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Abstract
Diseases affecting pulmonary mechanics often result in changes to the coordination of

swallow and breathing. We hypothesize that during times of increased intrathoracic pres-

sure, swallow suppresses ongoing expiratory drive to ensure bolus transport through the

esophagus. To this end, we sought to determine the effects of swallow on abdominal

electromyographic (EMG) activity during expiratory threshold loading in anesthetized cats

and in awake-healthy adult humans. Expiratory threshold loads were applied to recruit ab-

dominal motor activity during breathing, and swallow was triggered by infusion of water into

the mouth. In both anesthetized cats and humans, expiratory cycles which contained swal-

lows had a significant reduction in abdominal EMG activity, and a greater percentage of

swallows were produced during inspiration and/or respiratory phase transitions. These re-

sults suggest that: a) spinal expiratory motor pathways play an important role in the execu-

tion of swallow, and b) a more complex mechanical relationship exists between breathing

and swallow than has previously been envisioned.

Introduction
The precise coordination of breathing and swallowing plays an important role to prevent en-
trance of food and other materials into the lower respiratory tract. Diseases which effect pul-
monary mechanics such as chronic obstructive pulmonary disease (COPD), and or lung
tumors result in changes to the coordination of swallow and breathing [1–3]. COPD is one of
the thirteen statistically significant influencing factors that were implicated in the development
of aspiration pneumonia [3–7]. Additionally, patients with COPD swallow more often during
inspiration and consequently are at increased risk for post-swallow aspiration events [8, 9].
This disrupted breathing/swallow pattern could increase the risk of aspiration in patients with
advanced COPD and may contribute to exacerbations [10, 11].

Expiratory threshold loading is an experimental technique which reliably elicits abdominal
recruitment in human [12–20] and animal models [21–25]. A 15 cm H20 expiratory threshold
load increases rectus abdominis, internal oblique, transverses abdominis and gastric pressure
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to approximately 5–30% of maximum activity produced during cough [26]. Previous work
[27] has increased our understanding of the interaction of swallow with other airway protective
behaviors, and pressure threshold loading allows for the testing of its interaction with
active expiration.

Pitts et al [28] proposed a dual valve system composed of highly coordinated control of
both the laryngeal adductor and upper esophageal sphincter in regulating pressures between
upper airway and the thoracic cavity, which controls the passage of air/bolus into or out of the
lungs and esophagus. During swallowing, the pressure differential produced by upper esoph-
ageal relaxation and the maximal activity of tongue and pharyngeal muscles propels the bolus
into the esophagus. During the expiratory phase of breathing, requirements for the production
of swallowing are low because trans-laryngeal flows (i.e air movement through the larynx) and
intra thoracic pressures are minimal. However, in patients with alterations in respiratory me-
chanics leading to increases in intra-thoracic pressure, such as with abdominal muscle recruit-
ment, dysphagia may be promoted by hindrance of bolus movement across the upper
esophageal sphincter.

The aims of this study were to determine if swallowing and breathing are coordinated dur-
ing active expiration and if swallows affects pressure regulation by altering laryngeal and respi-
ratory muscle activity. We hypothesized that swallows increase the duration and decrease the
maximal activity of expiratory muscles during expiratory loading.

Methods

Animal Model
Approval for this study was granted from the University of Florida Institutional Animal Care
and Use Committee (IACUC). The experiments were performed on six spontaneously breath-
ing adult cats (5.2 ± 1.1 kg), obtained from Liberty Research, Inc, and housed at the University
of Florida. The animals were anesthetized with sodium pentobarbital (35–40 mg/kg iv) and ad-
ditional doses were given as needed (1–3mg/kg iv). The right femoral vein was cannulated for
intravenous drugs administration and the right femoral artery was accessed for arterial blood
sampling and blood pressure monitoring. A tracheostomy was performed and a cannula was
inserted to allow spontaneous breathing. Arterial blood pressures, arterial blood gasses, end
tidal CO2, and vital signs were monitored. An esophageal balloon was placed via an oral ap-
proach to measure pressure in the mid-thoracic esophagus. A rectal temperature probe was in-
serted to allow maintenance of body temperature at 37±1°C.

Electromyograms were recorded using bipolar insulated fine wire electrodes according to
the technique of Basmajian and Stecko [29]. Seven muscles were used to evaluate breathing
and swallowing: swallowing muscles (mylohyoid, geniohyoid, thyrohyoid, thyropharyngeus,
and cricopharyngeus), inspiratory muscle (parasternal), and expiratory muscle (internal obli-
que). The muscles were identified through surgical dissection and visual inspection followed by
electrode placement. The geniohyoid was exposed through a small incision on the rostral por-
tion of the right mylohyoid. The thyroarytenoid electrodes were inserted through the cri-
cothyroid window near the anterior portion of the vocal folds. The thyropharyngeus was
spotted as a fan shaped muscle the wires are placed at the caudal portion at the thyroid cartilage
attachment. At the posterior aspect of the larynx, the cricopharyngeus was identified and elec-
trodes were placed just cranial to the edge of this structure. Thyrohyoid muscle electrodes were
inserted rostral to its attachment to the thyroid cartilage. The parasternal muscle electrodes
were placed on the third intercostal space adjacent to the sternum. Expiratory muscle elec-
trodes were placed in the internal oblique muscle. The external oblique was moved without dis-
section to identify the internal oblique muscle. The positions of all electrodes were confirmed
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by electromyogram activity patterns during breathing and swallowing. Animals were eutha-
nized by an overdose of sodium pentobarbital, followed by 3cc’s of potassium chloride.

Protocol
A non-rebreathing valve was placed on the tracheal cannula. An expiratory threshold load of
15 cmH20 was applied by attaching a hose to the expiratory port of this valve and immersing
the end of the hose in a reservoir of water. Each load was 5 minutes in duration with the swal-
low trials beginning at the 2 minute mark. Swallow stimulation was completing by injecting 3
ml of water into the oropharynx via a syringe; this was repeated three times separated 1 minute.
The swallows were identified from: a) a quiescence of the cricopharyngeus (UES), and b) over-
lapping large burst of activity of the mylohyoid, geniohyoid, thyropharyngeus, thyrohyoid,
thyroarytenoid and the parasternal.

All EMG signals were amplified, filtered (200–5000 Hz), rectified, and integrated (time con-
stant 50 ms). The inspiratory phase (TI), and the expiratory phase (TE) durations were mea-
sured. TI was defined as the onset of parasternal activity to the maximum burst of the
parasternal EMG, TE was defined as the maximum burst of the parasternal EMG to the onset
of the parasternal EMG activity for the next breath. The control (load-only) respiratory cycle
durations (TI and TE) were compared to cycles which contained a swallow. The maximum am-
plitude of the inspiratory muscles (parasternal) and expiratory muscles (internal oblique) were
compared to cycles which contained a swallow.

Human Model
Approval for this study was granted from the University of Florida Institutional Review Board
(UF-IRB). All subjects provided written consent following the UF-IRB approved procedure.
Five young (20 ± 1 years old) healthy males were recruited for this study. They had an average
weight of 157 ± 42 pounds, height of 67 ± 3 inches, and a body mass index of 24 ± 7. All partic-
ipants reported no history of swallow disorders, respiratory disease, and/or smoking within the
last 10 years. The Institutional Review Board at the University of Florida approved the study.

Surface EMGs were affixed to the skin above the submental (including mylohyoid, genio-
hyoid and diagrastics) muscle group and the abdominal wall (lateral to the right rectus abdomi-
nis) over the oblique and transverses complex. To optimize abdominal recruitment all subjects
were kneeling upright for the duration of the study. Subjects were asked to breathe through an
apparatus comprised of a non-rebreathing valve, expiratory pressure threshold device (EMST
150, Aspire Products LLC), and a pressure transducer. The EMST 150 is a calibrated, one-way
spring-loaded valve which has been used in studies for expiratory muscle strength training
[12–19]. The pressure transducer confirmed the expiratory pressure necessary to overcome the
load. A nose clip was affixed to ensure all airflow was through the oral cavity. During prelimi-
nary experiments, participants exposed to load significantly decreased their respiratory rate.
For this set of experiments participants were asked to maintain their resting breathing rate dur-
ing the loading paradigm, this decreased the need for larger expiratory threshold loads to re-
cord EMG abdominal recruitment.

Protocol
The EMST150 was attached to the expiratory port of the non-rebreathing valve, placed into the
subject’s mouth, and slowly the expiratory threshold level was increased until respiratory pha-
sic abdominal EMG activity was observed (30–45 seconds in duration). Following this a 3cc sy-
ringe filled with sterile water with a one-inch tubing, was slid into the participants mouth (by
the investigator) and slowly the water was infused over a 20 second time-period (0.15 ml/
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second). The subjects were instructed to “swallow when you feel it is necessary”. A five minute
rest was given between each trial, and this was repeated 3 times.

For comparison all EMG amplitude measures are expressed as a percentage of the largest
EMG amplitude. Results are expressed as means ± standard error. For statistical analysis Stu-
dent’s paired t-tests were used to identify differences. A statistical difference was considered
significant if the p-value was less than 0.05.

Results

Animal Model
The loading protocol recruited active abdominal activity in all animals (Fig 1). Fig 1a demon-
strates an abdominal motor unit in the 3 respiratory cycles preceding a swallow and depression
of the motor unit in the cycle containing a swallow and subsequent cycles. Note, for this analy-
sis only single swallows which had 3 respiratory cycles preceding and following the swallow
were included in this analysis, for a total of 25 swallows.

The maximum abdominal EMG activity in expiratory phase, which contained a swallow (55
±12), was significantly lower that control expiratory cycles (95±2; P = 0.02); additionally, dura-
tions of TE which contained a swallow (5.2±0.8 s) were significantly longer than those under
the control condition (3.6±0.5 s; P = 0.04). The average time from the onset of the load to expi-
ratory recruitment was 32 ± 13 s. Sixty percent (15 of 25) of swallows occurred during the expi-
ratory phase with the remaining 40% (10 of 25) during inspiration. We did not observe
swallows occurring during a respiratory phase. Fig 1b is a line graph demonstrating each ani-
mal’s averaged data for three cycles preceding the swallow and 4 cycles following the swallow.

The maximum parasternal EMG activity in inspiratory cycles, which contained a swallow
(128±15), was higher but not significantly different to that during the inspiratory control cycles
(94±2; P = 0.07). The duration of TI which contained a swallow (1.2±0.3 s) was not significantly
different than that under the control condition (1.0±0.08 s; P = 0.4) (Table 1).

There was no significant difference in the maximum EMG for swallows during the control
versus the loading condition: mylohyoid (P = 0.6), geniohyoid (P = 0.3), thyrohyoid (P = 0.4),
thyropharyngeus (P = 0.7), cricopharyngeus (P = 0.7), thyroarytenoid (P = 0.2), and paraster-
nal (P = 0.5). All eighty swallows were included in this analysis, regardless of the respiratory
phase in which they occurred.

Human Model
The loading protocol recruited active abdominal activity in all subjects, which could be de-
tected by surface EMG. The analysis included 54 swallows, and all subjects produced at least
one swallow during the inspiratory phase of breathing. Fig 2 demonstrates abdominal suppres-
sion during an expiratory phase containing a swallow. Note the abdominal EMG burst, at the
beginning of the expiratory cycle, is due to the active expiration required to open the pressure
threshold load valve, to allow airflow. The maximum abdominal surface EMG activity of expi-
ratory phases, which contained a swallow (64±8), was significant lower than that during the ex-
piratory control phases (90±1; P = 0.02). The submental surface EMG amplitude (79±9) and
duration was not significantly different for swallows during the loading condition (84±3;
P = 0.29).

During the control condition 57 ± 11% of swallows occurred during the expiratory phase,
with 5 ± 4% during the inspiration-expiratory transition, and 38±11% during the expiratory to
inspiratory transition. However, during the loading condition 11 ± 9% of swallows occurred
during the inspiratory phase, with a reduction of their occurrence during the expiratory phase
(29 ± 14). Additionally 7 ± 6% of swallows occurred during the inspiratory-expiratory phase
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transition and the largest percentage (53 ± 15) occurred during the expiratory-inspiratory
phase transition. Duration measurements were not obtained for the human measures. As
noted previously, the subjects voluntarily constrained their respiratory frequency to the control
rate. This instruction allowed for smaller expiratory threshold loads to be applied and increased
subject compliance.

Fig 1. A. Example of abdominal motor unit suppression with swallow. Note the positive wave on the
esophageal pressure channel. This is indicative of the peristaltic wave during the esophageal phase of
swallow. Swallow is denoted by the arrow, the first 2 cycles occurred on the inspiratory-expiratory phase
transition, the third is during the inspiratory phase of breathing. B. Line graph depicting average change in
abdominal EMG amplitude for each of the five animals. N denotes the expiratory cycle that contained the
swallow, n-1 to n-3 are the three preceding expiratory cycles, and n+1 to n+4 are the four following expiratory
cycles. Four of the five animals had evidence of a multi-cycle suppression. For this analysis only single
swallows which had 3 respiratory cycles preceding and following the swallow were included in this analysis.

doi:10.1371/journal.pone.0128245.g001
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Discussion
This is the first report of swallow suppressing the active abdominal recruitment during expira-
tory threshold loading in humans and cats. As seen in previous research: a) the expiratory
threshold loading protocol increased abdominal EMG activity [14, 17, 21]; and shifted swallow
from occurring predominately during expiration to inspiration [10, 11]. However, the present
results demonstrate a more complex coordination system for breathing and swallow. Swallow
has classically been thought of as a brainstem reflex that is produced solely by cranial and
upper cervical motoneuron pools [30, 31]. Our results suggest that motoneuron pools in the
thoracic and lumbar spinal cord also participate in the production of this behavior. Bautista,
et al [32] in the perfused brainstem preparation of juvenile rats has also showed suppression of
abdominal activity, however not as significant as was seen during the inspiratory phase of eup-
noea. A limitation of the perfused brainstem preparation, is that there is no lung/thoracic pha-
sic sensory feedback during breathing. Their findings, along with ours suggest that abdominal
suppression by swallowing is a nascent feature of the core central pattern generator
for swallow.

Both, our human subjects and experimental animals were unparalyzed, raising the possibili-
ty that peripheral feedback related to the mechanical changes that occur during a swallow

Table 1.

A. Respiratory EMG changes
Amplitude (% Maximum) Load Load + Swallow P value

Cat

Parasternal 70 ± 7 93 ± 3 0.07

Rectus Abdominis 95 ± 1 45 ± 7 <0.001

Human

Abdominal 90 ± 1 64 ± 8 0.02

Duration (ms) Load Load + Swallow P value

Cat

Inspiratory 961 ± 78 1225 ± 332 0.3

Expiratory 3667 ± 552 5184 ± 937 0.04

B. Swallow EMG changes

Amplitude (% Maximum) Rest Breathing With Load P value

Cat

Mylohyoid 76 ± 8 73 ± 6 0.6

Geniohyoid 65 ± 20 76 ± 7 0.3

Thyrohyoid 76 ± 18 85 ± 4 0.4

Thyropharyngeus 63 ± 11 61 ± 16 0.7

Cricopharyngeus 59 ± 17 65 ± 19 0.7

Thyroarytenoid 74 ± 18 85 ± 6 0.2

Parasternal 47 ± 9 49 ± 11 0.5

Human

Submental 73 ± 9 84 ± 3 0.3

*Significant P� 0.05

A. Changes to inspiratory and expiratory EMG amplitude and duration comparing cycles with expiratory loading and expiratory loading with swallow. B.

Changes to laryngeal, pharyngeal, and schluckatmung EMG amplitude during control swallows (rest breathing) and swallows during expiratory

threshold loading.

doi:10.1371/journal.pone.0128245.t001
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could influence this larger depression in abdominal motor activity, seen in the present study. If
so, the afferent sources likely arise from thoracic-abdominal somatic and/or visceral mechano-
receptors. A central source for these effects is also possible, consisting of depression of bulbosp-
inal excitatory drive to abdominal motoneuron pools during swallow. Abdominal motoneuron
pools receive their excitatory drive during breathing from expiratory phasic premotoneurons
in the region of caudal nucleus retroamnbigualis, also known as the caudal ventral respiratory
column [33].

Active expiratory suppression theoretically affected pressures across the upper esophageal
sphincter to enhance bolus propulsion during swallowing. Negative intra-esophageal pressure
during swallow has been described in humans [34–36] and animals [28, 37–40]; here referred
to as the “schluckatmung” a German word meaning “swallow breath” [41–44]. McConnell has
also published a series of papers describing this as the “hypopharyngeal suction pump” [45–
59]. The source of this pressure has been disputed with two leading theories: a) phrenic nerve
activity driving diaphragm activity [60, 61], or b) elevation of the laryngeal complex [46, 47, 58,
59]. It could also result from the combination of these two forces to create the necessary nega-
tive pressure. With the necessity of an adequate intra-esophageal pressure formation during
swallow, now aligns swallow more with “inspiration during breathing” and the knowledge of
lung mechanics can be applied.

During swallow, bolus movement is ensured by the combination of positive pressure (from
the tongue/oral/velopharyngeal cavity), negative pressure (from the diaphragm and other ac-
cessory inspiratory muscles), along with pharyngeal squeezing which propels the bolus into the
esophagus. However, even more important is the creation of a positive-negative pressure differ-
ential from the upper airway into the esophagus. Disorders such as COPD and lung cancer
(large tumors) could create resting intra-thoracic pressures, with patient’s using active

Fig 2. An example of swallowing in a young healthy male, and the abdominal suppression across the entire expiratory period. Note the small burst
of abdominal activity at the beginning and the larger burst of abdominal activity at the end of the expiratory period was the consistent pattern.

doi:10.1371/journal.pone.0128245.g002
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abdominal recruitment during the expiratory phase of breathing, which results in a mechanical
disadvantage for execution of swallowing. This mechanical disadvantage could be overcome
with multiple strategies including: suppression of ongoing active abdominal recruitment dur-
ing swallows occurring during the expiratory phase of breathing, and/or shifting swallow phase
to inspiration (as seen in these results), which would move the occurrence of swallow to the
respiration phase with the greatest negative intrathoracic pressure.

A larger percentage of swallows were produced during inspiration or phase transitions in
our experiments than are normally reported during control conditions [27, 39, 40, 62–65].
However, it is unknown whether the phase preference and phase shift during loading is a solely
central/brainstem mediated phenomenon, or if continuous feedback from chest-wall, vagal,
and/or abdominal afferents regulate swallow occurrence during active expiration. Additionally,
during expiratory threshold loading there was no significant change in EMG amplitude in the
laryngeal or pharyngeal muscles. This implies that pharyngeal activity is not necessarily subject
to chestwall feedback; rather it is respiratory muscle motor control that is altered to promote
bolus transfer. This is different than what was seen during the coordination of coughs and
swallows in the cat; in which all pharyngeal and laryngeal muscle activity were significantly in-
creased. This may represent a more delineated response to changes in respiratory status based
on alterations in expiratory drive, which is significantly greater during cough than loading
[21].

In summary, swallow breathing interactions are more complex than previously appreciated.
Active expiratory suppression is an airway protective mechanism which should ensure than an
adequate differential pressure is created across the upper esophageal sphincter. In conditions
which modify respiratory mechanics, such as COPD and lung cancer, this may represent a sig-
nificant strategy for maintaining the integrity of the bolus to ensure safe eating.
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