Origin and Population Dynamics of a Novel HIV-1 Subtype G Clade Circulating in Cape Verde and Portugal

Isabel Inês M. de Pina-Araujo1*, Edson Delatorre2*, Monick L. Guimarães2, Mariza G. Morgado2, Gonzalo Bello2*

1 Departamento de Ciência e Tecnologia, Universidade de Cabo Verde, Praia, Santiago, Cabo Verde, 2 Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil

These authors contributed equally to this work.

*gbellobr@gmail.com

Abstract

The human immunodeficiency virus type 1 (HIV-1) subtype G is the most prevalent and second most prevalent HIV-1 clade in Cape Verde and Portugal, respectively; but there is no information about the origin and spatiotemporal dispersal pattern of this HIV-1 clade circulating in those countries. To this end, we used Maximum Likelihood and Bayesian coalescent-based methods to analyze a collection of 578 HIV-1 subtype G pol sequences sampled throughout Portugal, Cape Verde and 11 other countries from West and Central Africa over a period of 22 years (1992 to 2013). Our analyses indicate that most subtype G sequences from Cape Verde (80%) and Portugal (95%) branched together in a distinct monophyletic cluster (here called GCV-PT). The GCV-PT clade probably emerged after a single migration of the virus out of Central Africa into Cape Verde between the late 1970s and the middle 1980s, followed by a rapid dissemination to Portugal a couple of years later. Reconstruction of the demographic history of the GCV-PT clade circulating in Cape Verde and Portugal indicates that this viral clade displayed an initial phase of exponential growth during the 1980s and 1990s, followed by a decline in growth rate since the early 2000s. Our data also indicate that during the exponential growth phase the GCV-PT clade recombined with a preexisting subtype B viral strain circulating in Portugal, originating the CRF14_BG clade that was later disseminated to Spain and Cape Verde. Historical and recent human population movements between Angola, Cape Verde and Portugal probably played a key role in the origin and dispersal of the GCV-PT and CRF14_BG clades.

Introduction

The global dissemination of human immunodeficiency virus type 1 (HIV-1) group M, the pandemic clade of HIV, resulted from the random exportation out of Central Africa of a few viral strains designated as subtypes (A–D, F–H, J and K) and inter-subtype circulating recombinant forms (CRFs) [1].
Subtype G is the sixth most prevalent HIV-1 clade in the world accounting for nearly 5% of all global infections [2]. This subtype reaches the highest prevalence in some African countries, comprising 30–50% of HIV-1 infections in Cape Verde [3,4] and Nigeria [5–12], and 5–15% of HIV-1 infections in Angola [13–15], Benin [16], Niger [17,18] and Togo [19,20]. A recent study conducted by our group suggests that subtype G most probably emerged in Central Africa around the late 1960s and was rapidly disseminated into the West and West Central African regions [21]. This study showed that basal subtype G lineages (GCA) were mostly restricted to Central and West Central African countries. Two subtype G strains, however, gained access to West Africa between the middle and the late 1970s and fueled secondary local outbreaks, leading to the origin of two major subtype G West African clades (GWA-I and GWA-II).

Some subtype G strains were also disseminated out of the African continent and the most remarkable example is Portugal where subtype G is the second most prevalent HIV-1 clade (>10%), after subtype B (>40%) [22–25]. The high prevalence of subtypes B and G in Portugal has also promoted the appearance of different types of B/G recombinant strains, including one circulating recombinant form (CRF14_BG) that was initially identified in Galicia, Northern Spain [26]. According to a previous study, the CRF14_BG probably emerged in Portugal in the early 1990s and later spread to Galicia in the late 1990s as a consequence of the mobility of HIV-infected injecting drug users (IDUs) [27].

Notably, about two-thirds of the subtype G viruses previously described in Portugal were found in individuals from Angola and Cape Verde [23]. These countries are two former Portuguese African colonies that have strong historic links and maintain ongoing relationships with Portugal and displayed a relatively high prevalence of subtype G [3,4,13–15]. The high numbers of immigrants from Angola and Cape Verde who enter Portugal and also those Portuguese returning after living in the former Portuguese African colonies from the 1970s onwards [28], supposes a potential risk for introduction of HIV-1 subtype G strains in Portugal. However, the precise evolutionary relationship between subtype G viruses circulating in Angola, Cape Verde and Portugal remains unknown.

The objective of this study was to reconstruct the phylogenetic relationship, onset date and dissemination routes of the HIV-1 subtype G clades circulating in Angola, Cape Verde and Portugal. To this end, we used Maximum Likelihood and Bayesian coalescent-based approaches to analyze 578 HIV-1 subtype G pol sequences isolated from Portugal, West Africa and Central Africa over a period of 22 years (1992 to 2013).

Materials and Methods

Sequence dataset

All HIV-1 subtype G pol sequences from Portugal and West/Central African countries that covered the entire protease and partial reverse transcriptase (PR/RT) regions (nt 2253–3272 relative to HXB2 clone) and for which the sampling year was known, were downloaded from the Los Alamos HIV Sequence Database (www.hiv.lanl.gov) by December 2014. The same procedure was adopted to obtain the subtype G pol fragment of all CRF14_BG sequences from Portugal and Spain (the main countries were this CRF circulates) with full-length genome characterization up to date. The subtype assignment of all sequences was confirmed by REGA HIV subtyping tool v.2 [29] and bootscanning analysis. In bootscanning analyses, supporting branching of query sequences with HIV-1 group M subtype reference sequences was determined in Neighbor-Joining trees constructed with the Kimura two-parameter model, within a 250bp window moving in steps of 10 bases, using Simplot software v.3.5.1 [30]. Sequences with incorrect classification, multiple sequences from the same individual and sequences from countries poorly represented (n < 4 sequences) were removed, resulting in a final data set of
578 HIV-1 subtype G pol sequences (Table 1). Sequence’s GenBank accession numbers are available in S1 Table. All codon positions known to be associated with major antiretroviral drug resistance were maintained in the final alignment because phylogenetic trees constructed on alignments with or without such positions resulted in the same overall topology (data not shown). The presence of phylogenetic signal and substitution saturation in our datasets was investigated by: 1) using the likelihood mapping analysis [31] performed with TREE-PUZZLE v5.2 program [32] implemented in the online web platform Mobyle@Pasteur v1.5 [33], and 2) plotting the observed number of transitions and transversions against genetic distance for each pairwise comparison, calculated under the GTR+I+G nucleotide substitution model using DAMBE v5.3 program [34].

Identification of major HIV-1 subtype G clades

Major HIV-1 subtype G clades were identified by Maximum Likelihood (ML) phylogenetic analysis. A ML phylogeny was constructed with the PhyML 3.0 program [35] using an online web server [36]. The ML tree was inferred under the GTR+I+G nucleotide substitution model as recommended by the jModeltest program [37], the heuristic tree search was performed using the SPR branch-swapping algorithm and branch support was calculated with the approximate likelihood-ratio (aLRT) SH-like test [38].

Analysis of spatiotemporal dispersion pattern and demographic history

The evolutionary rate (μ, nucleotide substitutions per site per year, subst./site/year), the age of the most recent common ancestor (TMRCA, years), the ancestral geographic movements, and the mode and rate (r, years⁻¹) of population growth of HIV-1 subtype G clades were jointly estimated using the Bayesian Markov Chain Monte Carlo (MCMC) approach as implemented in BEAST v1.8 [39,40] with BEAGLE to improve run-time [41]. Analyses were performed under a GTR+I+G nucleotide substitution model. The temporal scale of the evolutionary process was estimated from the sampling dates of the sequences using a relaxed uncorrelated lognormal
molecular clock model and a uniform prior on clock rate \((1.5 - 3.0 \times 10^{-3} \text{ subst/site/year})\) \[42\]. Migration events throughout the phylogenetic history were inferred using a reversible discrete Bayesian phylogeographic model \[43\], in which all possible reversible exchange rates between locations were equally likely, and a CTMC rate reference prior \[44\]. Changes in effective population size through time were initially estimated using a flexible Bayesian Skyline coalescent model \[45\] and estimates of the population growth rate were subsequently obtained using the parametric model (logistic, exponential or expansion) that provided the best fit to the demographic signal contained in datasets. Comparison between demographic models was performed using the log marginal likelihood (ML) estimation based on path sampling (PS) and stepping-stone sampling (SS) methods \[46\]. MCMC chains were run for \(10 - 100 \times 10^6\) generations. Adequate chain mixing and uncertainty in parameter estimates were assessed by calculating the Effective Sample Size (ESS) and the 95% Highest Probability Density (HPD) values, respectively, using the TRACER v1.6 program \[47\]. Maximum clade credibility (MCC) trees were summarized from the posterior distribution of trees with TreeAnnotator and visualized with FigTree v1.4.0 \[48\].

Results

Identification of major HIV-1 subtype G clades

The likelihood mapping analysis and the transitions/transversions versus divergence plots indicates that all datasets used in our study retained enough phylogenetic signal for consistent phylogenetic inferences and no evidence of substitution saturation (S1 Fig). The ML phylogenetic tree of 578 HIV-1 subtype G pol sequences (566 classified as subtype G and 12 classified as CRF14_BG in the Los Alamos HIV Sequence Database) isolated in Portugal, Spain and 12 countries from West and Central Africa between 1992 and 2013 (Table 1) points to a clear phylogeographic subdivision of viral strains (Fig 1). Subtype G sequences from continental western African countries branched mostly in two large monophyletic clades (GWA-I and GWA-II) that were nested among the most basal clades from Central and West Central Africa (GCA), consistent with our previous findings \[21\]. Although some subtype G sequences from Cape Verde \((n = 10)\) also branched within the GWA-I clade; most sequences from this insular West African country \((n = 48)\) branched together with most subtype G sequences from Portugal \((n = 102)\) in a distinct monophyletic clade (GCV-PT) nested among basal GCA lineages. All CRF14_BG sequences and several subtype G pol sequences from Portugal \((n = 78)\) and Cape Verde \((n = 7)\) formed a highly supported sub-cluster (CRF14_BG-like) within the GCV-PT clade. According to the relative prevalence of the distinct subtype G clades, we can describe four basic molecular epidemiologic scenarios (Fig 2 and S2 Table): 1) basal GCA clades are the predominant subtype G lineages circulating in countries from Central (90%) and West-Central (50%) African regions; 2) the GWA-I clade was the predominant lineage detected in Nigeria (78%), Senegal (50%) and Benin (47%); 3) the GWA-II clade predominates in Togo/Ghana (84%); and 4) the GCV-PT clade was the dominant lineage in Cape Verde (80%) and Portugal (95%).

Spatiotemporal dispersal pattern of the HIV-1 GCV-PT clade

To reconstruct the subtype G migrations between Africa and Portugal, all subtype G sequences belonging to the GCV-PT clade (excluding the CRF14_BG-like sub-clade) \((n = 69)\) were combined with basal GCA strains of Central African origin \((n = 73)\). Sequences were divided in six geographical locations, as those neighboring countries from Central and West-Central Africa comprising few samples \((n < 20)\) were grouped into the same location state (S3 Table), and subjected to Bayesian phylogeographic analysis According to the Bayesian MCMC analysis, the most probable root location of the subtype G clade was placed in Central Africa (posterior state
Fig 1. ML tree of the HIV-1 subtype G pol PR/RT sequences (~1,000 nt) from Central Africa, West Africa, Portugal and Spain. Branches are colored according to the geographic origin of each sequence as indicated in the legend (bottom left). Arcs indicate the positions of major subtype G clades circulating in Central Africa (G_{CA}), West Africa (G_{WA-I} and G_{WA-II}) and Cape Verde/Portugal (G_{CV-PT}) and the position of the subclade that comprises all CRF14_BG reference sequences (CRF14_BG-like). Black dots indicate the positions of the reference sequences classified as CRF14_BG based on full-length genome analysis. Asterisks point to key nodes with relatively high (*, aLRT > 0.80) and high (**, aLRT > 0.90) support. The tree was rooted using HIV-1 subtype A-D reference sequences. The branch lengths are drawn to scale with the bar at the center indicating nucleotide substitutions per site. AO/CD/CG: Angola/Democratic Republic of Congo/Republic of Congo; CM/GA/GQ: Cameroon/Gabon/Equatorial Guinea; NG/TG/GH/BJ/SN: Nigeria/Togo/Ghana/Benin/Senegal; CV: Cape Verde; PT: Portugal; ES: Spain.

doi:10.1371/journal.pone.0127384.g001
probability, \(PSP = 1 \), and the onset date of this clade was estimated to be 1964 (95% HPD: 1937–1978) (Fig 3). Sequences from Cape Verde branched at the base of the \(G_{CV \cdot PT} \) clade,
Fig 3. Time-scaled Bayesian MCC tree of HIV-1 subtype G pol/PR/RT sequences (~1,000 nt) from the GCA and GCV-PT clades. Branches are colored according to the most probable location state of their descendent nodes as indicated in the legend (upper left). The arc indicates the position of the GCV-PT clade. Key nodes corresponding to the MRCA of the Cape Verdean and Portuguese GCV-PT lineages are indicated with circles and the median TMRCA (with the corresponding 95% HPD interval) of each lineage is indicated at the bottom left. Asterisks point to key nodes with relatively high (*, PP > 0.80) and high (**, PP > 0.90) posterior probability support. Branch lengths are drawn to a scale of years. The tree was automatically rooted under the assumption of a
whereas most sequences from Portugal branched in a monophyletic cluster nested within the Cape Verdean sequences (Fig 3). This analysis suggests that the G_{CV-PT} clade most probably migrates from Central Africa to Cape Verde ($PSP = 0.68$) at 1977 (95% HPD: 1972–1982) and rapidly moved from Cape Verde to Portugal in 1979 (95% HPD: 1974–1984). A few additional exchanges of the G_{CV-PT} clade between Cape Verde and Portugal were detected at later times (Fig 3).

Demographic history of the HIV-1 G_{CV-PT} clade

To reconstruct the demographic history of the G_{CV-PT} clade, all subtype G sequences from Cape Verde ($n = 41$) and Portugal ($n = 24$) that branched within this clade (excluding the CRF14_BG-like sub-clade) were selected. In agreement with our previous analysis, most subtype G sequences from Portugal branched in a sub-cluster nested among basal Cape Verdean sequences (Fig 4A). This new analysis, however, supports a relatively more recent time-scale than previous estimations. According to this new analysis, the G_{CV-PT} clade probably arose in Cape Verde ($PSP = 0.76$) in 1984 (95% HPD: 1979–1989) and was rapidly disseminated to Portugal in 1987 (95% HPD: 1983–1990). Two additional migrations of the G_{CV-PT} clade from Cape Verde to Portugal and one migration event from Portugal to Cape Verde were also detected, in agreement with our previous analysis (Fig 4A). The Bayesian skyline plot (BSP) analysis suggests that the G_{CV-PT} clade experienced a fast exponential growth during the 1980s and 1990s, followed by a more recent stabilization since the early 2000s (Fig 4B). According to the logistic growth coalescent model, selected as the best-fit demographic model for the G_{CV-PT} clade ($\log BF > 10$) (S4 Table), the mean growth rate of this subtype G clade was 0.52 year$^{-1}$ (95% HPD: 0.32–0.77 year$^{-1}$) (Fig 4C).

Origin of the CRF14_BG clade

To investigate the origin of the parental subtype lineage that gave rise to the CRF14_BG, all pol sequences that branched within the CRF14_BG-like subclade ($n = 97$) were combined with sequences from clades GCA and G_{CV-PT}. The overall topology and temporal structure of the Bayesian MCC trees remains conserved after inclusion of the CRF14_BG-like subclade, but placed most of the posterior root state probability mass of the G_{CV-PT} clade in Portugal ($PSP = 0.55–0.81$) (Fig 5 and S5 Table). Both Bayesian MCMC analyses showed that all CRF14_BG-like sequences formed a well-supported sub-cluster ($PP > 0.90$) nested among basal subtype G Portuguese sequences within the G_{CV-PT} radiation (Fig 5). Those analyses support that the CRF14_BG-like clade most probably arose in Portugal ($PSP = 1$) and was later disseminated at multiple times from Portugal to both Spain and Cape Verde (Fig 5). The T_{MRCA} of the CRF14_BG-like clade was traced to 1986 (95% HPD: 1982–1991) when basal GCA strains were included in the analysis (Fig 5A), and to 1991 (95% HPD: 1988–1994) when basal GCA strains were not included (Fig 5B).

Discussion

This and our previous study [21] indicate that the HIV-1 subtype G likely originated in Central Africa around the middle-late 1960s and began to be disseminated to Western and West-Central Africa from the middle 1970s onwards. Some of the subtype G strains disseminated out of Central Africa fueled secondary outbreaks that led to the origin of regional-specific subtype G
Fig 4. Demographic history of the HIV-1 GCV-PT clade circulating in Cape Verde and Portugal. A) Time-scaled Bayesian MCC tree of the HIV-1 GCV-PT clade. Branches are colored according to the most probable location state of their descendant nodes as indicated in the legend (upper left). Key nodes

$T_{MRCA} = 1987$ (1983 – 1990)

$T_{MRCA} = 1984$ (1979 – 1989)
clades. The major subtype G clades detected in our previous study in West Africa were the GWA-I (that most probably emerged in Nigeria around the middle 1970s) and the GWA-II (that most probably emerged in Togo or Ghana around the late 1970s) [21]. In the present study we identified a novel major clade (GCV-PT) that probably emerged between the late 1970s and the middle 1980s and circulates in Cape Verde and Portugal.

The GCV-PT clade comprises 95% and 80% of HIV-1 subtype G pol sequences from Portugal and Cape Verde included in our study, respectively. Within the GCV-PT radiation, most sequences from Portugal (73%) branched in a monophyletic subclade together with the CRF14_BG reference sequences, whereas the remaining Portuguese sequences branched at the base of the CRF14_BG-like subclade. This clearly indicates that the GCV-PT clade is the parental subtype G lineage of the CRF14_BG variant and that the CRF14_BG clade is probably more prevalent in Portugal than the parental GCV-PT clade, consistent with previous findings [25]. It is also important to note that a small fraction of GCV-PT pol sequences from Cape Verde (15%) also branched within the CRF14_BG-like clade, indicating that this recombinant lineage not only circulates in Portugal and Spain, but also in Cape Verde. Full-length genome analyses of Cape Verdean HIV-1 subtype G pol sequences that branched within the CRF14_BG-like subclade should be performed to confirm this hypothesis.

The phylogeographic analyses that combined subtype G sequences of the GCV-PT clade (with exception of the CRF14_BG-like lineage) and basal GCA clades consistently pointed to Cape Verde as the most probable root location of the GCV-PT clade (PSP = 0.68–0.76). When CRF14_BG-like sequences are included, the root location of the GCV-PT clade was most probably placed in Portugal (PSP = 0.55–0.81). It has been shown that convenience sampling (particularly sampling heterogeneity) can obfuscate the accurate estimation of ancestral spatial locations based on standard phylogeographic continuous-time Markov chain implementation [49]. When CRF14_BG-like sequences are included, the number of Portuguese sequences (n = 104) far exceeds the number of Cape Verdean sequences (n = 48) within the GCV-PT clade and such a larger sample from Portugal may results in the higher support for this location as the origin of that clade. Thus, according to the more balanced data sets the founder GCV-PT ancestor probably moved from Central Africa to Cape Verde and later passed from Cape Verde to Portugal.

Whereas the inclusion of the CRF14_BG-like sequences has a great impact on estimation of the GCV-PT ancestral root location, ancestral root ages were mainly influenced by the inclusion of basal GCA clades. The median TMRCA of the GCV-PT clade was traced to the late 1970s when basal GCA clades were included, and to the middle 1980s when those basal sequences were not included (S5 Table). Similarly, the TMRCA of the CRF14_BG clade moved from the middle 1980s to the early 1990s when GCA clades were removed from the analysis (S5 Table). This suggests that inclusion of basal lineages from Central Africa tend to produce slightly older internal node ages, although no significant changes are observed in the mean estimated substitution rates (S5 Table). This observation, however, should be interpreted with caution because those TMRCA estimates displayed a considerable overlap of the confidence interval and thus should not be regarded as statistically different.
Regardless the precise root age, our phylogeographic analyses support a nearly simultaneous introduction and concurrent dissemination of the GCV-PT clade in Cape Verde and Portugal. Our phylogeographic analyses based on balanced datasets suggest that the GCV-PT clade started to be disseminated in Portugal only a couple of years later than the estimated introduction of the virus into Cape Verde. Of note, the estimated time-frame (1977–1984) for introduction and dissemination of the GCV-PT clade in Cape Verde and Portugal was preceded by a phase of negative migratory outflow in Angola [50], associated to the exodus of thousands of Portuguese citizens of European and African ethnicity from Angola after the country independence in 1974. This may have fueled the chance exportation of the GCV-PT ancestor strain from Angola into Cape Verde and its rapid dissemination to Portugal, thus suggesting that the global route of spread of the GCV-PT clade was probably laid out along the colonial history ties, as has been previously demonstrated for the HIV-2 group A [49].

Despite the continuous and extensive migration of people between Angola, Cape Verde, and Portugal [28,51], subtype G strains sampled in those Portuguese-speaking countries retain a high phylogeographic structure with relative few viral exchanges among them. We have detected a total of: 1) four independent introductions of GCA strains from Central Africa into Portugal, 2) three introductions of GCA strains from Central Africa into Cape Verde, 3) three introductions of GCV-PT strains from Cape Verde into Portugal, and 4) one GCV-PT migration and five CRF14_BG introductions from Portugal into Cape Verde. Although the continuous viral exchanges among these countries may suppose a risk to the emergence of new country-specific subtype G lineages, most viral introductions seem to have failed to sustain new local subtype G epidemics with exception of the GCV-PT founder strain.

According to our analysis, the GCV-PT clade displayed a logistic population growth pattern characterized by an initial phase of exponential growth with a median rate of 0.52 year\(^{-1}\) (95% HPD: 0.32–0.77 year\(^{-1}\)), followed by a decline in growth rate since the early 2000s. The median estimated logistic growth rate of the GCV-PT clade was similar to that estimated for basal GCA clades in Central Africa (0.47 year\(^{-1}\)) [21] and the GCU clade circulating in Cuba (0.55 year\(^{-1}\)) [52]; but lower than those previously estimated for the GWA-I (0.75 year\(^{-1}\)) and GWA-II (0.95 year\(^{-1}\)) clades circulating in continental West African countries [21] (S6 Table). The differential growth rates detected among different subtype G clades could be associated to clade-specific or ecological-specific differences in viral transmissibility. Further studies should be performed to understand whether the GWA-I and GWA-II clades introduced into continental West Africa displayed a higher intrinsic transmissibility or encountered more favorable epidemiological conditions for local and regional expansion than those disseminated within Central Africa, Cape Verde, Cuba and Portugal.

A previous study concluded that the CRF14_BG emerged in Portugal in the early 1990s and then spread to the North of Spain in late 1990s following the mobility of HIV-infected IDUs [27]. Our phylogeographic analyses indicate that the CRF14_BG clade probably arose in Portugal between the middle 1980s and the early 1990s, which is fully consistent with the previous estimation and with epidemiological data showing that CRF14_BG was already circulating in Lisbon in 1993 [27]. According to this estimate, the recombinant ancestor of the CRF14_BG clade...
clade was generated about five years after the estimated arrival of the parental G_{CV-PT} clade into Portugal, thus indicating a very rapid generation of BG recombinants in this country. After a period of local dissemination within Portugal, the CRF14_{BG} clade was dispersed not only from Portugal to Spain, but also probably to Cape Verde at multiple times.

In summary, this study reveals that most HIV-1 subtype G infections in Cape Verde and Portugal have resulted from the local dissemination of a single clade (here called G_{CV-PT}) that probably emerged after a single migration of the virus out of Central Africa into Cape Verde between the late 1970s and the middle 1980s. Dispersion of the G_{CV-PT} clade seems to have been shaped by the historical and ongoing human population movements between Angola, Cape Verde and Portugal. Our data also highlight that once introduced in Portugal, the G_{CV-PT} was disseminated in the local population and probably recombined with local preexisting subtype B variants, originating the CRF14_{BG} clade. These findings offer important insights to understanding the origin and current characteristics of the HIV-1 subtype G and CRF14_{BG} epidemics in Cape Verde and Portugal.

Supporting Information

S1 Fig. Analyses of phylogenetic signal and substitution saturation. (A—E) Likelihood maps of 10,000 random quartets made from every HIV-1 subtype G dataset used in this study as indicated in the figure. The triangles display the distribution (left) and percentage (right) of dots representing the likelihoods of the three possible tree topologies for a group of four sequences (quartets) randomly selected from the dataset. The tree-like, star-like and network-like phylogenetic signals are represented by the dots localized on the vertices, center and on the laterals, respectively. Fully resolved (tree-like) tree topologies ranged from 0.77 (CRF14-like-CV-PT) to 0.93 (G-CA + G-WA + G-CV-PT), thus indicating enough phylogenetic signal for consistent phylogenetic inferences in all datasets. (F—J) Substitution saturation plots of the datasets used in this study as depicted in the figure. The ordinate corresponds to the observed proportion of transitions (s, green) and transversions (v, blue) while the abscissa refers to the distance calculated using the GTR substitution model. The central lines of each plot correspond to the quadratic nonlinear regressions of the data. CA—Central Africa, WA—West Africa, CV—Cape Verde, PT—Portugal. All analyses indicated an absence of substitution saturation in the data set explored since the plots did not reach an evident plateau nor the transversions outnumbered transitions.

S1 Table. GenBank accession numbers of HIV-1 subtype G pol sequences described in Table 1.

S2 Table. Distribution of HIV-1 subtype G pol sequences across major regional clades circulating in Central/West-Central Africa (G_{CA}), West Africa (G_{WA1} and G_{WA2}) and Cape Verde/Portugal (G_{CV-PT}). AO/CD/CG: Angola/Democratic Republic of Congo/Republic of Congo. GA/GQ: Gabon/Equatorial Guinea. GH/TG: Ghana/Togo. PT/ES: Portugal/Spain.

S3 Table. HIV-1 subtype G pol dataset used for Bayesian phylogeographic analysis. The number of subtype G pol fragments recovered from full-length HIV-1 CRF14_{BG} reference sequences is indicated in parenthesis. DRC: Democratic Republic of Congo.
S4 Table. Best fit demographic model for HIV-1 GCV-PT clade. Log marginal likelihood (ML) estimates for the logistic (Log), exponential (Expo) and expansion (Expa) growth demographic models obtained using the path sampling (PS) and stepping-stone sampling (SS) methods. The Log Bayes factor (BF) is the difference of the Log ML between of alternative (H1) and null (H0) models (H1/H0). Log BFs > 3 indicates that model H1 is more strongly supported by the data than model H0.

(PDF)

S5 Table. Bayesian estimates of the age and root location of the most recent common ancestor (MRCA) of major HIV-1 subtype G (GCV-PT) and BG (CRF14_BG) clades circulating in Cape Verde and Portugal. a substitutions/site/year. CV: Cape Verde. PT: Portugal. TMRCA: time of the most recent common ancestor. PSP: posterior state probability.

(PDF)

S6 Table. Evolutionary and demographic parameters estimated for major HIV-1 subtype G clades circulating in Central/West-Central Africa (GCA), West Africa (GWA-I and GWA-II), Cuba (GCU) and Cape Verde/Portugal (GCV-PT). a Data from Delatorre et al [21]. b Data from Delatorre et al [52]. c Estimated at this study.

(PDF)

Acknowledgments

We thank Vera Bongertz and the article reviewers for helpful comments.

Author Contributions

Conceived and designed the experiments: GB MGM ED IIMPA. Performed the experiments: IIMPA ED GB. Analyzed the data: GB ED IIMPA MGM MLG. Contributed reagents/materials/analysis tools: IIMPA ED MLG MGM GB. Wrote the paper: GB ED IIMPA MGM MLG.

References

47. Suchard MA, Rambaut A (2009) FigTree v1.4: Tree Figure Drawing Tool. Available from http://tree.bio.ed.ac.uk/software/figtree/.