49000 − Fluka nd

26. Pyronine Y (PY) Aminoxanthene 45005 + G.T. Gurr − Herkovits et al. 2007

27. Rhodamine B (RhB) Aminoxanthene 45170 + Merck + Ngen et al. 2009

28. Riboflavine (Rib) Alloxazine − 0 Merck + Naseem et al. 1988, Redmond & Gamlin 1999

29. Rose bengal (RB) Hydroxyxanthene 45440 2− Sigma + Banks et al. 1985, Marthy et al. 1990, Herkovits et al. 2007

30. Ruphen e Ru-diimide − 2+ Aldrich − Dobrucki 2001

31. Safranine O (SO) Azine 50240 + Fluka + Li et al. 2006

32. Tartrazine (Tar) Mono-azo 19140 3− Fluka nd

33. Thioflavin S (TS) Benzothiazole 49010 − Bayer nd

34. Thioflavin T (TT) Benzothiazole 49005 + G.T. Gurr + Seliger & McElroy 1965, Villanueva et al. 1993

35. Thionine (T) Thiazine 52000 + Merck nd

36. Toluidine Blue O (TB) Thiazine 52040 + Merck + Stockert et al. 1996, Herkovits et al. 2007, Blázquez-Castro
et al. 2009

37. Trypan Blue (TryB) Bis-azo 23850 4- Fluka − Barbosa & Peters 1971, Herkovits et al. 2007

(a) The reference list for reported photoactivity is not exhaustive and only reflects a few but relevant citations on the best known photoactive dyes.

Reference details are shown as supplementary information (S1 Text). (b) CuPcS2:cooper phthalocyanine disulfonic acid, di-o-tolylguanidine salt.(c) Nickel

phthalocyanine tetrasulfonic acid, tetrasodium salt. (d) In these compounds, the presence of paramagnetic metals (Cu, Ni) abolishes the photodynamic

activity. (e) Ruthenium(II)-tris(phenanthroline) dichloride. nd: non determined

doi:10.1371/journal.pone.0128898.t001
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Drug response pathway determination
The previously indicated GFP reporter strains were cultured in NGM plates until adulthood,
and treated as described above for the behavioral assessment experiments. GFP expression was
determined by visual inspection and imaged using a fluorescence stereoscope (OLYMPUS
model: SZX-ILLK100) 4 h after dye photoactivation. In addition, RNA samples were prepared
from a population of adult worms (SS104 strain) treated with 1 μM rose Bengal, our positive
control dye, and hsp-4 plus hsp-6 genes were quantified by qRT-PCR using the protocol re-
ported previously by Buzzi et al [42]. The ama-1 gene was employed as a constitutively
expressed internal control. Primers used for real time PCR are as follows: for hsp-4, hsp-4F
5’GCAGATGATCAAGCCCAAAAAG3’and hsp4R 5’GCGATTTGAGTTTTCATCTGATA
GG3’; for hsp-6, hsp-6F 5’GGACAAACCAAAGGGACATG3’ and hsp-6R 5’AACGAATG
CTCCAACCTGAG3’; for ama-1, ama-1F 5’CCTACGATGTATCGAGGCAAA3’ and ama-1R
5’CCTCCCTCCGGTGTAATAATG3’. All experiments were replicated 3 times.

Results

Phototoxicity assessment in adult Caenorhabditis elegans
To perform phototoxicity experiments we developed a stepped protocol, where all animals are
subjected to the compounds in the dark and then either exposed to the light (Fig 1A) or kept in
darkness as control (Fig 1B). Their motility was recorded with the infrared tracking method for
1 h before exposure to light and 4 h after in order to record the behavioral response. Firstly,
two well characterized dyes were tested, Luxol fast blue (not phototoxic) and rose Bengal (a
photoactive molecule). Neither caused an effect without light irradiation (Fig 1B).

In contrast, when white light irradiation (10 mW/cm2, 30 min) is applied (Fig 1A), a signifi-
cant reduction in locomotor activity is observed in the positive control (rose Bengal), and it re-
mains low even after 4 h. Unexpectedly, an immediate response is also observed in control
animals and with a negative control (Luxol fast blue) just after light irradiation, possibly as a
transient response to light. Since this short term response is magnified in animals treated with
phototoxic molecules, we decided to divide biological effects in “immediate phototoxicity” and
“late phototoxicity”.

We then selected a set of 37 dyes to test phototoxic effects in C. elegans cultures. Of these, 16
have been already reported to present effects in other organisms (Table 1). Of the assessed list
of 37 compounds, 16 presented immediate phototoxic effects and 8 late phototoxic effects
(Table 2, Fig 2A and 2B). In order of decreasing phototoxicity, the top 5 dyes were phloxine
B> primuline> eosin Y> acridine orange> rose Bengal. Many of these dyes have been pre-
viously reported as phototoxic, consistent with our results (Table 1).

In order to discard any synthetic effects between SS104 and a particular chemical, we test
top 12 dyes in wild type (N2) young adult animals. As shown in S2 Table, although some sensi-
tivity differences are observed, 100% of compounds manifest similar phototoxic behavior
response.

Phototoxic molecules are acting directly from within the animal body
Since we measured phototoxicity without washing the compound from the medium, we asked
whether the toxic effects were mainly caused by dye molecules in the culture medium or by
those absorbed inside the animal. In order to clarify this point we replicated the experimental
setup for 15 positive phototoxic molecules, washing the medium previous to light irradiation.
Interestingly, phototoxic activity of all retested compounds remained after washout (Fig 3).
Moreover, an increase in the phototoxic effect is observed in most compounds after washout.
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We hypothesize this increment could be attributed to higher light exposure of the worm, since
the dye in the medium can be absorbing some light.

Also, in order to confirm that the compounds did in fact enter the animals, we carried out
observations under the stereoscope to assess the staining or fluorescence due to dye uptake. Al-
most all phototoxic compounds displayed positive staining or fluorescence in living animals,
demonstrating the permeability of this animal model to the dyes (Fig 4).

Fig 1. Phototoxic compound activation affectsC.elegans behavior.Worms where incubated in buffer
(control), non-phototoxic dye (Luxol Fast Blue) and phototoxic dye (Rose Bengal). Locomotor activity was
measured continously using an infrared tracking device (WMicrotracker) with exposure to photoactivating
light pulse [30 min white light, 10 mW/cm2] (A) or without light exposure (B). Relative Locomotor Activity is
reported as the acumulated activity of 30 min time frames over the average activity before adition
of compounds.

doi:10.1371/journal.pone.0128898.g001
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Table 2. Results of the screening for phototoxicity.

Immediate Phototoxicity (30 min after light pulse) Late Phototoxicity (240 min after light pulse)

# Name Vitality w/Light
Pulse

Vitality non Light
Pulse

Classification Vitality w/Light
Pulse

Vitality non Light
Pulse

Classification

24 Phloxine B 0.11 +/- 0.03 1.08 +/- 0.09 Phototoxic 0.26 +/- 0.06 0.85 +/- 0.08 Phototoxic

25 Primuline 0.11 +/- 0.05 0.86 +/- 0.07 Phototoxic 0.19 +/- 0.04 0.87 +/- 0.07 Phototoxic

10 Eosin Y 0.25 +/- 0.04 1.05 +/- 0.1 Phototoxic 0.63 +/- 0.07 1.1 +/- 0.13 Phototoxic

1 Acridine orange 0.42 +/- 0.05 1.17 +/- 0.08 Phototoxic 0.48 +/- 0.06 0.86 +/- 0.08 Phototoxic

29 Rose bengal 0.46 +/- 0.06 1.01 +/- 0.07 Phototoxic 0.4 +/- 0.04 0.91 +/- 0.05 Phototoxic

34 Thioflavin T 0.51 +/- 0.02 0.92 +/- 0.03 Phototoxic 0.63 +/- 0.03 0.81 +/- 0.05 Phototoxic

31 Safranine T 0.76 +/- 0.04 0.94 +/- 0.03 Phototoxic 0.64 +/- 0.03 0.9 +/- 0.04 Phototoxic

23 Nuclear fast red 0.34 +/- 0.03 1.07 +/- 0.04 Phototoxic 0.78 +/- 0.03 0.92 +/- 0.06 Phototoxic

7 Chrysoidine 0.42 +/- 0.05 0.63 +/- 0.06 Phot + Tox 0.55 +/- 0.03 0.5 +/- 0.05 Toxic

33 Thioflavin S 0.49 +/- 0.04 0.91 +/- 0.04 Phototoxic 0.81 +/- 0.07 0.88 +/- 0.05 NonToxic

17 Mercurochrome 0.56 +/- 0.04 1.16 +/- 0.06 Phototoxic 0.86 +/- 0.06 0.82 +/- 0.05 NonToxic

21 Neutral red 0.6 +/- 0.05 1 +/- 0.05 Phototoxic 0.85 +/- 0.04 0.93 +/- 0.04 NonToxic

37 Trypan blue 0.64 +/- 0.05 1.06 +/- 0.05 Phototoxic 0.91 +/- 0.06 0.94 +/- 0.09 NonToxic

36 Toluidine blue O 0.69 +/- 0.04 1.09 +/- 0.05 Phototoxic 0.86 +/- 0.04 0.95 +/- 0.05 NonToxic

3 Auramine O 0.7 +/- 0.05 0.9 +/- 0.07 Phototoxic 0.89 +/- 0.06 0.96 +/- 0.06 NonToxic

28 Riboflavine 0.76 +/- 0.06 0.97 +/- 0.05 Phototoxic 0.93 +/- 0.07 0.84 +/- 0.06 NonToxic

27 Rhodamine B 0.8 +/- 0.08 1 +/- 0.05 Phototoxic 0.98 +/- 0.05 0.97 +/- 0.04 NonToxic

19 Morin 0.73 +/- 0.05 0.84 +/- 0.08 Toxic 0.85 +/- 0.06 0.9 +/- 0.09 NonToxic

9 Curcumin 0.82 +/- 0.09 1.12 +/- 0.09 NonToxic 0.9 +/- 0.07 1.18 +/- 0.12 NonToxic

2 Alizarin red S 0.82 +/- 0.07 0.93 +/- 0.08 NonToxic 0.85 +/- 0.08 0.93 +/- 0.07 NonToxic

4 Berberine 0.82 +/- 0.09 0.9 +/- 0.05 NonToxic 0.94 +/- 0.09 0.92 +/- 0.09 NonToxic

5 Bismarck brown Y 0.87 +/- 0.08 0.89 +/- 0.06 NonToxic 0.81 +/- 0.07 0.85 +/- 0.06 NonToxic

6 Carmine 0.87 +/- 0.07 1.1 +/- 0.06 NonToxic 0.99 +/- 0.09 0.95 +/- 0.09 NonToxic

13 Hematoxylin 0.89 +/- 0.05 0.97 +/- 0.05 NonToxic 1.08 +/- 0.05 1.06 +/- 0.06 NonToxic

32 Tartrazine 0.91 +/- 0.04 0.93 +/- 0.06 NonToxic 0.99 +/- 0.05 0.94 +/- 0.05 NonToxic

22 NiPcS4 0.92 +/- 0.07 0.94 +/- 0.05 NonToxic 0.89 +/- 0.04 0.89 +/- 0.06 NonToxic

26 Pyronine Y 0.92 +/- 0.05 0.93 +/- 0.03 NonToxic 0.94 +/- 0.04 0.88 +/- 0.04 NonToxic

12 Fluorescein 0.93 +/- 0.06 0.99 +/- 0.09 NonToxic 0.96 +/- 0.07 0.96 +/- 0.07 NonToxic

35 Thionine 1.01 +/- 0.11 1.01 +/- 0.08 NonToxic 0.85 +/- 0.07 0.9 +/- 0.07 NonToxic

11 Fast green FCF 1.01 +/- 0.07 0.99 +/- 0.07 NonToxic 0.95 +/- 0.06 1.02 +/- 0.09 NonToxic

20 Naphthol Blue
Black

1.03 +/- 0.09 0.9 +/- 0.06 NonToxic 0.89 +/- 0.09 0.93 +/- 0.08 NonToxic

16 Luxol fast blue 1.03 +/- 0.07 1.03 +/- 0.06 NonToxic 0.99 +/- 0.06 0.98 +/- 0.05 NonToxic

18 Methylene blue 1.04 +/- 0.06 0.94 +/- 0.04 NonToxic 0.83 +/- 0.04 0.93 +/- 0.05 NonToxic

30 Ruphen 1.04 +/- 0.08 1.02 +/- 0.07 NonToxic 1 +/- 0.06 0.99 +/- 0.08 NonToxic

14 Indigocarmine 1.04 +/- 0.05 1.04 +/- 0.06 NonToxic 0.97 +/- 0.04 1.03 +/- 0.1 NonToxic

8 Congo red 1.12 +/- 0.09 1.15 +/- 0.1 NonToxic 1.04 +/- 0.09 1.06 +/- 0.11 NonToxic

15 Janus green B 1.12 +/- 0.07 0.99 +/- 0.05 NonToxic 0.73 +/- 0.08 0.71 +/- 0.07 Toxic

All dyes were tested at least in 2 independent experiments (with 4 internal replicates each) using 100 μM concentration, with the exception of curcumin

which was assayed at 10 μM for solubility reasons. Vitality is reported as the rate of locomotor activity of dye treated worms over buffer treated worms

under the same light conditions (Vitality Rate).

doi:10.1371/journal.pone.0128898.t002
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Fig 2. Classification of dye phototoxicity according to behavioral changes. Vitality Rate (VR) index
were calculated as [locomotor activity of dye treated worms] / [locomotor activity of control animals]. When
observed in a two axis plot (VRlight vs. VRno-light) toxic effects could be classified as: Toxic (VRno-light < 0.8),
Phototoxic (VRlight < 0.8) and Toxic and Phototoxic (VRlight < VRno-light < 0.8, *p < 0.05). A) Behavioral
changes observed 30min after light pulse (180min from start) were classed as “immediate effects”, where
43% of compounds showed phototoxic effects. B) Changes observed 240 min after light pulse (390 min from
start) were classed as “late phototoxicity effects”, where 21% of compounds showed phototoxic effects.
N = 3 ± SEM.

doi:10.1371/journal.pone.0128898.g002
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Stress response genes are turned on in response to some phototoxic
molecules in worms
Since it has been reported that phototoxic compounds produce oxidative stress and mitochon-
drial damage, we studied whether or not the compound were mainly active in any particular
cellular compartment. For this purpose two mitochondrial-specific stress response proteins
(hsp-6::GFP and hsp-60::GFP) and one endoplasmic reticulum stress response protein (hsp-4::
GFP) were used. Of the 16 phototoxic compounds tested (acridine orange was rejected due to
its intrinsic green fluorescence), 10 were shown to stress one or both compartments while the
other 6 compounds did not seem to be active in perturbing either the mitochondria or the en-
doplasmic reticulum (Fig 5B).

Finally, to give more support to the idea that our finding on the GFP reporter lines reflected
what was happening in the phototoxicity screening, a qRT-PCR was performed on 1 μM rose
Bengal exposed glp-4 worms (Fig 5C). At this low concentration, hsp-4 expression was in-
creased 3.8 fold with respect to control (n = 3, p<0.05) while hsp-6 expression remained unaf-
fected. No transcription was found under dark dye treatment (no photoactivation). These
results confirm the response pattern observed in the reporter lines.

Correlation between our screening results and previously reported
phototoxicity of compounds
A set intersection between our worm experiments and published data is shown in Fig 6. When
percentage of false detections is analyzed we found a rate of 8.1% of false negatives (dyes re-
ported as phototoxic, but not detected in our experiments) and 2.7% of false positives (dyes re-
ported as non phototoxic but detected in our system) compared to literature reports. These
differences could be attributed to variability in the uptake, efficiency for ROS production,

Fig 3. Phototoxic effects remain after drug washing out. The VR of light exposed worms is shown at
180 min (30 min after light pulse) for 15 phototoxic dyes, washing them out of the medium immediately before
the light pulse (gray bars) or following the original protocol (black bars). N = 3 ± SEM.

doi:10.1371/journal.pone.0128898.g003
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experimental protocol, as well as specific sensitivity and threshold to oxidative stress for dis-
tinct type of cells and organisms.

Discussion
Simple animal models are becoming useful to perform in vivo drug discovery experiments and
testing for biological activity. In this work we propose the application of the nematode C. ele-
gans as a reliable model for assessing phototoxicity of dyes as prototypical compounds and the
utility of a simple behavioural measurement (such as global locomotor activity) as a direct
readout for toxic and sub-toxic effects.

Common photoactivity experiments using cell cultures are based on the incubation with
compounds, followed by washing, light exposure and measurement of viability by staining or
colorimetric methods. In this work we start the experiments without dye washing. Since similar
results were observed after washing of dyes, we conclude that this faster approach can be used
in a rapid screening of molecules, previous or complementary to cell culture measurements. At
the biological level, photoactive molecules appear to be permeating the animal cuticle or diges-
tive tract, acting from inside the animal body (as shown in uptake experiments, Figs 4 and 5)
and resulting in a reduced motility response.

It is worth to note that we were able to measure activation of the stress response machinery
in at least 50% of positive compounds (Fig 5). Damage in intracellular compartments associat-
ed with protein misfolding and mitochondrial electron transport disruption are well-known
mechanisms of phototoxicity action in cell cultures [3]. Our results suggest a similar mecha-
nism of damage in worms. It might be useful to evaluate a larger set of stress-reporter strains

Fig 4. Dye uptake is observed in treated worms.Worm staining or fluorescence (under green or blue light
excitation) was visually quantified using a 3 value scale. A) Representative images of worms treated with
Rose Bengal (I) under bright-field and green-light excitation, and (II) treatment with thionine observed under
bright-field and blue-light excitation. B) Table of dye uptake quantification is shown for 15 phototoxic dyes.

doi:10.1371/journal.pone.0128898.g004
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and, even more, the amount of ROS driven by dye photoexcitation in C. elegans in order to
gain a deeper understanding of the molecular mechanisms of action. These issues are the objec-
tives of ongoing research.

In order to compare the photodynamic action of each molecule, we can define a Phototoxic
Index (PI) by analyzing the phototoxicity and intrinsic toxicity of the compound. The occur-
rence and degree of photosensitization could be expressed as the ratio: PI = effects with light /
effect without light. Thus, the five dyes showing high immediate phototoxicity would present
the following values: PI(phloxine B) = 9.81; PI(primuline) = 5.45; PI(eosin Y) = 4.2, PI(acridine orange) =
2.78, and PI(rose Bengal) = 2.19. It should be noted that the higher the PI is, the stronger the
phototoxic effect.

Finally, it is important to mention that this animal model and simple protocols for biotoxi-
city-detection are useful not only for pharmacological testing but also in ecotoxicology assays.
Regarding environmental pollution, around 10,000 types of dyes and pigments are produced
annually worldwide and extensively used in textile, leather, plastic and printing industries, lab-
oratory work, and as food, pharmaceutical and cosmetic additives. About 10–15% of the total
dyes used in dyeing processes are released in wastewater [17]. Therefore, contamination by
dyes [19] and the resulting phototoxicity represent a significant risk for human health and
wildlife preservation. In addition, other pharmacological agents showing undesired photoactiv-
ity must be taken into account (e.g., antiinflammatory, anxiolytic, antirheumatic, antibacterial,
and antiparasitic drugs), which have also revealed to be phototoxic [21, 24, 26, 29, 36, 43, 44].
As a logical consequence, it is increasingly necessary to evaluate the phototoxicity of possible
drugs or xenobiotics to induce or prevent, respectively, biological effects through the design
and development of simple, precise and cheap bioassays for oxidative stress-dependent photo-
toxicity studies. The present results using an automated tracking device for assessing popula-
tion motility of a whole organism such as C. elegans show that this bioassay is very suitable for

Fig 5. Stress responsemachinery is activated inC. elegans under phototoxic treatment. Two mitochondrial-specific Stress Response (SR) lines (hsp-
6::GFP and hsp-60::GFP) and one endoplasmic reticulum SR line (hsp-4::GFP) were subjected to the phototoxicity protocol, and GFP-gene expression was
observed 4 hours after dye photoactivation. A) Representative scale determination of each reporter line. B) Observed gene expression for 15 phototoxic dyes
tested at 10 μM, 25 μM and 50 μM. N = 3. C) Photo-activated Rose Bengal stress response measured by qPCR. Hsp-4 was assayed as a marker of
endoplasmic reticulum stress and hsp-6 was assayed as a marker of mitochondrial stress. RNA polymerase subunit gene (ama-1) was employed as internal
reference gene. N = 3 ± SEM.

doi:10.1371/journal.pone.0128898.g005

Fig 6. Comparison of worm experiments with previously published data.Results of the current study
were compared to reported data for all 37 assayed dyes. Two comparisons are shown: Dyes reported as
phototoxic vs. dyes determined as phototoxic in this C. elegans screening (A) and dyes reported as non-
phototoxic vs. dyes determined as non-phototoxic in thisC. elegans screening (B).

doi:10.1371/journal.pone.0128898.g006
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easy, rapid and accurate evaluation of the phototoxic potential of photosensitizing drugs and
environmental pollutants.
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