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Abstract
We present a holistic approach to the study of early archosauriform evolution by integrating

body and track records. The ichnological record supports a Late Permian–Early Triassic ra-

diation of archosauriforms not well documented by skeletal material, and new footprints

from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet

sampled by body fossils. The integrative study of body fossil and footprint data supports the

hypothesis that archosauriforms had already undergone substantial taxonomic diversifica-

tion by the Late Permian and that by the Early Triassic archosauromorphs attained a broad

geographical distribution over most parts of Pangea. Analysis of body size, as deduced

from track size, suggests that archosauriform average body size did not change significantly

from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and

track record indicate an ecological preference for inland fluvial (lacustrine) environments for

early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid

imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-

Permian mass extinction event. We highlight the importance of approaching palaeobiologi-

cal questions by using all available sources of data, specifically through integrating the body

and track fossil record.

Introduction
Archosauriforms (crocodiles, birds, and multiple extinct taxa) became one of the most success-
ful tetrapods on land during the Mesozoic, radiating into virtually all habitats in the aftermath
of the end-Permian mass extinction event (EPME) [1]. The crown clade Archosauria com-
prises Pseudosuchia (all forms closer to crocodiles than to birds) and Avemetatarsalia (all
forms closer to dinosaurs and birds than to crocodiles) [2–6], which together constitute one of
the most taxonomically diverse clades of extant amniotes with about 10,000 species. Current
continuous research efforts by both palaeontologists and molecular biologists seek for a better
understanding of the early evolution of archosaurs, and specially the timing of evolutionary
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events and the macroevolutionary history of the group. Reliable knowledge of their early
palaeobiogeography can provide hints about their plesiomorphic ecological preferences and, if
compared with an independent source of data, may reveal biases in the fossil record. Finally,
the understanding of the origin of archosauriforms is essential for depicting the dawn of dino-
saur evolutionary history because features and fate of the first archosauriforms would have
eventually set the course for the evolution of the Dinosauria [4,7].

The origin and early diversification of archosauriforms can only be comprehensively studied
by looking at all available sources of palaeontological evidence. However, the possible contribu-
tion of ichnological data has rarely been taken into account when considering archosauriform
origins. No recent macroevolutionary analyses on this topic use ichnology as a source of data
[1,5,8,9], with the notable, but single, exception of the debate on dinosauromorph and dino-
sauriform origins (e.g., [10,11]). Trace fossils are considerably more abundant than body fos-
sils, and are often preserved in those depositional environments not appropiate for the
preservation of body fossils. Historical ichnological investigation has usually been based on
extramorphological (substrate-related) rather than anatomical features, preventing many re-
searchers from considering the track record as a reliable source of data.

Furthermore ichnological data often allow only a coarse taxonomic assignement and are
therefore usless in fine-scale integrative analysis. Only a few recent studies have analyzed track-
macker identity based on synapomorphies identified in the skeletal record. When a cladistic
approach is used, as first advised by Olsen ([12,13]; see also [14–16]), trace fossil occurrences
can potentially be used as a reliable source of data in macroevolutionary studies, such as on bio-
mechanics and locomotion (e.g., [17,18]), palaeobiogeography and palaeoecology (e.g.,
[19,20]), timing of evolutionary events [10], and other fundamental palaeobiological aspects, as
recently reviewed by Bernardi et al. [21].

In this framework, we review Late Permian and Early Triassic archosauriform evolutionary
history, considering both ichnological and body fossil records. We describe new specimens and
re-interpret previously published records that allow us to document the presence of archosauri-
form footprints in the Late Permian of the southern Alps. These indentifications are based on a
synapomorphy-based approach and represent the oldest archosauriform fossil tracks docu-
mented globally. We also discuss their implications in the light of the oldest skeletal taxa,
which have a comparable age [1,22–25]. Finally, we integrate track and body fossil records for
the Early Triassic with the aim of building a holistic (“total-evidence”) understanding of the
early evolutionary history of Archosauriformes.

Materials and Methods
Seven chirotheriid and chirotheriid-like manus and pes imprints from the Upper Permian of
the southern Alps, northeastern Italy (PZO 5753 NMS 1235, MGR 0032, N.S. 34/82, R 6,
MUSE 7446, NMS 1; PZO and NMS: Museo di Scienze Naturali dell’Alto Adige/Naturmuseum
Südtirol, Bolzano/Bozen, Italy; MGR, Museo Geologico di Redagno, Bolzano/Bozen, Italy; N.S.
and R: Museum of Paleontology of the "Sapienza" University of Rome, Rome, Italy; MUSE,
Museo delle Scienze di Trento, Trento, Italy) were studied at first hand in their repositories.
These specimens are the only Permian tracks currently known (i.e., published) worldwide that
can be referred unambiguously to an archosauriform trackmaker (see discussion below). Speci-
men PZO 5753 is the best-preserved Permian footprint described here (1A–B) and was collect-
ed from the Deutschnofen/Nova Levante locality within the Arenaria di Val Gardena
Formation (see S1 Text for other names of this formation), in the southern Alps region of the
Bolzano Province (northeastern Italy). This locality is situated just a few kilometers from the
well-known Bletterbach Gorge fossil locality, where all the other specimens here described
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were found. The footprint-bearing levels can be dated as late Capitanian to Changhsingian [26]
or Lopingian (Visscher, in [27]) based on palynological evidence (see S1 Text for more details).
Tracks were mapped using the conventional method of tracing footprint outlines on transpar-
ent acetate overlays. Photographs were taken under artificial light conditions for documenta-
tion. Descriptions and measurements follow standard procedures and terminology of Leonardi
and Thulborn [28,29]. Some specimens labeled as 75/18, 73/93/A12 and 75/2 in Conti et al.
([30]: Figs 20, 21, 24, pls. 6(1), 8(2)) were deposited in the collections of the N.S. and/or IGPF
(Museum of Paleontology and Prehistory "Piero Leonardi", University of Ferrara, Ferrara,
Italy), but they could not be re-located during our study conducted between 2013 and 2014,
and are probably lost. Their published photographs and drawings were used here for compara-
tive purposes.

Results

The Permian Track Record
The Palaeozoic archosauriform track record is very scarce; it is restricted to a few chirotheriid
footprints from the Lopingian of the Dolomites region of the southern Alps (NE Italy) that are
discussed here (see also [30]). Supposed archosauriform footprints from the Late Permian of
Morocco [31] have recently been redated as Early Triassic [32].

A rich diversity of tetrapod trackways associated with a well preserved macroflora has been
described in the last decades from the Upper Permian Dolomites (e.g., [30,33–42]). Conti et al.
[30] suggested the presence of possible “archosaur footprints” from the Arenaria di Val Gar-
dena of the Bletterbach (see below), but these authors did not describe them in detail, nor did
they deal with their evolutionary implications. The same specimens (73/93/A12, 75/2) were
subsequently cited in multiple papers (e.g., [40,43–45]) but, again, never discussed in the con-
text of archosauromorph evolution. We redescribe and discuss here these specimens and docu-
ment new footprints using a synapomorphy-based approach for their attribution to
trackmaker(s) [sensu 14].

Restudy of previously reported chirotheriid tracks from the Arenaria di Val Gardena.
PZO 5753 is the natural cast of a left footprint figured by Wopfner ([46]: Fig 2), but was never
properly described (Fig 1A). It is 17.0 cm in length and 12.5 cm in width. The robust digits
show rounded phalangeal pads and metatarsophalangeal pads proximally, forming a posterior-
ly concave margin. Digits increase in length from I to III. Only the distal portion of digit IV is
preserved and its position indicates that it was slightly shorter than digit III. Digits I–III possess
moderate divarication angles, whereas digit IV is more strongly abducted laterally. All digits
terminate in rounded distal tips. Digit V consists of a massive subtriangular basal pad with a
narrowing, laterally curved distal portion. Clawmarks are visible on digits I−III and they are ro-
bust and sub-triangular with a blunt tip. Digits and clawmarks possess medial and lateral stria-
tions, documenting the dynamics and movement of the pes in the substrate. All features,
especially the shape of digit V and relative length of digit IV, closely resemble those observed in
Protochirotherium [47], an ichnogenus particularly abundant in the Lower Triassic deposits of
central Europe (Germany and Poland) and northern Africa [32,47–49]. Chirotheriid apomor-
phies are present in this specimen (e.g., massive posterolateral digit V, compact digit group I–
IV), allowing an attribution to the ichnofamily Chirotheriidae [50]. However, the absence of an
associated manus imprint prevents an unambiguous assignment to the ichnogenus level.
PZO5753 is therefore assigne to cf. Protochirotherium (see S2 Text).

Conti et al. ([30]; see also [43]) assigned three footprints (75/18; 73/93/A12; 75/2) from the
Bletterbach locality to “archosaurian trackmakers” ([30]: Figs 20, 21, 24, pl. 6(1), pl. 8(2)).
These footprints were identified as “Proterosuchia” indet., Synaptichnium isp., and
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Chirotherium isp., respectively. Specimen 75/18 assigned to “Proterosuchia” indet. is not diag-
nosable beyond a diapsid non-chirotherian pes imprint: the arrangement of digit group I−IV
with IV>III>II>I is plesiomorphic for diapsids, and a small, straight digit V is not consistent
with a chirotheriid identification. The identification of Synaptichnium isp. for specimen 73/93/
A12 cannot be evaluated here because there was no photograph published by Conti et al. [30]
and the specimen could not be re-located during this study. As for specimen 75/2 ([30]: pl. 6
(1)), the compact digit group I–IV and the posterolaterally oriented and recurved massive digit
V, is typical for chirotheriids. The interpretative drawing of Conti et al. [30: Fig 24] differs in
several aspects from the published photograph of the specimen ([30]: plate 6(1)), and only

Fig 1. Pes andmanus imprints of cf. Protochirotherium. A, left pes imprint PZO 1111 from the Arenaria di
Val Gardena (Upper Permian) of the Deutschnofen/Nova Levante locality in northern Italy preserved as a
natural cast. B, interpretative drawing. C, Protochirotherium wolfhagense pes-manus set (Holotype) from the
Detfurth Formation (Lower Triassic, Olenekian) of Germany. D, interpretative drawing.

doi:10.1371/journal.pone.0128449.g001
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digit V seems to reflect a congruent morphology in the photograph and drawing. Digit lengths
increase from I to III, with digit IV (3.2 cm) being considerably shorter than digit III (4.2 cm)
and even digit II (3.84 cm). Distal ends of digits have a blunt shape, with exception of that of
digit I that is distinctly tapering. Further observations cannot be made based on the published
photograph. Although the absence of the manus imprint prevents any definitive assignement,
this footprint closely resembles those of the ichnogenus Protochirotherium.

A track from the Deutschnofen/Nova Levante locality NMS 1235 (Fig 2C) was originally fig-
ured by Wopfner ([46]: Fig 3). It is a fragmentary, strongly deformed tetradactyl-pentadactyl
imprint of 12 cm in length and 8.5 cm in width, and represents a manus or pes with broad

Fig 2. Chirotheriid and possible chirotheriid pes andmanus imprints from the Arenaria di Val
Gardena (Upper Permian) of northern Italy. A, possible manus imprint MGR 0032. B, pes or manus imprint
N.S. 34/82. C, pes or manus imprint NMS 1235 (Inv. No. 2498). D, pes or manus imprint R6. E, deeply
impressed pes imprint MUSE 7446. F, tetradactyl pes or manus imprint NMS 1.

doi:10.1371/journal.pone.0128449.g002
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digits. The middle digit (probably digit III) possesses a blunt distal end whereas the thinner?
medially positioned digit? I is tapering. All the other digits are only partially preserved. Because
of its incompleteness, digit proportions are unknown. No definitive chirotheriid apomorphies
can be recognized in this imprint, but the overall shape suggests a chirotheriid affinity.

New chirotheriid material from the Arenaria di Val Gardena Formation. There are sev-
eral other imprints from the Arenaria di Val Gardena Formation of the Bletterbach canyon
that show chirotheriid morphology. They represent pes and manus imprints, but their isolated
preservation prevents an unequivocal ichnotaxonomic attribution.

1. An isolated tetradactyl imprint (MGR 0032) (Fig 2A) is fan-shaped, short and broad. It pos-
sesses broad, robust digits finishing in blunt distal ends, with the exception of digit II that ta-
pers distally. Digits increase in length from I to IV and digit IV is the longest. The proximal
margin of the imprint is posteriorly convex. The proportionally short imprint resembles
those of chirotheriid manus imprints, although no definitive assignement can be made.

2. N.S. 34/82: a pentadactyl, semi-plantigrade to plantigrade imprint with a length of ca. 6 cm
(Fig 2B). Digits are relatively broad and rounded, with narrow claw traces. Digit I is the
shortest and digit III the longest of the imprint. Digit IV is slightly shorter than digit III and
digit V has a posterolateral orientation. N.S. 34/82 is a manus or pes impression and its

Fig 3. Time-calibrated cladogram of archosauromorhs discussed in the text based on skeletal remains only. Highly debated relatioships have been
collapsed into polytomies. We here depict their position after [1,9,118–123]. Geological timescale after [193].

doi:10.1371/journal.pone.0128449.g003
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overall-shape and digit proportions suggest chirotheriid affinities, resembling Protochir-
otherium. However, no more definitive assignment can be made.

3. R6: a tetradactyl manus or pes imprint with a length of ca. 10 cm (Fig 2D). It possesses
short, rounded and broad digits, narrow claw marks, and a semicircular palmar or plantar
surface. This imprint is very similar to chirotheriid footprints, but the absence of measurable
characters prevents an unambiguous attribution.

4. MUSE 7446: a pentadactyl, semi-plantigrade, deeply impressed footprint (Fig 2E), with a
length of ca. 13cm. It possesses short and blunt digits, in which digits III and IV are the lon-
gest and subequal in length. Digit IV is laterally spread and digit V is large and laterally ori-
ented, with a massive heel. This imprint strongly resembles a Protochirotherium pes because
of digit proportions and the robustness of digit V.

5. NMS 1: a tetradactyl manus or pes imprint (Fig 2F) with a length of ca. 13 cm. This imprint
possesses long anterior digits, probably representing digits II–IV. Digit V is posterolaterally
oriented, short and oval. This specimen is a probable chirotheriid, but the absence of several
characters (e.g., digit I) prevents attribution to a specific ichnogenus.

Trackmaker identification. It is commonly assumed that tracks can only be attributed
with difficulty to their producers at a low taxonomic level [14,51]. However, there is wide con-
sensus on the assignment of some footprint morphogroups to broad taxonomic categories
(e.g., [14,52–55]) based on the physical association of track and body fossil material (e.g., [56])
or detailed comparisons between tracks and limb skeletal remains (e.g., [16,57–61]. A synapo-
morphy-based approach was established in the last two decades and represents a clear step for-
ward from the previous rough shape comparisons [10,12,15,18,62–68]. This approach has
considerably constrained potential trackmakers and allows testing of the taxonomic hypotheses
of trackmakers.

The ichnofamily Chirotheriidae Abel, 1935 [50] comprises the ichnogenera Chirotherium
Kaup, 1835 [69], Brachychirotherium Beurlen, 1950 [70], Isochirotherium Haubold, 1971 [58],
Synaptichnium Nopcsa, 1923 [71], ParasynaptichniumMietto, 1987 [72] and Protochirother-
ium Fichter and Kunz, 2004 [48]. These taxa have been consistently interpreted as produced by
archosauriforms, including stem-archosaurs and pseudosuchians [57–59,61,73–83]. Previous
studies have followed the approach of Haubold [57,58,74,75], who proposed the following
characters as distinct archosaur (sensu lato, = archosauriform) features: (1) narrow trackway,
(2) small manus relative to the pes, and (3) pes and manus imprints with compact anterior
digit group I–IV and posterolaterally positioned, strongly reduced digit V. However, only char-
acter 3 represents a possible archosauromorph apomorphy.

A compact digit group I–IV is also present in non-archosauromorph diapsids, such as
Youngina (SAM-PK-K7710, Iziko South African Museum, Cape Town, South Africa: [84]) and
lepidosaurs (e.g., Dalinghosaurus [85]). A posterolaterally positioned and divergent metatarsal
and digit V is present in lepidosaurs and archosauromorphs (e.g., Dalinghosaurus [85]; Proto-
rosaurus [86]), and probably some enigmatic basal diapsids (e.g., kuehneosaurids [87]). Never-
theless, the combination of a posterolaterally positioned, laterally oriented and robust digit V,
and a massive metatarso-phalangeal region shorter than or as long as digit I seem to be unique
to archosauromorphs among diapsids. Therefore, they are useful apomorphies for the identifi-
cation of archosauromorph trackmakers.

Another apomorphy useful for the identification of archosauromorph imprints is a metatar-
sal IV shorter than or as long as metatarsal III. This character state has been recovered as a syn-
apomorphy of the archosauriform clade that includes Erythrosuchus and more crownward
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archosauriforms ([5]: p. 191), and metatarsal length seems to be directly correlated with digit
length ([5]: p. 177).

As a result, the chirotheriid imprints from the Upper Permian of the southern Alps and
other chirotheriids (i.e., Protochirotherium, Brachychirotherium, Chirotherium, and Isochir-
otherium, see [18]) can be confidently identified as produced by an archosauriform, based on
the presence of a digit IV shorter than or as long as digit III and a proportionally short digit V.
Footprints PZO 1111 and 75/2 (the latter from Conti et al. 1977) and possibly, although not
conclusively, the other specimens discussed in the previous section (NMS 1235, MGR 0032, N.
S. 34/82, R 6, MUSE 7446, NMS 1), represent the oldest ichnologic record of archosauriforms
worldwide.

The Early Triassic Track Record
No Induan archosauriform tracks have been reported so far, contrasting with the relatively
abundant body fossil record of the group in the Lystrosaurus Assemblage Zone of South Africa
and its penecontemporaneous strata in China. Olenekian tracks are known from central Eu-
rope (Germany, Poland), northern Africa (Morocco) and North America (western USA).
Track-bearing units in Germany are the Volpriehausen, Detfurth, Hardegsen and Solling for-
mations (middle Buntsandstein). From the Volpriehausen Formation of southern Thuringia
(Germany), Gümbel [88] figured chirotheriid footprints that have been assigned to the ichno-
genus Protochirotherium by Klein et al. [47] and Klein and Niedźwiedzki [49]. The Detfurth
and Hardegsen formations yielded assemblages with archosauriform footprints, including Pro-
tochirotherium (the type material, and the speciemens previously referred to Palaeochirother-
ium which has been shown to be a junior synonym [49]), Synaptichnium, Rotodactylus and
Prorotodactylus [48,89–92]. The Solling Formation, which represents the Olenekian-Anisian
transition, yields a diverse archosauriform ichnofauna that has been referred to Chirotherium
barthii, Chirotherium sickleri, Brachychirotherium, Synaptichnium, Isochirotherium and Roto-
dactylus [57,58,74,76,78]. In particular, the “Thüringischer Chirotheriensandstein” [57,58,74],
a unit that represents the uppermost part of the Solling Formation, preserves most of these
footprints. It has to be noted here that the identification of Brachychirotherium in the Early-
Middle Triassic is doubtful, because of problems with the diagnosis of this taxon reported by
Karl and Haubold [93] and Klein and Haubold [94].

Archosauriform tracks are also known from the upper Olenekian Wióry Formation, which
crops out in the Holy Cross Mountains of Poland [95–97]. They have been revised recently by
Klein and Niedźwiedzki [49], and assigned to the ichnogenera Protochirotherium and Synap-
tichnium. Prorotodactylus specimens, from the same unit and locality, have been interpreted as
dinosauromorph tracks by Brusatte et al. [10] and Niedźwiedzki et al. [11] (but see [49,98,99]
for different views on trackmaker attribution). Klein et al. [32] reported from the Lower Trias-
sic Timezgadiouine Formation of Morocco tracks of Protochirotherium and Synaptichnium.
From the Lower Triassic Alpine Buntsandstein of Austria, Krainer et al. [100] figured chir-
otheriid imprints that they assigned to aff. Protochirotherium and cf. Synaptichnium. In
North America, Early Triassic archosauriform tracks are known from the Wupatki Member of
the lower Moenkopi Formation of Arizona, which is most probably late Olenekian in age
[101,102], although no high-resolution dating is available. These footprints have been assigned
to Chirotherium sickleri, Synaptichnium diabloense, Isochirotherium coltoni and Chirotherium
rex [101,102]. The Moenkopi Formation of Utah (member 6 of [103]; Lower-?Middle Triassic);
preserves footprints that have been assigned to chirotheriids and are very similar to Protochir-
otherium and Synaptichnium [103]. In South America, Melchor and de Valais [104] reported
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Brachychirotherium isp. from the Early-Middle Triassic Tarjados Formation of Argentina,
which was subsequently re-assigned to Synaptichnium by Klein and Lucas [105].

The Permian the Skeletal Record
Archosauromorpha includes crown diapsids more closely related to archosaurs than to lepido-
saurs [106] (Fig 3). The minimum divergence time of the group based on the body fossil record
is estimated at 255.7−259.9 Ma (middle-late Wuchiapingian) ([1] see also [107]), suggesting a
minimum Permian evolutionary history for the group of 3.1–8.3 Ma. Only four archosauro-
morph nominal species are known from Permian units: Eorasaurus olsoni from the late Capita-
nian−Wuchiapingian of Russia [1,108]; Protorosaurus speneri from the middle Wuchiapingian
of Germany and England [109–112]; Aenigmastropheus parringtoni from the middle−late
Wuchiapingian of Tanzania [1]; and Archosaurus rossicus from the Changhsingian of Russia
[1,22–24,113,114] (Fig 3). Protorosaurus and Aenigmastropheus have been recovered as very
basal archosauromorphs in recent phylogenetic analyses [1,112]. Archosaurus represents the
only unambiguous Permian archosauriform to date, and its holotype (PIN 1100/55, Paleonto-
logical Institute of the Russian Academy of Sciences, Moscow, Russia: premaxilla) and several
of the formerly referred specimens (e.g., PIN 1100/48: skull roof; PIN 1100/66, 66a, 66b: cervi-
cal vertebrae; PIN 1100/78: dentary) possess a morphology extremely similar to that of Early
Triassic proterosuchids [1,2,22–24]. Eorasaurusmight represent the oldest archosauriform,
but the very fragmentary condition of its hypodigm and similarities with tanystropheids force
us to consider this assignment as tentative [1]. Potential Permian archosauromorph cranial
bones and vertebrae have been reported from Uruguay ([115]; MDE pers. obs.), but substantial
debate exists about the Permian or Triassic age of the fossil-bearing unit and therefore this re-
cord should be considered temporally ambiguous [1]. Regardless, multiple phylogenetic analy-
ses suggest that the ghost lineages of some archosauromorph groups (e.g., tanystropheids,
rhynchosaurs, potentially choristoderans) should extend back into the Permian [5,116], indi-
cating an evolutionary history of several independent lineages before the EPME that is not cur-
rently sampled in the fossil record.

Most of these Permian archosauromorphs are known from fragmentary remains, mostly re-
stricted to the axial skeleton [1]. However, Protorosaurus is an exception because is known
from multiple articulated specimens, including all regions of the skeleton [112]. As a result,
Protorosaurus is particularly relevant for the integration of skeletal and ichnological data be-
cause it is the only Permian archosauromorph with known autopodia (Fig 4).

The Early Triassic Skeletal Record
The archosauromorph record in the aftermath of the EPME is considerably more abundant
and geographically widespread than that of the Permian [1,24]. Recent studies based on osteo-
logical evidence concluded that the early evolutionary radiation of archosauriforms and archo-
saurs occurred by the late Early Triassic or early Middle Triassic [5,117]. Nevertheless, the
earliest phase of archosauriform history is still patchily understood, largely because of the pau-
city of the early record of several lineages [5,117,118]. In this regard, the presence of poposaur-
oid archosaurs in uppermost Olenekian strata implies long ghost lineages, suggesting that all
main archosauriform (and many archsaurian) lineages should already have been present by
that time (e.g., proterochampsids, doswelliids, euparkeriids, phytosaurs, ornithosuchids, graci-
lisuchids, aetosaurs, and avemetatarsalians) [1,5,117–123].

Early Triassic non-archosauriform archosauromorphs are relatively taxonomically diverse
and restricted to a handful of groups, including rhynchosaurs (Noteosuchus), ‘prolacertiforms/
protorosaurs’ (e.g., Prolacerta, Kadimakara, Boreopricea, Prolacertoides, Czatkowiella,
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Malutinisuchus, Vritramimosaurus, Augustaburiania) and probable trilophosaurids (e.g., Coe-
lodontognathus, Vitalia). Non-archosauriform archosauromorphs remains have been found in
Lower Triassic units worldwide, namely South America, Africa, Antarctica, Europe, Asia, and
Australia [1,22,25,116,124–139].

The Early Triassic archosauriform record is dominated in terms of taxonomic diversity by
species historically referred to Proterosuchidae [25]. The proterosuchid record is particularly
abundant in well sampled Induan−lower Olenekian beds of South Africa (Proterosuchus

Fig 4. Archosauromorph foot anatomy. A, right pes skeleton of Protorosaurus speneriNHMW 1943I4, Naturhistorisches MuseumWien, Vienna, Austria.
B, interpretative drawing. C, right pes skeleton of Euparkeria capensis SAM PK K8309. D, Intepretative drawing. Note that Protorosaurus has an ectaxonic
pes, with digit IV>III>II>I while Euparkeria shows a mesaxonic foot with III being the longest.

doi:10.1371/journal.pone.0128449.g004
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fergusi, Proterosuchus alexanderi, Proterosuchus goweri [25,140–142]). In addition, some well-
preserved, articulated partial proterosuchid skeletons have been collected in approximately co-
eval beds of China (‘Chasmatosaurus’ yuani [126,143–145]). More fragmentary potential pro-
terosuchids are known from the Early Triassic of Australia (Tasmaniosaurus, Kalisuchus,
Proterosuchidae indet. [146–150]), Russia (Blomosuchus, Vonhuenia, Chasmatosuchus
[24,151,152]), and India (Ankistrodon, ‘Chasmatosaurus’ sp. [153,154]).

Erythrosuchids appear for the first time in the fossil record in the Olenekian beds of Russia
and South Africa (Garjainia prima, Garjainia madiba [24,25,155–157]). In addition, several
Early Triassic non-archosaur archosauriforms of uncertain or problematic phylogenetic affini-
ties have been described from South America [138,139], South Africa [158], Antarctica [159],
Europe (Osmolskina, Collilongus [137,160]), and the Early−Middle Triassic of China (Fugusu-
chus, Guchengosuchus [161,162]). The Early Triassic archosaur record is extremely scarce
when it is compared with that of non-crown archosauromorphs, being restricted to poposaur-
oids found in the uppermost Olenekian beds of Germany and Russia (Ctenosauriscus, Vytsheg-
dosuchus [23,24,117]), and upper Olenekian−lower Anisian beds of China (Xilousuchus [119]).

Discussion

Can Any Known Permian Archosauromorph Be the Producer of
Chirotheriid Tracks?
Establishing if known Permian archosauromorphs can be considered potential candidates for
Protochirotherium-like or chirotheriid trackmakers means establishing whether the track re-
cord supports recent fragmentary findings or provides hints to a diversity still not documented
by skeletal remains. Three of the four currently recognized Permian archosauromorph species
(i.e., Archosaurus rossicus, Eorasaurus olsoni and Aenigmastropheus parringtoni) are only
known from fragmentary remains lacking autopodial bones [1,22,24,108]. The only Permian
archosauromorph species with known autopodia is Protorosaurus speneri, a quadrupedal
reptile with a body length of up to 1.5–2.0 m [112]. The foot of Protorosaurus possesses five
metatarsals, of which metatarsal IV is the longest, followed by metatarsals III, II, I, and V,
respectively. Pedal digit IV is the longest, clearly longer than III, and the pedal phalangeal
formula is 2-3-4-5-4 [112]. The limb morphology of the latest Permian proterosuchid archo-
sauriform Archosaurus and putative referred specimens is unknown. Nevertheless, their mor-
phology is extremely similar to that of the earliest Triassic proterosuchids (e.g., Proterosuchus
fergusi) and autopodial morphology may have been possibly similar to that of stratigraphically
younger proterosuchids. Metatarsal IV (63.5 mm) is considerably longer than metatarsal III
(57.0 mm) in Proterosuchus fergusi (SAM-PK-K140), resembling the condition in non-archo-
sauriform archosauromorphs (the complete length of digit IV is unknown in collected protero-
suchid specimens). In contrast, metatarsal III is as long as, or longer than, metatarsal IV in
Erythrosuchus and more crownward archosauriforms [2,3,5,163].

Conti et al. [30] excluded Proterosuchus as the producer of some of the Permian tracks de-
scribed here because in this taxon metatarsals I−IV strongly increase in length, suggesting foot-
prints with a sharp cross-axis angle (i.e., defined as the angle between the metapodial-
phalangeal axis and the long axis of the footprint along digit III; of the four angles formed by
these two axes, the cross-axis angle is the lateral and anterior one; [28]). As a result, potential
footprints of Proterosuchus would be strongly asymmetric or ectaxonic with digit IV being con-
siderably longer than digit III, and with a very long digit V. In this respect they would probably
be similar to those expected for Protorosaurus [86] (Fig 4A and 4B) and other non-archosauri-
form archosauromorphs. In contrast, the imprint pattern of Protochirotherium is mesaxonic.
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The producer-taxon of Synaptichnium footprints had a digit IV longer than, or subequal to,
digit III, resulting in a distinct ectaxonic shape of the pes imprint. Thus, early archosauro-
morphs, such as Protorosaurus [86] and Proterosuchus [25] are potential candidate track-
makers of Synaptichnium footprints, although extremely narrow Synaptichnium trackways,
known for example from the Moenkopi Group (Lower-Middle Triassic) of Arizona ([101],
[102]: p. 30, Fig 28], might contradict this possibility. Both protorosaurs/tanystropheids and
proterosuchids are expected to have had more spread gaits [25,164]. Note also that digit IV
subequal to digit III may indicate a trackmaker more derived than proterosuchids [25].

Klein and Niedźwiedzki [49] and Klein et al. [47] suggested erythrosuchids and/or pseudo-
suchian archosaurs as probable producers of Early Triassic Protochirotherium footprints. Limb
position in early archosauriforms is poorly known, therefore any definitive conclusion cannot
be reached. Nevertheless, articulated proterosuchid skeletons show a sprawling posture (e.g.,
‘Chasmatosaurus’ yuani: IVPP V4067, Institute of Vertebrate Paleontology and Paleoanthro-
pology, Beijing, China) and the very similar morphology of the acetabulum and proximal end
of femur in proterosuchids and erythrosuchids suggests a similar sprawling posture in life. All
known Protochirotherium trackways are narrow, indicating that proterosuchids and erythrosu-
chids might be excluded as potential producers of chirotheriid footprints because they should
have left broader trackways. Accordingly, we suggest that more crownward archosauriforms
are the probable trackmakers of Late Permian and Early Triassic chirotheriid and chirotheriid-
like imprints. The presence of a digit IV shorter than or subequal to digit III in Protochirother-
ium indicates that the producer is an archosauriform, or even a member of Archosauria. Ac-
cordingly, the chirotheriid Protochirotherium-like footprints described here from the southern
Alps are the oldest evidence of a mesaxonic foot within Archosauromorpha. The stratigraphi-
cally oldest archosauriform with a mesaxonic foot is Euparkeria from the early Middle Triassic
of South Africa (see [122] and references therein; Fig 4C and 4D), but several Early Triassic
archosauriforms may also have had mesaxonic feet based on their phylogenetic position (e.g.,
poposauroid archosaurs [5]). Interpretations of Osmolskina czatkowicensis as an euparkeriid
[138] might imply the presence of mesaxonic taxa in the Early Triassic, but recent analyses re-
covered it further outside Archosauria with respect to Euparkeria ([120]; see also [122]).

A number of other early archosauromorph clades which have their ghost lineages extending
into the considered time span, should also be considered. Among these are tanystropheids,
rhynchosaurs, trilophosaurids, and proterochampsids that all have well preserved limbs allow-
ing full comparison with the track record. Tanystropheids have digit IV> III (e.g., [165]) and
would have therefore produced ectaxonic imprints. Furthermore they were mainly marine and
their footprints, named Gwyneddichnium, are known from the Upper Triassic of Pennsylvania
and Colorado [53,166]. Rhynchosaurs can also be excluded as possible trackmakers of mesaxo-
nic tracks, as their pes have digit IV> III (e.g., [167]). Furthermore the ichnospecies Synaptich-
nium pseudosuchoides was recently assigned to rhynchosaurs by Tresise and King [168].
Trilophosaurus, also had an ectaxonic pes. T. buettneri [169], for example, shows a pes digit IV
clearly longer than III. Lockley et al. [170] dubitatively attributed Apatopus ichnogenus to trilo-
phosaurs, but more recently Padian et al. [60] discarded this possibility. When autopodia are
preserved, as in Chanaresuchus, proterochampsids show digit III�IV [171], an arrangement
therefore compatible with a mesaxonic print. However their digit IV is extremely thin, and
digit V is highly reduced, in the shape of a ‘hook’ without phalanges [3,171,172] making proter-
ochampsids not suitable candidates as Protochirotherium trackmakers. Furthermore, other
chirotheriid tracks, like Isochirotherium delicatum, have been attributed to proterochampsid
trackmakers [173].

The discovery of Late Permian Protochirotherium–like footprints therefore represent also
the oldest evidence of mesaxony, indicating the presence of archosauriforms more crownward
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than proterosuchids before the Permian-Triassic boundary, and predating the appearance of a
mesaxonic foot in the body fossil record by ca. 10 My (Fig 5). Long ghost ranges in early archo-
sauriform evolution were inferred because of the presence of the proterosuchid Archosaurus
and the potential archosauriform Eorasaurus in the Late Permian of Russia [1]. Eorasaurus
was recovered as more closely related to erythrosuchids and Euparkeria than to proterosuchids.
As a result, Protochirotherium-like tracks provide independent evidence for a potentially taxo-
nomically broader evolutionary radiation of archosauriforms in the Late Permian than previ-
ously recorded.

Early Archosauriform Palaeobiogeography
A recent revision of the early archosauromorph body fossil record found a rather palaeolatitud-
inally broad geographical distribution for the group during the Late Permian [1]. Current evi-
dence indicates that early archosauromorphs spanned from few degrees north to the palaeo-
Equator (Germany and England) to a palaeolatitude of 30°N (Russian localities) in the north-
ern hemisphere to high palaeolatitudes of 55°S (Tanzania) in southern Pangaea (Fig 6).

The report here of Late Permian palaeo-Equatorial archosauriforms partially bridges the
gap between the northern records of archosauromorphs and that of the Southern Hemisphere,
representing the palaeolatitudinally lowest occurrence of the group. In addition, these imprints
extend the geographic range of archosauriforms between palaeolatitudes of 0°−30°N before the
EPME.

The Early Triassic body and footprint fossil record indicates a global geographic distribution
of archosauromorphs, being considerably broader than that present in the Late Permian

Fig 5. Evolution of the mesaxonic pes in archosauromorphs.Grey and black boxes indicate evolution of
apomorphic characters: grey = ectaxony, black = mesaxony. Late Permian Protochirotherium pulls the
evolution of mesaxony down the archosauriform tree and anticipates the oldest skeletal remain (Euparkeria
capensis) by 10 Ma.

doi:10.1371/journal.pone.0128449.g005
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[5,32,48,49,96,117,125,137,146,160,174–177] (Fig 7). In particular, tracksites in Arizona and
Utah support the presence of archosauromorphs in central-western Pangaea during the Early
Triassic, documented in the body fossil record by the single report of Nesbitt [178], while the
best known evidence of the presence of the group in this region is Anisian in age (i.e., Arizona-
saurus [179,180]).

Fig 7. Paleogeographic distribution of Early Triassic archosauriform footprints (yellow stars) and body fossil (black shapes) localities across
Pangea. Squares = indeterminate archosauromorphs, circles = non-archosauriform archosauromorphs, stars = archosauriforms. Footprints indicate that
archosauriforms, soon after their origin, were distributed also at low latitudes. Paleomap for 250 Ma downloaded from Fossilworks using data from the
Paleobiology Database [194].

doi:10.1371/journal.pone.0128449.g007

Fig 6. Paleogeographic distribution of Late Permian archosauriform footprints (yellow stars) and
body fossil (black shapes) localities across Pangea. Squares = indeterminate archosauromorphs,
circles = non-archosauriform archosauromorphs, stars = archosauriforms. Chirotheriid footprints from the
southern Alps (NE Italy) document the lowest palaeolatitudinal record of archosauriforms and bridge the
tropical gap in the disjunct distribution of the skeletal record. Paleomap for 260 Ma downloaded from
Fossilworks using data from the Paleobiology Database [194].

doi:10.1371/journal.pone.0128449.g006
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Multiple non-archosaur archosauriform and archosaur lineages are inferred to have been
present during the Early Triassic based on current phylogenetic hypotheses, and yet these re-
main unsampled (e.g., gracilisuchids, ornithosuchids, phytosaurs, proterochampsids
[5,117,118,181]). The striking absence of crown archosaurs in the Early Triassic, with the ex-
ception of poposauroids, has led to the hypothesis that early archosaurs originated or, at least
began to diversify, in areas that have a bias towards the non-preservation of body fossil remains
or are not well sampled, such as the tropics [117,119]. The geographic palaeodistribution of
archosauriform skeletal remains during the Early Triassic shows that most of them occur out-
side the tropical belt, with the sole exception of the three European taxa: Ctenosauriscus [117],
Osmolskina, and Collilongus [137,160,166]. In contrast, archosauriform ichnosites are mainly
concentrated in the tropics, namely between the palaeo-Equator and the Tropic of Cancer, in
central and western Pangaea. The only possible exception is a single Synaptichnium footprint
from northwestern Argentina [104,105], but the age of this record is poorly constrained and
could be either Early or Middle Triassic. An uneven sampling or taphonomic bias are likely ex-
planations for this distribution pattern, and future discoveries may reveal the presence of more
chirotheriids at high palaeolatitudes in the northern and southern hemispheres as well as body
fossils at low latitudes. Beyond these biases, footprints indicate that archosauriforms were dis-
tributed also at low latitudes soon after their origin. It is worth noting that Sun et al. [182] sug-
gested that the absence of vertebrates from the Equatorial belt in the Early Triassic reflects
lethally hot temperatures for five million years after the EPME. This conclusion however was
based solely on the distribution of body fossils, and archosauriform track data reject this
hypothesis.

Body Size in Early Archosauriforms
Studies of evolutionary changes in body size have long attracted the attention of researchers.
After comparing ichnological and skeletal fossil evidence, we test here the effect of the new
data on previously published studies. Although Permian chirotheriid footprints are rare, the
body size of the trackmaker can be compared with that of the oldest archosauriforms. We esti-
mated an approximate body length for Archosaurus using a linear regression (premaxillary
body height vs. skull length) composed of ten Early Triassic proterosuchid specimens (see S3
Text). The total skull length of Archosaurus is estimated as ca. 460 mm and closely resembles
that of the largest sampled specimens of the earliest Triassic Proterosuchus fergusi (GHG 231,
Geological Survey, Pretoria, South Africa: 477.0 mm [120]). As a result, Archosaurus should
have reached a total body length similar to that of Proterosuchus fergusi, being of approximately
3–3.5 m [142]. Therefore, Archosaurus is considerably larger than the only known complete
Permian archosauromorph, Protorosaurus speneri, which reached a body length of up to 1.5–2
m [112]. The total body length of the Permian chirotheriid trackmakers from the southern
Alps is calculated in approximately 2 m, following estimations conducted by Gand et al. [183]
for Triassic chirotheriid footprints. As a result, the body size estimated for these Permian track-
mackers fits the range expected for the oldest known archosauriforms based on the body
fossil record.

Evolutionary trends in early archosauriform evolution. Trends in archosaur body size
through time have been recently investigated using both skeletal [184,185,186] and ichnologi-
cal data [18]. Footprint size (commonly measured as pes length) is a reliable parameter for
such analysis because it correlates directly with body size [17,29], and can be easily measured
from footprints, even if they are not arranged in trackways. In addition, when considering true
tracks (or shallow undertracks–about 1 cm deep, [187]), pes length is less dependent on sub-
strate consistency and taphonomic distortion with respect to other descriptive measurements
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(e.g., interdigital angle; [188,189]). Using a database of 125 published trackway occurences,
Kubo and Kubo [18] found a statistically significant increase in foot length between Early and
Middle Triassic non-dinosauromorph archosauriforms, and interpreted the result in the con-
text of locomotory and biomechanichal novelties that occurred during the early evolution
of archosaurs.

We use here a modified version of the database of Kubo and Kubo [18] of Early and Middle
Triassic chirotheriids, which was increased and updated with the addition of 17 new records
from the Late Permian and Early Triassic (see S1 Table). Late Triassic occurrences were present
in the original database, but they were excluded here because they are outside the main aims of
our study, which are: (i) explore evolutionary trends with the addition of the Permian record
and test for significative changes in size across the Permo-Triassic boundary, and (ii) test the
effect of the inclusion of the so-called “Wióry Formation megaichnofauna” described by Niedź-
wiedzki and Ptaszyński [97] and not included in the original dataset. The megaichnofauna of
the Wióry Formation represents the oldest known ichnological record of very large (ca. 6 m
long) archosauriforms [97].

The small sample size of the Permian archosauriform track record prevents a robust statistical
analysis of the data and full comparison with that from the Early and Middle Triassic. However,
until further discoveries are made, a first set of analyses is valuable when testing for patterns and
trends. Permian chirotheriids (mean pes length = 117.7 mm, median = 120 mm, 3σ = 33.4) are
fully within the variance of the Early Triassic sample (mean pes length = 134.4 mm,median = 122
mm, 3σ = 78.1), and the latter distribution only partially overlaps that of the Middle Triassic. A
Mann-Whitney U test showed that the difference in foot length between Late Permian and Early
Triassic occurences is non-significant (W = 197.5, p = 0.8594), but it is significant between the
Early Triassic and Middle Triassic (W = 345, p = 0.0001), in which Middle Triassic footprints
are significantly larger. Accordingly, the impact of the “Wióry megaichnofauna”on the analysis
was not significant and bolsters the results recovered by Kubo and Kubo [18]. The extreme val-
ues (minumum and maximum) between Late Permian and Early Triassic ichnological samples
are strikingly different, in which both upper and lower body size boundaries increased in Early
Triassic archosauriforms (Fig 8). However, because the mean and median of the Late Permian
sample are not significantly different from that of the Early Triassic, we can suggest that the aver-
age body size of archosauriforms did not change substantially across the Permo-Triassic bound-
ary. However, more data is necessary for a strong test of the hypothesis that the EPME did not
have a significant effect on archosauriform average body size. On the other hand, if maximum
values only are taken into account, the large size of theWióry ichnofauna [97] implies that maxi-
mum body size doubled in less than 10My during the aftermath of the EPME.

Palaeoecological Inferences
Trace fossils may be preserved in environments that are not appropriate for the preservation of
bones and teeth. Therefore, ichnological data can provide an independent source of informa-
tion about the ecology of trackmakers, and allow evaluation of a potential bias in skeletal data
(e.g., allochthonous association). To investigate this issue, the depositional environment of
each Late Permian and Early Triassic geological formation that yielded skeletal and/or ichnolo-
gical archosauromorph records was surveyed. Strikingly, almost all specimens, including both
body and trace fossils, were found in non-marine formations, ranging from fluvial (e.g., chan-
nel and braided systems) to lacustrine environments. The only two exceptions are Protoro-
saurus, [112] and the tanistropheid Augustaburiania [136]. However, the occurrences of
Protorosaurus are very likely allochthonous, because at least one specimen possesses gut con-
tents that are terrestrial in origin [190]. Although the fossil bearing horizon is not always well
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constrained, resulting in uncertainties regarding the depositional environment for several taxa
and ichnotaxa (e.g., fluvial/lacustrine, fluvial/aeolian) both body fossils and tracks fossils were
mostly found in fluvial sediments (respectively 47% and 71% in our database, that when all
possible fluvial influence on the depositional environment is considered goes up to 68% and
100%, respectively; see S2 Table for more details; Fig 9). Interestingly, no track fossil is known

Fig 8. Archosauriform body size through time as derived from track length. Average track size indicates
that archosauriform body size did not change significantly from the Late Permian to Early Triassic, although
maximum values show a significant increase. The Permo-Triassic mass exctintion might not have affected
archosauriform body size. Based on data of S1 Table.

doi:10.1371/journal.pone.0128449.g008

Fig 9. Depositional environment of late Permian and Early Triassic archosauromorph-bearing
formations. The common pattern exhibited by the body fossil and the track fossil record suggest a real
environmental/ecological preference for inland-fluvial (lacustrine) environments for early archosauromorphs.

doi:10.1371/journal.pone.0128449.g009
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from lacustrine deposits (or max 4% if the fluvial/lacustrine uncertainties are considered) while
23% of body fossils come from this depositional environment. We interpret this datum as a
preservational bias. The whole predominance of early archosauromorphs in fluvial and lacus-
trine rocks may in fact reflect a preservational bias, as suggested for other taxa (see [191] and
references therein). However, the common pattern exhibited in both the skeletal and track re-
cord may suggest a real environmental/ecological preference for inland-fluvial (lacustrine) en-
vironments for early archosauromorphs. The occurrence of early archosauromorphs in
multiple fluvial (to lacustrine) subenvironments (e.g., floodplains, braided river systems) with
a broad palaeolatitudinal range implies that they lived inland, inhabiting freshwater continental
environments, irrespective of the local palaeoclimate, and they possibly possessed broad cli-
matic tolerance.

Locomotory Features
The acquisition of an upright limb posture and a parasagittal gait was a key innovation in early
archosauriform evolution [17,57,58,60,74,75]. The position of the legs under the body enabled
fast running with low loss of energy compared with the gait of typical sprawlers. The classical
view, expressed by Charig [192], mantained that Early Traissic archosaurs (sansu lato) were
sprawlers, Middle Triassic ones were semi-erect (or “semi improved”, as he termed it), and
fully erect gait emerged in the late Middle to Late Triassic. However, in an analysis of compiled
fossil trackway data, Kubo and Benton [16] showed that archosauriforms with erect posture
originated and became common in the Early Triassic. The parasagittal gait is reflected in the
narrow trackways of all chirotheriids, with occasional long strides [57,58,75]. Chirotheriid
trackways are all characterized by a narrow gauge [18,57,58] and all known Early Triassic Pro-
tochirotherium trackways show a similar condition (see [49]: Figs 9, 12, 15). No unambiguous
chirotheriid trackways have so far been discovered in the Late Permian of the southern Alps,
but it is more parsimonious to hypothesise that Permian chirotheriid trackways would show
the same pattern exhibited by all Triassic chirotheriids. Protochirotherium–like tracks from the
southern Alps can therefore be considered as the earliest indirect evidence for narrow-gauge
trackmakers, which walked with an erect gait. This suggests that at least some archosauriforms
may have adopted an erect gait during the Late Permian. Together with the trends observed in
some therapsid lineages [17], Late Permian Protochirotherium-like tracks may therefore sup-
port an earlier shift from a sprawling to an erect posture in archosauriforms, raising questions
about the conclusions of Kubo and Benton [17], who linked the shift to the Permo-Triassic
event. However, this conclusion does not contradict the hypothesis that erect walkers radiated
soon after the mass extinction [17], and discoveries of Palaeozoic chirotheriid trackways are
strictly necessary to support any conclusion on this issue.

Conclusions
The integrative study of body and track records allows a better understanding of the origin of
archosauriforms. The ichnological record supports a Late Permian–Early Triassic radiation of
archosauriforms not well documented by skeletal material, but implied by ghost ranges de-
duced from the most recent phylogentic analyses and supported by the recent recovery of the
Late Permian Eorasaurus as a possible non-proterosuchid archosauriform. Newly studied foot-
prints from the southern Alps provide evidence of a Late Permian diversity not yet sampled by
body fossils, which widens the geographical distribution of this clade before the Permo-Triassic
boundary. Studied tracks provide evidence of several morphologically distinct archosauriform
groups in central Pangaea in the Late Permian–Early Triassic and suggests that this region
might be crucial also for future discoveries of body fossil remains.
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The integration of footprint and body fossil data sheds light on early archosauriform evolu-
tion and suggests that:

1. Archosauriforms had already undergone substantial taxonomic diversification by the Late
Permian. Eorasaurus (a derived archosauromorph with no appendicular skeleton preserved)
and cf. Protochirotherium tracks are independent evidence of a taxonomically broader evo-
lutionary radiation of archosauriforms in the Late Permian than currently expected.

2. The integration of body and track data suggests a broader geographical distribution of Early
Triassic archosauromorphs. Footprints support body fossil data by indicating that archo-
sauriforms were distributed also at low latitudes soon after their origin.

3. Tracks indicate that the archosauriform body size did not change significantly from the Late
Permian to Early Triassic. The possibility that the Permo-Triassic event did not affect sub-
stantially archosauriform body size constitutes a new hypothesis that should be tested in the
future with more data both from the body and footprint record.

4. Skeletal and track record suggest an environmental/ecological preference for inland fluvial
(lacustrine) environments for early archosauromorphs. The broad palaeolatitudinal range
occupied implies broad climatic tolerance.

5. Late Permian Protochirotherium-like imprints might support a shift from a sprawling to an
erect posture in archosauriforms before the Permo-Triassic event (contra Kubo and Benton
[16]). Althoug no Palaeozoic chirotheriid trackways are known to date, this constitute a new
working hypothesis that will be tested as new specimens become available.
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