Supplementary Model Details

BrainSignals Revisited:
simplifying a computational model of cerebral physiology
Matthew Caldwell, Tharindi Hapuarachchi, David Highton, Clare Elwell,
Martin Smith, Ilias Tachtsidis

(Model documentation generated by
BCMD module doc_latex.py)
Contents

1 BrainSignals 7
 1.1 Overview 7
 1.2 Differential Equations 7
 1.3 Algebraic Equations 8
 1.4 Chemical Reactions 8
 1.5 State Variables 8
 1.6 Intermediate Variables 10
 1.7 Parameters 14

2 BSB1 29
 2.1 Overview 29
 2.2 Differential Equations 29
 2.3 Algebraic Equations 30
 2.4 Chemical Reactions 30
 2.5 State Variables 30
 2.6 Intermediate Variables 32
 2.7 Parameters 35

3 BSB2 49
 3.1 Overview 49
 3.2 Differential Equations 49
 3.3 Algebraic Equations 50
 3.4 Chemical Reactions 50
 3.5 State Variables 50
 3.6 Intermediate Variables 52
 3.7 Parameters 55

4 BSB3 69
 4.1 Overview 69
 4.2 Differential Equations 69
 4.3 Algebraic Equations 70
 4.4 Chemical Reactions 70
 4.5 State Variables 70
 4.6 Intermediate Variables 72
 4.7 Parameters 75

5 BSB4 89
 5.1 Overview 89
 5.2 Differential Equations 89
 5.3 Algebraic Equations 90
 5.4 Chemical Reactions 90
 5.5 State Variables 90
 5.6 Intermediate Variables 92
 5.7 Parameters 95

6 BSM0 109
 6.1 Overview 109
 6.2 Differential Equations 109
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Algebraic Equations</td>
<td>110</td>
</tr>
<tr>
<td>6.4</td>
<td>Chemical Reactions</td>
<td>110</td>
</tr>
<tr>
<td>6.5</td>
<td>State Variables</td>
<td>110</td>
</tr>
<tr>
<td>6.6</td>
<td>Intermediate Variables</td>
<td>112</td>
</tr>
<tr>
<td>6.7</td>
<td>Parameters</td>
<td>114</td>
</tr>
<tr>
<td>7</td>
<td>BSM1</td>
<td>125</td>
</tr>
<tr>
<td>7.1</td>
<td>Overview</td>
<td>125</td>
</tr>
<tr>
<td>7.2</td>
<td>Differential Equations</td>
<td>125</td>
</tr>
<tr>
<td>7.3</td>
<td>Algebraic Equations</td>
<td>126</td>
</tr>
<tr>
<td>7.4</td>
<td>Chemical Reactions</td>
<td>126</td>
</tr>
<tr>
<td>7.5</td>
<td>State Variables</td>
<td>126</td>
</tr>
<tr>
<td>7.6</td>
<td>Intermediate Variables</td>
<td>128</td>
</tr>
<tr>
<td>7.7</td>
<td>Parameters</td>
<td>130</td>
</tr>
<tr>
<td>8</td>
<td>BSM2</td>
<td>141</td>
</tr>
<tr>
<td>8.1</td>
<td>Overview</td>
<td>141</td>
</tr>
<tr>
<td>8.2</td>
<td>Differential Equations</td>
<td>141</td>
</tr>
<tr>
<td>8.3</td>
<td>Algebraic Equations</td>
<td>142</td>
</tr>
<tr>
<td>8.4</td>
<td>Chemical Reactions</td>
<td>142</td>
</tr>
<tr>
<td>8.5</td>
<td>State Variables</td>
<td>142</td>
</tr>
<tr>
<td>8.6</td>
<td>Intermediate Variables</td>
<td>144</td>
</tr>
<tr>
<td>8.7</td>
<td>Parameters</td>
<td>146</td>
</tr>
<tr>
<td>9</td>
<td>BSM3</td>
<td>157</td>
</tr>
<tr>
<td>9.1</td>
<td>Overview</td>
<td>157</td>
</tr>
<tr>
<td>9.2</td>
<td>Differential Equations</td>
<td>157</td>
</tr>
<tr>
<td>9.3</td>
<td>Algebraic Equations</td>
<td>158</td>
</tr>
<tr>
<td>9.4</td>
<td>Chemical Reactions</td>
<td>158</td>
</tr>
<tr>
<td>9.5</td>
<td>State Variables</td>
<td>158</td>
</tr>
<tr>
<td>9.6</td>
<td>Intermediate Variables</td>
<td>160</td>
</tr>
<tr>
<td>9.7</td>
<td>Parameters</td>
<td>162</td>
</tr>
<tr>
<td>10</td>
<td>B1M1</td>
<td>173</td>
</tr>
<tr>
<td>10.1</td>
<td>Overview</td>
<td>173</td>
</tr>
<tr>
<td>10.2</td>
<td>Differential Equations</td>
<td>173</td>
</tr>
<tr>
<td>10.3</td>
<td>Algebraic Equations</td>
<td>174</td>
</tr>
<tr>
<td>10.4</td>
<td>Chemical Reactions</td>
<td>174</td>
</tr>
<tr>
<td>10.5</td>
<td>State Variables</td>
<td>174</td>
</tr>
<tr>
<td>10.6</td>
<td>Intermediate Variables</td>
<td>176</td>
</tr>
<tr>
<td>10.7</td>
<td>Parameters</td>
<td>178</td>
</tr>
<tr>
<td>11</td>
<td>B1M2</td>
<td>187</td>
</tr>
<tr>
<td>11.1</td>
<td>Overview</td>
<td>187</td>
</tr>
<tr>
<td>11.2</td>
<td>Differential Equations</td>
<td>187</td>
</tr>
<tr>
<td>11.3</td>
<td>Algebraic Equations</td>
<td>188</td>
</tr>
<tr>
<td>11.4</td>
<td>Chemical Reactions</td>
<td>188</td>
</tr>
<tr>
<td>11.5</td>
<td>State Variables</td>
<td>188</td>
</tr>
<tr>
<td>11.6</td>
<td>Intermediate Variables</td>
<td>190</td>
</tr>
<tr>
<td>11.7</td>
<td>Parameters</td>
<td>192</td>
</tr>
<tr>
<td>12</td>
<td>B2M1</td>
<td>201</td>
</tr>
<tr>
<td>12.1</td>
<td>Overview</td>
<td>201</td>
</tr>
<tr>
<td>12.2</td>
<td>Differential Equations</td>
<td>201</td>
</tr>
<tr>
<td>12.3</td>
<td>Algebraic Equations</td>
<td>202</td>
</tr>
<tr>
<td>12.4</td>
<td>Chemical Reactions</td>
<td>202</td>
</tr>
<tr>
<td>12.5</td>
<td>State Variables</td>
<td>202</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.6 Intermediate Variables</td>
<td>204</td>
</tr>
<tr>
<td>12.7 Parameters</td>
<td>206</td>
</tr>
<tr>
<td>13 B2M2</td>
<td>215</td>
</tr>
<tr>
<td>13.1 Overview</td>
<td>215</td>
</tr>
<tr>
<td>13.2 Differential Equations</td>
<td>215</td>
</tr>
<tr>
<td>13.3 Algebraic Equations</td>
<td>216</td>
</tr>
<tr>
<td>13.4 Chemical Reactions</td>
<td>216</td>
</tr>
<tr>
<td>13.5 State Variables</td>
<td>216</td>
</tr>
<tr>
<td>13.6 Intermediate Variables</td>
<td>218</td>
</tr>
<tr>
<td>13.7 Parameters</td>
<td>220</td>
</tr>
</tbody>
</table>
1 BrainSignals

1.1 Overview

The full BrainSignals model, with a refactored implementation.

- 9 differential state variables
- 3 algebraic state variables
- 40 intermediate variables
- 139 parameters
- 4 declared inputs
- 33 default outputs

1.2 Differential Equations

\[
\frac{dC_{u, A, o}}{dt} = 4f_3 - 4f_1 \tag{1.1}
\]

\[
\frac{da_{3, r}}{dt} = 4f_3 - 4f_3 \tag{1.2}
\]

\[
\frac{d\psi}{dt} = \frac{p_3 f_3 + p_1 f_1 + p_3 f_3 - L}{C_{im}} \tag{1.3}
\]

\[
\frac{dH^+}{dt} = \frac{1}{R_{Hi}} L - \frac{p_3}{R_{Hi}} f_3 - \frac{p_1}{R_{Hi}} f_1 - \frac{p_3}{R_{Hi}} f_3 \tag{1.4}
\]

\[
\frac{dO_2}{dt} = \frac{1}{Vol_{mit}} I_{O_2} - f_3 \tag{1.5}
\]

\[
\frac{d\nu_{CO_2}}{dt} = \frac{1}{\tau_{CO_2}} (P_{aCO_2} - \nu_{CO_2}) \tag{1.6}
\]

\[
\frac{d\nu_{O_2}}{dt} = \frac{1}{\tau_{O_2}} (O_{2,c} - \nu_{O_2}) \tag{1.7}
\]

\[
\frac{d\nu_p}{dt} = \frac{1}{\tau_{\nu}} (P_a - \nu_p) \tag{1.8}
\]
\[
\frac{dv_u}{dt} = \frac{1}{\tau_u} (u - v_u)
\] (1.9)

1.3 Algebraic Equations

\[
\phi \left(\frac{S_{c,O_2}}{1 - S_{c,O_2}} \right)^{\frac{1}{\tau_u}} - O_{2,c} = 0
\] (1.10)

\[
T_e + T_m - (P_1 - P_{ic}) \ r = 0
\] (1.11)

\[
CBF \ (HbO_{2,a} - HbO_{2,v}) - J_O = 0
\] (1.12)

1.4 Chemical Reactions

\[
L \xrightarrow{L} \frac{1}{R_{Hi}} \ H^+
\] (1.13)

\[
\dot{O}_2 \xrightarrow{\text{Vol}_{mit}} \frac{1}{O_2}
\] (1.14)

\[
\frac{p_3}{R_{Hi}} \ H^+ \xrightarrow{f_3} 4 \ Cu_{A,o} + 4 \ a_{3,r}
\] (1.15)

\[
4 \ Cu_{A,o} + \frac{p_1}{R_{Hi}} \ H^+ \xrightarrow{f_1}
\] (1.16)

\[
O_2 + 4 \ a_{3,r} + \frac{p_3}{R_{Hi}} \ H^+ \xrightarrow{f_3}
\] (1.17)

1.5 State Variables

\[Cu_{A,o}\]
- Implementation Name: \(a\)
- Units: mM
- Initial value: \(Cu_{A,o,i}\)
 - Concentration of oxidised cytochrome c oxidase.

\[a_{3,r}\]
- Implementation Name: \(br\ed\)
- Units: mM
- Initial value: \(a_{3,r,i}\)
 - Concentration of reduced cytochrome \(a_3\).
1.5 State Variables

\(\psi \)
Implementation Name: \(\psi_{n} \)
Units: mV
Initial value: \(\psi_{n} \)
Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

\(H^{+} \)
Implementation Name: \(h \)
Units: mM
Initial value: \(H_{n}^{+} \)
Mitochondrial proton concentration.

\(O_{2} \)
Implementation Name: \(O_{2} \)
Units: mM
Initial value: \(O_{2,n} \)
Mitochondrial oxygen concentration.

\(O_{2,c} \)
Implementation Name: \(O_{2,c} \)
Units: mM
Initial value: \(O_{2,c,n} \)
Capillary oxygen concentration.

\(r \)
Implementation Name: \(r \)
Units: cm
Initial value: \(r_{n} \)
Typical blood vessel radius.

\(v_{CO_{2}} \)
Implementation Name: \(v_{CO_{2},c} \)
Units: mmHg
Initial value: \(v_{CO_{2,n}} \)
Filtered carbon dioxide partial pressure.

\(v_{O_{2}} \)
Implementation Name: \(v_{O_{2},c} \)
Units: mM
Initial value: \(v_{O_{2,n}} \)
Filtered capillary oxygen concentration.

\(v_{P_{a}} \)
Implementation Name: \(v_{P_{a},n} \)
Units: mmHg
Initial value: \(v_{P_{a,n}} \)
Filtered arterial blood pressure.

\(v_{u} \)
Implementation Name: \(v_{u,n} \)
Units: dimensionless
Initial value: \(v_{u,n} \)
Filtered demand.

\(HbO_{2,v} \)
Implementation Name: \(HbO_{2,v,n} \)
Units: mM
Initial value: \(HbO_{2,v,n} \)
Venous concentration of oxygen bound to haemoglobin.
1 BrainSignals

1.6 Intermediate Variables

\[Cu_{A,r} = \text{CCO}_{\text{tot}} - Cu_{A,o} \]
- Implementation Name: a_{red}
- Units: mM
- Initial value: 0
- Concentration of reduced Cu\(_A\).

\[a_{3,o} = \text{CCO}_{\text{tot}} - a_{3,r} \]
- Implementation Name: b
- Units: mM
- Initial value: 0
- Concentration of oxidised cytochrome a\(_3\).

\[C_{0,i} = \frac{10^{-pH_m} - 10^{-pH_m - dPH}}{dPH} \]
- Implementation Name: C_{0i}
- Units: dimensionless
- Initial value: 0
- Natural buffering capacity of protons in mitochondria.

\[CBF = G (P_a - P_v) \]
- Implementation Name: CBF
- Units: ml_brain ml_brain s\(^{-1}\)
- Initial value: CBF
- Cerebral blood flow.

\[\Delta \text{oxCCO} = \Delta \text{oxCCO}_{\text{off}} + 1000 \text{Vol}_{\text{mit}} \left(Cu_{A,o} - Cu_{A,o,n} \right) \]
- Implementation Name: \text{CCO}
- Units: mM
- Initial value: 0
- Cytochrome c oxidase signal measured by NIRS.

\[CMRO_2 = f_3 \text{Vol}_{\text{mit}} \]
- Implementation Name: CMRO2
- Units: mM s\(^{-1}\)
- Initial value: 0
- Rate of cerebral oxygen metabolism.

\[\Delta p = \psi + Z \left(pH_m - pH_o \right) \]
- Implementation Name: \text{dp}
- Units: mV
- Initial value: 0
- Proton motive force across the mitochondrial inner membrane.

\[\eta = R_P \left(\frac{v_P}{v_{P,n}} - 1 \right) + R_O_2 \left(\frac{v_{O_2}}{v_{O_2,n}} - 1 \right) + R_C O_2 \left(1 - \frac{v_{CO_2}}{v_{CO_2,n}} \right) + R_u \left(1 - \frac{v_u}{v_{u,n}} \right) \]
- Implementation Name: eta
- Units: dimensionless
- Initial value: 0
- Merged autoregulation stimulus.

\[f_1 = k_1 Cu_{A,o} - k_{-1} Cu_{A,r} \]
- Implementation Name: f1
- Units: mM s\(^{-1}\)
- Initial value: 0
- Reaction rate for the reduction of Cu\(_A\).

\[f_2 = k_2 Cu_{A,r} a_{3,o} - k_{-2} Cu_{A,o} a_{3,r} \]
- Implementation Name: f2
1.6 Intermediate Variables

Units: mM s^{-1}
Initial value: 0
Reaction rate for the reduction of a_3.

\[f_3 = \frac{k_3 O_2 a_3, \exp \left(-c_3 \left(\Delta p - \Delta p_{30} \right) \right)}{1 + \exp \left(-c_3 \left(\Delta p - \Delta p_{30} \right) \right)} \]
Implementation Name: f3
Units: mM s^{-1}
Initial value: 0
Reaction rate for the reduction of O_2.

\[G = K_G r^4 \]
Implementation Name: G
Units: ml_{blood} ml_{brain}^{-1} mmHg^{-1} s^{-1}
Initial value: 0
Effective conductance of the whole blood flow compartment.

\[h = \sqrt{r(r + 2r_0 h_0 + h_0 h_0) - r} \]
Implementation Name: h
Units: cm
Initial value: h_n
Thickness of the blood vessel walls.

\[HbO_2 = (V_a HbO_{2,a} + V_v HbO_{2,v}) \text{ blood}_{hb} \]
Implementation Name: Hb02
Units: uM
Initial value: 0
Oxygenated haemoglobin signal measured by NIRS.

\[HbT = (V_a + V_v) Hb_{tot} \text{ blood}_{hb} \]
Implementation Name: HbT
Units: uM
Initial value: 0
Total haemoglobin signal measured by NIRS.

\[HHb = HbT - HbO_2 \]
Implementation Name: HHb
Units: uM
Initial value: 0
Deoxygenated haemoglobin signal measured by NIRS.

\[J_{O_2} = f_{min} \left(D_{O_2} \left(O_{2,a} - O_2 \right), CBF HbO_{2,a} \right) \]
Implementation Name: J_02
Units: mM s^{-1}
Initial value: 0
Oxygen flux from blood to tissue.

\[k_1 = k_{1,0} \exp \left(-c_{k_1} \left(\Delta p - \Delta p_n \right) \right) \]
Implementation Name: k1
Units: s^{-1}
Initial value: 0
Forward reaction rate for the reduction of Cu_A.

\[k_2 = k_{2,n} \exp \left(-c_{k_2} \left(\Delta p - \Delta p_n \right) \right) \]
Implementation Name: k2
Units: s^{-1}
Initial value: 0
Forward reaction rate for the reduction of a_3.

\[K_{ef} = 10^{\frac{1}{\gamma} \left(\frac{n_e}{n_o} - \delta_1 \right)} \]
Implementation Name: K_{eq1}
Units: dimensionless
Initial value: 0
Equilibrium constant for the Cu$_A$ reduction reaction.

$$K_{eq2} = 10^{-\frac{Z}{1}} (\frac{n^2 H}{T^2})$$

Implementation Name: K_{eq2}
Units: dimensionless
Initial value: 0
Equilibrium constant for the a$_3$ reduction reaction.

$$k_{-1} = \frac{k_1}{K_{eq1}}$$
Implementation Name: k_n1
Units: s$^{-1}$
Initial value: 0
Reverse reaction rate for the reduction of Cu$_A$.

$$k_{-2} = \frac{k_2}{K_{eq2}}$$
Implementation Name: k_n2
Units: s$^{-1}$
Initial value: 0
Reverse reaction rate for the reduction of a$_3$.

$L = L_{CV} + L_{lk}$
Implementation Name: L
Units: mM s$^{-1}$
Initial value: 0
Rate of proton return to the mitochondrial matrix.

$$L_{CV} = \frac{C_{in} L_{CV, max} (1 - \exp(-\theta))}{1 + r_{CV} \exp(-\theta)}$$
Implementation Name: L_{CV}
Units: mM s$^{-1}$
Initial value: 0
Rate at which protons re-enter the mitochondrial matrix due to ADP phosphorylation.

$L_{lk} = k_{unc} L_{lk0} (\exp(\Delta p k_{lk2}) - 1)$
Implementation Name: L_{lk}
Units: mM s$^{-1}$
Initial value: 0
Rate at which protons re-enter the mitochondrial matrix via leak channels.

$$\mu = \frac{\mu_{min} + \mu_{max} \exp(\eta)}{1 + \exp(\eta)}$$
Implementation Name: μ
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation response.

$$pH_m = -\log_{10} \left(\frac{[H^+]}{1000} \right)$$
Implementation Name: pH_m
Units: dimensionless
Initial value: 0
Mitochondrial pH.

$$r_{buffi} = \frac{C_{buffi}}{C_{0,j}}$$
Intermediate Variables

Implementation Name: \(r_{\text{buffi}} \)
Units: dimensionless
Initial value: 0
Buffering capacity for protons in mitochondria.

\[R_{Hi} = r_{\text{buffi}} \]
Implementation Name: \(R_{Hi} \)
Units: dimensionless
Initial value: 0
Relative mitochondrial volume for protons, taking into account buffering effect of pH.

\[S_{c,O_2} = \frac{S_{a,O_2} + S_{v,O_2}}{2} \]
Implementation Name: \(ScO2 \)
Units: dimensionless
Initial value: \(S_{c,O_2,n} \)
Capillary oxygen saturation.

\[\sigma_e = \sigma_{e,0} \left(\exp \left(\frac{K_e (r - r_0)}{r_0} \right) - 1 \right) - \sigma_{\text{coll}} \]
Implementation Name: \(\text{sigma}_e \)
Units: mm Hg
Initial value: 0
Elastic stress in blood vessel walls.

\[S_{v,O_2} = \frac{HbO_2,v}{Hb_{\text{tot}}} \]
Implementation Name: \(SvO2 \)
Units: dimensionless
Initial value: \(S_{v,O_2,n} \)
Venous oxygen saturation.

\[T_{e} = \sigma_e h \]
Implementation Name: \(T_e \)
Units: mm Hg cm
Initial value: 0
Elastic tension in the blood vessel walls.

\[T_m = T_{\text{max}} \exp \left(\text{pow} \left(\text{fabs} \left(\frac{r - r_m}{r_1 - r_m} \right), n_m \right) \right) \]
Implementation Name: \(T_m \)
Units: mm Hg cm
Initial value: 0
Muscular tension in the blood vessel walls.

\[T_{\text{max}} = T_{\text{max},0} (1 + k_{\text{aut}} \mu) \]
Implementation Name: \(T_{\text{max}} \)
Units: mm Hg cm
Initial value: 0
Maximal muscular tension in the blood vessel walls.

\[\theta = k_{CV} (\Delta p + Z \log_{10} (u) - \Delta p_{CV,0}) \]
Implementation Name: \(\theta \)
Units: dimensionless
Initial value: 0
Driving force Complex V.

\[TOI = \frac{100HbO_2}{HbT} \]
Implementation Name: \(TOI \)
Units: dimensionless
1 BrainSignals

Initial value: 0
Total oxygenation index.

\[V_{\text{mca}} = CBF \cdot CBFscale \]
Implementation Name: \(V_{\text{mca}} \)
Units: cm s\(^{-1}\)
Initial value: 0
Blood velocity in the middle cerebral artery.

\[V_a = V_{a,n} \left(\frac{r}{r_n} \right)^2 \]
Implementation Name: \(V_{\text{ol}_\text{art}} \)
Units: dimensionless
Initial value: 0
Relative arterial blood volume.

1.7 Parameters

\(C_{u,a,\text{frac},n} \)
Implementation Name: \(a_{\text{frac},n} \)
Units: dimensionless
Initial value: 0.8
Normal oxidised fraction of \(C_uA \).

\(C_{u,A,\rho,n} \)
Implementation Name: \(a_{\rho,n} \)
Units: mM
Initial value: \(CCO_{\text{tot}} \cdot C_{u,a,\text{frac},n} \)
Normal concentration of oxidised cytochrome c oxidase.

\(C_{u,A,\text{red},n} \)
Implementation Name: \(a_{\text{red},n} \)
Units: mM
Initial value: \(CCO_{\text{tot}} - C_{u,A,\rho,n} \)
Normal concentration of reduced \(CuA \).

\(a_{3,\rho,n} \)
Implementation Name: \(b_{\rho,n} \)
Units: mM
Initial value: \(CCO_{\text{tot}} - a_{3,\text{red},n} \)
Normal concentration of oxidised cytochrome a3.

\(\text{blood}_{\text{hb}} \)
Implementation Name: \(\text{blood}_{\text{hb}} \)
Units: dimensionless
Initial value: 10.00
Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to \(\mu M \), and number of binding sites.

\(a_{3,\text{red},n} \)
Implementation Name: \(b_{\text{red},n} \)
Units: mM
Initial value: \[\frac{f_n}{\gamma_{3,n}} \left[\frac{1}{1+\exp(-c_3(\Delta p_n-\Delta p_{30}))} \right] \]
Normal concentration of reduced cytochrome a3.
1.7 Parameters

\(c_3 \)
Implementation Name: c3
Units: mV\(^{-1}\)
Initial value: 0.11
Parameter controlling the sensitivity of the reduction of \(a_3 \) to \(\Delta p \).

\(C_{buffi} \)
Implementation Name: C_buffi
Units: dimensionless
Initial value: 0.022
Buffering capacity of protons in mitochondria.

\(C_{im} \)
Implementation Name: C_im
Units: mM mV\(^{-1}\)
Initial value: 0.00675
Capacitance of the mitochondrial inner membrane.

\[C_{NADH} = \frac{Z}{2} \log_{10} \left(\frac{1}{\frac{NAD}{NADH}} \right) \]
Implementation Name: C_NADH
Units: mV
Initial value: 0
Excess redox potential for NADH at normal demand.

\[C_{NADH,n} = \frac{Z}{2} \log_{10} \left(\frac{1}{\frac{NAD_n}{NADH_n}} \right) \]
Implementation Name: C_NADH_n
Units: mV
Initial value: 0
Normal value of \(C_{NADH} \).

\(CBF_n \)
Implementation Name: CBFn
Units: ml\(_{\text{blood}}\) ml\(_{\text{brain}}\) s\(^{-1}\)
Initial value: 0.0125
Normal cerebral blood flow.

\(CBFscale \)
Implementation Name: CBFscale
Units: cm
Initial value: 5000
Scale constant relating blood flow to arterial velocity.

\(\Delta oxCCO_{off} \)
Implementation Name: CCO_offset
Units: uM
Initial value: 0
Signal offset for the NIRS CCO measurement.

\(c_{k1} \)
Implementation Name: ck1
Units: mV\(^{-1}\)
Initial value: 0.01
Parameter controlling sensitivity of \(k_1 \) to \(\Delta p \).

\(c_{k2} \)
Implementation Name: ck2
Units: mV\(^{-1}\)
1 BrainSignals

Initial value: 0.02
Parameter controlling sensitivity of k_2 to Δp.

CMRO$_{2,n}$
- Implementation Name: CMRO$_{2,n}$
- Units: mM s$^{-1}$
- Initial value: 0.034
- Normal metabolic rate of oxygen consumption.

CV$_{inh}$
- Implementation Name: CV$_{inh}$
- Units: dimensionless
- Initial value: 1
- Control parameter representing the action of Complex V inhibitors.

CCO$_{tot}$
- Implementation Name: cytox$_{tot}$
- Units: mM
- Initial value: 0
- Concentration of cytochrome c oxidase in mitochondria.

CCO$_{tis}$
- Implementation Name: cytox$_{tis}$
- Units: mM
- Initial value: 0.0055
- Concentration of cytochrome c oxidase in tissue.

D$_{NADH}$
- Implementation Name: D$_{NADH}$
- Units: dimensionless
- Initial value: 0.01
- Scale parameter for the dependence of NADH redox potential on demand.

D$_{O_2}$
- Implementation Name: D$_{O_2}$
- Units: s$^{-1}$
- Initial value: $\frac{I_{O_2,n}}{O_{2,t,n} - O_{2,n}}$
- Diffusion rate for oxygen between capillaries and mitochondria.

$\Delta p_{3,corr}$
- Implementation Name: dp$_{3,corr}$
- Units: mV
- Initial value: -25
- Difference between Δp_{30} and normal Δp.

$\Delta p_{30} = \Delta p_n + \Delta p_{3,corr}$
- Implementation Name: dp$_{30}$
- Units: mV
- Initial value: 0
- Value of Δp at which a_3 reduction reaction is maximally sensitive.

$\Delta p_{CV,0}$
- Implementation Name: dp$_{CV0}$
- Units: mV
- Initial value: 90
- Value of Δp at which L_{CV} is zero under normal demand.

Δp_n
- Implementation Name: dp$_n$
1.7 Parameters

Units: mV
Initial value: $\psi_n + Z \Delta pH_n$
Normal value of Δp

dpH
Implementation Name: dpH
Units: dimensionless
Initial value: 0.001
Parameter in the mitochondrial proton buffering relationship.

ΔpH_n
Implementation Name: dPh_n
Units: dimensionless
Initial value: $pHm,n - pHo,n$
Normal pH difference across the mitochondrial inner membrane.

ψ_n
Implementation Name: dpsi_n
Units: mV
Initial value: 145
Normal mitochondrial inner membrane potential.

$E_{1,NADH} = \varepsilon_0(Cu_A) - \varepsilon_0(NADH) + C_{NADH}$
Implementation Name: E1NADH
Units: mV
Initial value: 0
Value of E_1 when the reducing substrate is NADH.

$E_{1,NADH,n}$
Implementation Name: E1NADH_n
Units: mV
Initial value: $\varepsilon_0(Cu_A) - \varepsilon_0(NADH) + C_{NADH,n}$
Normal value of $E_{1,NADH}$.

E_1
Implementation Name: E_1
Units: mV
Initial value: $E_{1,NADH}$
The energy provided by electron transfer to $Cu_{A,r}$.

$E_{1,n}$
Implementation Name: E_1n
Units: mV
Initial value: $E_{1,NADH,n}$
Normal value of E_1.

E_2
Implementation Name: E_2
Units: mV
Initial value: $\varepsilon_0(a_3) - \varepsilon_0(Cu_A)$
Energy provided by the transfer of four electrons from $Cu_{A,r}$ to $a_{3,o}$.

$\varepsilon_0(a_3)$
Implementation Name: E_a30
Units: mV
Initial value: 350
Standard redox potential for cytochrome a_3.

$\varepsilon_0(Cu_A)$
Implementation Name: E_c0
Units: mV
1 BrainSignals

Initial value: 247
Standard redox potential for Cu_A.

\(E_0(\text{NADH}) \)
Implementation Name: \(E_{\text{N0}} \)
Units: mV
Initial value: \(-320\)
Standard redox potential for NADH.

\(f_n \)
Implementation Name: \(f_{\text{N}} \)
Units: mM s\(^{-1}\)
Initial value: \(\frac{\text{CMRO}_{2,n}}{\text{Vol}_{\text{mit}}} \)
Normal resting value of \(f_1 \) and \(f_2 \).

\(G_n \)
Implementation Name: \(G_{\text{N}} \)
Units: ml_{\text{blood}} ml_{\text{brain}} mmHg\(^{-1}\) s\(^{-1}\)
Initial value: \(P_{a,n} - P_{c,n} \)
Normal blood vessel conductance.

\(h_0 \)
Implementation Name: \(h_{\text{0}} \)
Units: cm
Initial value: 0.003
Thickness of the blood vessel walls at which radius is \(r_0 \).

\(H^+_n \)
Implementation Name: \(h_{\text{N}} \)
Units: mM
Initial value: \(10^{3-pH_{n,n}} \)
Normal mitochondrial proton concentration.

\(h_n \)
Implementation Name: \(h_{n} \)
Units: cm
Initial value: \(\sqrt{r_n r_n + 2r_0 h_0 + h_0 h_0} - r_n \)
Normal thickness of the blood vessel walls.

\(J_{O_2,n} \)
Implementation Name: \(J_{\text{O2,n}} \)
Units: mM s\(^{-1}\)
Initial value: \(\text{CMRO}_{2,n} \)
Normal oxygen flux from blood to tissue.

\(k_{1,0} \)
Implementation Name: \(k10 \)
Units: s\(^{-1}\)
Initial value: \(\frac{k_{1,n} \text{NADH}}{\text{NADH}_p} \)
Forward reaction rate for the reduction of Cu_A at normal \(\Delta p \).

\(k_{1,n} \)
Implementation Name: \(k_{1,n} \)
Units: s\(^{-1}\)
Initial value: \(\frac{f_n}{C u_{A,o,n} - \frac{1}{k_{1,n}} C u_{A,r,n}} \)
Forward reaction rate for the reduction of Cu_A at normal \(\Delta p \) and NADH.
1.7 Parameters

$k_{2,n}$
Implementation Name: $k_{2,n}$
Units: s$^{-1}$
Initial value: $f_n \frac{C_{u_{A,r,n}} a_{3,o,n}}{K_{eq_{2,n}} C_{u_{A,r,n}} a_{3,r,n}}$
Normal forward reaction rate for the reduction of a_3.

$k_3 = \frac{k_{3,0}}{1 + \exp(-c_3 - \Delta p_{30})}$
Implementation Name: k_3
Units: s$^{-1}$
Initial value: 0
Forward reaction rate for the reduction of O_2.

$k_{3,0}$
Implementation Name: $k_{3,0}$
Units: s$^{-1}$
Initial value: 2.5$E+5$
Apparent second order rate constant for reduction of O_2 at zero Δp.

k_{au}
Implementation Name: k_{au}
Units: dimensionless
Initial value: 1
Overall functioning of autoregulatory response.

K_G
Implementation Name: K_G
Units: ml$_{blood}$ ml$^{-1}$ mmHg$^{-1}$ cm$^{-4}$
Initial value: $G_n \frac{\text{pow}(r_n, 4)}{\text{pow}}$
Proportionality constant in Poiseuille relation for conductance.

k_{lk2}
Implementation Name: k_{lk2}
Units: mV$^{-1}$
Initial value: 0.038
Constant controlling the depending of the leak rate L_{lk} on Δp.

K_σ
Implementation Name: K_σ
Units: dimensionless
Initial value: 10
Parameter controlling the sensitivity of σ_e to vessel radius.

k_{unc}
Implementation Name: k_{unc}
Units: dimensionless
Initial value: 1
Control parameter simulating the effect of adding uncouplers to the system.

$k_{CV} = -\frac{1}{\Delta p_n - \Delta p_{CV,0}} \log \left(\frac{1 - L_{CV,0}}{1 + r_{CV} L_{CV,0}} \right)$
Implementation Name: k_{CV}
Units: mV$^{-1}$
Initial value: 0
Parameter controlling the sensitivity of Complex V flux to driving force.

$K_{eq_{1,n}}$
Implementation Name: $K_{eq_{1,n}}$
1 BrainSignals

Units: dimensionless
Initial value: $10^{-\frac{Z(pish_{\text{im}}) - E_{\text{im}})}{Z(pish_{\text{im}}) - E_{\text{im}}}}$

Normal value of the equilibrium constant for the Cu

Implementation Name: $K_{\text{eq2, n}}$
Units: dimensionless
Initial value: $10^{-\frac{Z(pish_{\text{im}}) - E_{\text{im}})}{Z(pish_{\text{im}}) - E_{\text{im}}}}$

Normal value of the equilibrium constant for the a

Implementation Name: L_{CV0}
Units: dimensionless
Initial value: 0.4

Normal Complex V flux as a fraction of maximum possible flux.

$L_{\text{CV, frac}} = 1 - L_{\text{lk, frac}}$
Implementation Name: L_{CVfrac}
Units: dimensionless
Initial value: 0

Normal fraction of proton entry into mitochondria which is due to ADP phosphorylation.

$L_{\text{CV, max}} = \frac{L_{\text{CV, n}}}{L_{\text{CV0}}}$
Implementation Name: L_{CVmax}
Units: mM s$^{-1}$

The maximum rate of proton flow through Complex V.

Implementation Name: L_{CVn}
Units: mM s$^{-1}$
Initia

The resting flow of protons into the matrix through Complex V.

Implementation Name: L_{lk0}
Units: mM s$^{-1}$
Initial value: L_{lk0}

Constant controlling the depending of the leak rate L_{lk} on Δp.

Implementation Name: $L_{\text{lk, frac}}$
Units: dimensionless
Initial value: 0.25

Normal fraction of proton entry into mitochondria which is via leak channels.

Implementation Name: $L_{\text{lk, n}}$
Units: mM s$^{-1}$
Initial value: $L_{\text{lk, n}}$

The resting flow of protons into the matrix via leak channels.

Implementation Name: L_{n}
Units: mM s$^{-1}$
Initial value: 0

The normal total flow of protons back into mitochondria.
1.7 Parameters

\(\mu_{\text{max}}\)
- Implementation Name: mu_max
- Units: dimensionless
- Initial value: 1
- Upper bound for the transformed stimulus \(\mu\).

\(\mu_{\text{min}}\)
- Implementation Name: mu_min
- Units: dimensionless
- Initial value: \(-1\)
- Lower bound for the transformed stimulus \(\mu\).

\(\mu_n\)
- Implementation Name: mu_n
- Units: dimensionless
- Initial value: 0
- Normal value for the transformed stimulus \(\mu\).

\(n_h\)
- Implementation Name: n_h
- Units: dimensionless
- Initial value: 2.5
- Hill coefficient for oxygen dissociation from haemoglobin.

\(n_m\)
- Implementation Name: n_m
- Units: dimensionless
- Initial value: 1.83
- Exponent in the muscular tension relationship.

\[
NADH = \frac{NAD_{\text{pool}}}{1 + \frac{NAD}{NADH_{\text{n}}}}
\]
- Implementation Name: NADH
- Units: mM
- Initial value: 0
- Concentration of NADH in the mitochondria.

\(NADH_n\)
- Implementation Name: NADHn
- Units: mM
- Initial value: \(\frac{NAD_{\text{pool}}}{1 + \frac{NAD}{NADH_{\text{n}}}}\)
- Normal concentration of NADH in the mitochondria.

\(NAD^{\text{n}} \text{/ NADH}^{\text{n}}\)
- Implementation Name: NADNADHrat
- Units: dimensionless
- Initial value: \(\frac{NAD_{\text{pool}}}{NADH_{\text{n}} \text{ pow}(\mu, 2D_{\text{NADH}})}\)
- NAD/NADH ratio.

\(NAD_{\text{n}} \text{/ NADH}\)
- Implementation Name: NADNADHratn
- Units: dimensionless
- Initial value: 9
- Normal NAD/NADH ratio.

\(NAD_{\text{pool}}\)
- Implementation Name: NADpool
- Units: dimensionless
1 BrainSignals

Initial value: 3
Relative size of the NAD pool, used to estimate normal mitochondrial NADH.

$O_{2,n}$
Implementation Name: 02_n
Units: mM
Initial value: 0.024
Normal mitochondrial oxygen concentration.

$O_{2,c,n}$
Implementation Name: 02c_n
Units: mM
Initial value: $\phi \text{ pow} \left(\frac{S_c,O_{2,n}}{1 - S_c,O_{2,n}} \cdot n_h \right)$
Normal capillary oxygen concentration.

$p_1 = p_{tot} - p_{23}$
Implementation Name: p1
Units: dimensionless
Initial value: 0
Proton cost of the reaction reducing Cu_A.

p_3
Implementation Name: p2
Units: dimensionless
Initial value: 4
Proton cost of the reaction reducing a_3.

p_{23}
Implementation Name: p23
Units: dimensionless
Initial value: 8
Total protons removed from the mitochondrial matrix by the reductions of a_3 and O_2.

p_3
Implementation Name: p3
Units: dimensionless
Initial value: $p_{23} - p_3$
Proton cost of the reaction reducing O_2.

$p_1 = \frac{P_a + P_v}{2}$
Implementation Name: P_1
Units: mm Hg
Initial value: $P_{1,n}$
Average pressure in the blood vessels.

$P_{1,n}$
Implementation Name: P_1n
Units: mm Hg
Initial value: $\frac{P_{a,n} + P_{v,n}}{2}$
Normal value for the average pressure in the blood vessels.

P_a
Implementation Name: P_a
Units: mmHg
Initial value: $P_{a,n}$
Mean arterial blood pressure.

$P_{a,n}$
Implementation Name: P_an
1.7 Parameters

Units: mmHg
Initial value: 100
Normal arterial blood pressure.

\[p_{C1} \]
Implementation Name: \(p_{C1} \)
Units: dimensionless
Initial value: 8
Protons pumped by Complex I.

\[p_{C3} \]
Implementation Name: \(p_{C3} \)
Units: dimensionless
Initial value: 4
Protons pumped by Complex III.

\[P_{ic} \]
Implementation Name: \(P_{ic} \)
Units: mm Hg
Initial value: 9.5
Intracranial pressure.

\[P_{icn} \]
Implementation Name: \(P_{icn} \)
Units: mm Hg
Initial value: 9.5
Normal intracranial pressure.

\[P_{tot} \]
Implementation Name: \(P_{tot} \)
Units: dimensionless
Initial value: \(P_{tot,NADH} \)
Total protons removed from the mitochondrial matrix by the three modelled electron transport reactions.

\[P_{tot,NADH} = p_{C1} + p_{C3} + p_{23} \]
Implementation Name: \(P_{tot,NADH} \)
Units: dimensionless
Initial value: 0
Total protons pumped when the reducing agent is NADH.

\[P_v \]
Implementation Name: \(P_v \)
Units: mmHg
Initial value: \(P_{vn} \)
Venous blood pressure.

\[P_{vn} \]
Implementation Name: \(P_vn \)
Units: mmHg
Initial value: 4
Normal venous blood pressure.

\[P_{aCO_2} \]
Implementation Name: \(P_{aCO_2} \)
Units: mmHg
Initial value: \(P_{aCO_2,n} \)
Arterial partial pressure of carbon dioxide.

\[P_{aCO_2,n} \]
Implementation Name: \(P_{aCO_2n} \)
1 BrainSignals

Units: mmHg
Initial value: 40
Normal arterial partial pressure of carbon dioxide.

\(pH_{in} \)
- Implementation Name: \(pH_{mn} \)
- Units: dimensionless
- Initial value: 7.4
- Normal mitochondrial pH.

\(pH_o \)
- Implementation Name: \(pH_{on} \)
- Units: dimensionless
- Initial value: 7
- Extra-mitochondrial pH.

\(pH_{on} \)
- Implementation Name: \(pH_{on} \)
- Units: dimensionless
- Initial value: 7
- Normal extra-mitochondrial pH.

\(\phi \)
- Implementation Name: \(\phi_{l} \)
- Units: mM
- Initial value: 0.036
- Oxygen concentration at half-maximal saturation.

\(r_0 \)
- Implementation Name: \(r_{0} \)
- Units: cm
- Initial value: 0.0126
- Radius in the elastic tension relationship.

\(R_{CO_2} \)
- Implementation Name: \(R_{autc} \)
- Units: dimensionless
- Initial value: 2.2
- Autoregulatory reactivity to carbon dioxide.

\(R_{O_2} \)
- Implementation Name: \(R_{auto} \)
- Units: dimensionless
- Initial value: 1.5
- Autoregulatory reactivity to oxygen.

\(R_P \)
- Implementation Name: \(R_{autp} \)
- Units: dimensionless
- Initial value: 4
- Autoregulatory reactivity to blood pressure.

\(R_u \)
- Implementation Name: \(R_{autu} \)
- Units: dimensionless
- Initial value: 0.5
- Autoregulatory reactivity to demand.

\(r_{CV} \)
- Implementation Name: \(r_{CV} \)
- Units: dimensionless
1.7 Parameters

Initial value: 5
Parameter controlling the ratio of maximal to minimal rates of oxidative phosphorylation.

r_m
Implementation Name: r_m
Units: cm
Initial value: 0.027
Vessel radius at which muscular tension is maximal.

r_n
Implementation Name: r_n
Units: cm
Initial value: 0.0187
Normal blood vessel radius. Normal effective blood vessel radius.

r_l
Implementation Name: r_l
Units: cm
Initial value: 0.018
Radius in the muscular tension relationship.

$S_{a,O_2,n}$
Implementation Name: SaO_2_n
Units: dimensionless
Initial value: 0.96
Normal arterial oxygen saturation.

S_{a,O_2}
Implementation Name: SaO_2
Units: dimensionless
Initial value: $S_{a,O_2,n}$
Arterial oxygen saturation.

$S_{c,O_2,n}$
Implementation Name: ScO_2_n
Units: dimensionless
Initial value: $S_{a,O_2,n} + S_{v,O_2,n}$
Normal capillary oxygen saturation.

σ_{coll}
Implementation Name: $sigma_coll$
Units: mm Hg
Initial value: 62.79
Pressure at which blood vessels collapse.

$\sigma_{e,0}$
Implementation Name: $sigma_e0$
Units: mm Hg
Initial value: 0.1425
Parameter in the elastic tension relationship.

$\sigma_{e,n}$
Implementation Name: $sigma_en$
Units: mm Hg
Initial value: $\sigma_{e,0} \left(\exp \left(\frac{K_e (r_n - r_0)}{r_0} \right) - 1 \right) - \sigma_{coll}$
Normal elastic stress in blood vessel walls.

$S_{v,O_2,n}$
Implementation Name: SvO_2_n
1 BrainSignals

Units: dimensionless
Initial value: \(\frac{HbO_{2,p,N}}{Hb_{tot,N}} \)
Normal venous oxygen saturation.

\(t \)
Implementation Name: \(t \)
Units: s
Initial value: 0
Time over which the system evolves.

\(\tau_{CO_2} \)
Implementation Name: \(t_{c,c} \)
Units: s
Initial value: 5
Filter time constant for stimulus effect of carbon dioxide.

\(T_{r,n} \)
Implementation Name: \(T_{en} \)
Units: mm Hg cm
Initial value: \(\sigma_{r,n} h_n \)
Normal elastic tension in the blood vessel walls.

\(T_{max,0} \)
Implementation Name: \(T_{max0} \)
Units: mm Hg cm
Initial value: \(\frac{T_{max,n}}{1 + k_{aut} \mu_n} \)
Maximal muscular tension under normal regulatory stimulus (\(\mu = \mu_n \)).

\(T_{max,n} \)
Implementation Name: \(T_{maxn} \)
Units: mm Hg cm
Initial value: \(T_{m,n} \exp \left(- \text{pow} (\text{fabs} (r_n-r_{m,m}), n_{m}) \right) \)
Normal maximal muscular tension.

\(T_{m,n} \)
Implementation Name: \(T_{mn} \)
Units: mm Hg cm
Initial value: \((P_{1,n} - P_{icn}) r_n - T_{r,n} \)
Normal muscular tension in the blood vessel walls.

\(\tau_{O_2} \)
Implementation Name: \(t_{o,o} \)
Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

\(\tau_{p_a} \)
Implementation Name: \(t_{p,p} \)
Units: s
Initial value: 5
Filter time constant for stimulus effect of blood pressure.

\(\tau_{u} \)
Implementation Name: \(t_{u,u} \)
Units: s
Initial value: 0.5
Filter time constant for stimulus effect of demand.
1.7 Parameters

\(\mu \)
Implementation Name: \(\mu \)
Units: dimensionless
Initial value: \(\mu_n \)
Parameter indicating metabolic demand.

\(\mu_n \)
Implementation Name: \(\mu_n \)
Units: dimensionless
Initial value: 1
Normal demand.

\(v_{\text{CO}_2,n} \)
Implementation Name: \(v_{\text{CO}_2,n} \)
Units: mmHg
Initial value: \(P_{\text{CO}_2,n} \)
Normal filtered carbon dioxide partial pressure. Normal filtered carbon dioxide partial pressure.

\(v_{\text{O}_2,n} \)
Implementation Name: \(v_{\text{O}_2,n} \)
Units: mM
Initial value: \(O_{\text{2},n} \)
Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

\(v_{\text{P}_a,n} \)
Implementation Name: \(v_{\text{P}_a,n} \)
Units: mmHg
Initial value: \(P_{\text{a,n}} \)
Normal filtered arterial blood pressure. Normal filtered blood pressure.

\(v_{\text{u,n}} \)
Implementation Name: \(v_{\text{u,n}} \)
Units: dimensionless
Initial value: \(u_n \)
Normal filtered demand. Normal filtered demand.

\(V_{\text{Arat}_n} \)
Implementation Name: \(V_{\text{Arat}_n} \)
Units: dimensionless
Initial value: 3
Normal volume ratio of veins to arteries in brain tissue.

\(V_{\text{a,n}} \)
Implementation Name: \(V_{\text{a,n}} \)
Units: dimensionless
Initial value: \(\frac{1}{1 + V_{\text{Arat}_n}} \)
Normal relative arterial blood volume.

\(V_{\text{mit}} \)
Implementation Name: \(V_{\text{mit}} \)
Units: dimensionless
Initial value: 0.067
Fraction of brain tissue volume that is mitochondria.

\(V_v \)
Implementation Name: \(V_v \)
Units: dimensionless
1 BrainSignals

Initial value: \(\frac{V_{\text{Arat}}}{1 + V_{\text{Arat}}} \)
Relative venous blood volume.

\(HbO_{2,a} = Hb_{\text{tot}} S_{a,O_2} \)
Implementation Name: XOa
Units: mM
Initial value: \(HbO_{2,a,n} \)
Arterial concentration of oxygen bound to haemoglobin.

\(HbO_{2,a,n} \)
Implementation Name: XOan
Units: mM
Initial value: \(Hb_{\text{tot,n}} S_{a,O_2,n} \)
Normal arterial concentration of oxygen bound to haemoglobin.

\(HbO_{2,v,n} \)
Implementation Name: XOvn
Units: mM
Initial value: \(\frac{CBF_n HbO_{2,a,n}}{J_{O_2,n}} \)
Normal venous concentration of oxygen bound to haemoglobin.

\(Hb_{\text{tot}} \)
Implementation Name: Xtot
Units: mM
Initial value: 9.1
Total concentration of haemoglobin \(O_2 \) binding sites in blood (4 times haemoglobin concentration).

\(Hb_{\text{tot,n}} \)
Implementation Name: Xtotn
Units: mM
Initial value: 9.1
Normal total concentration of haemoglobin \(O_2 \) binding sites in blood (4 times haemoglobin concentration).

\(Z \)
Implementation Name: Z
Units: mV
Initial value: 59.028
Proportionality constant in calculation of driving forces due to concentration differences.
Defined as \(RT / F \), where \(F \) is Faraday’s constant, \(R \) the ideal gas constant and \(T \) the absolute temperature.
2 BSB1

2.1 Overview

Simplified model in which the blood flow submodel is replaced with variant B1.

- 9 differential state variables
- 3 algebraic state variables
- 35 intermediate variables
- 122 parameters
- 4 declared inputs
- 33 default outputs

2.2 Differential Equations

\[
\frac{dC_{u_{A,\theta}}}{dt} = 4f_3 - 4f_1 \quad (2.1)
\]

\[
\frac{da_{3,\theta}}{dt} = 4f_3 - 4f_2 \quad (2.2)
\]

\[
\frac{d\psi}{dt} = \frac{p_3 f_3 + p_1 f_1 + p_3 f_3 - L}{C_{im}} \quad (2.3)
\]

\[
\frac{dH^+}{dt} = \frac{1}{R_{Hi}} L - \frac{p_3}{R_{Hi}} f_3 - \frac{p_1}{R_{Hi}} f_1 - \frac{p_3}{R_{Hi}} f_3 \quad (2.4)
\]

\[
\frac{dO_2}{dt} = \frac{1}{Vol_{mit}} f_{O_2} - f_3 \quad (2.5)
\]

\[
\frac{dv_{CO_2}}{dt} = \frac{1}{\tau_{CO_2}} (p_{aCO_2} - v_{CO_2}) \quad (2.6)
\]

\[
\frac{dv_{O_2}}{dt} = \frac{1}{\tau_{O_2}} (O_{2,c} - v_{O_2}) \quad (2.7)
\]

\[
\frac{dv_P}{dt} = \frac{1}{\tau_P} (P_a - v_P) \quad (2.8)
\]
\[\frac{d\nu_u}{dt} = \frac{1}{r_u} (u - \nu_u) \] \hspace{1cm} (2.9)

2.3 Algebraic Equations

\[\phi \left(\frac{S_c,O_2}{1 - S_c,O_2} \right) \frac{1}{\lambda} - O_{2,c} = 0 \] \hspace{1cm} (2.10)

\[\lambda_0 + \frac{\lambda p_a}{P_a} + \lambda \mu \frac{\mu}{P_a} - r = 0 \] \hspace{1cm} (2.11)

\[CBF (HbO_{2,a} - HbO_{2,v}) - J_{O_2} = 0 \] \hspace{1cm} (2.12)

2.4 Chemical Reactions

\[\xrightarrow{L} \frac{1}{R_{Hi}} H^+ \] \hspace{1cm} (2.13)

\[\xrightarrow{J_{O_2}} \frac{1}{Vol_{mit}} O_2 \] \hspace{1cm} (2.14)

\[\frac{p_3}{R_{Hi}} H^+ \xrightarrow{f_3} 4 Cu_{A,o} + 4 a_{3,r} \] \hspace{1cm} (2.15)

\[4 Cu_{A,o} + \frac{p_1}{R_{Hi}} H^+ \xrightarrow{f_1} \] \hspace{1cm} (2.16)

\[O_2 + 4 a_{3,r} + \frac{p_3}{R_{Hi}} H^+ \xrightarrow{f_3} \] \hspace{1cm} (2.17)

2.5 State Variables

- **\(Cu_{A,o} \)**
 - Implementation Name: a
 - Units: mM
 - Initial value: \(Cu_{A,o,n} \)
 - Concentration of oxidised cytochrome c oxidase.

- **\(a_{3,r} \)**
 - Implementation Name: bred
 - Units: mM
 - Initial value: \(a_{3,r,n} \)
 - Concentration of reduced cytochrome a3.
2.5 State Variables

\(\psi \)
Implementation Name: \(\psi_{\text{psa1}} \)
Units: mV
Initial value: \(\psi_n \)
Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

\(H^+ \)
Implementation Name: \(H \)
Units: mM
Initial value: \(H^+_{\text{n}} \)
Mitochondrial proton concentration.

\(O_2 \)
Implementation Name: \(02 \)
Units: mM
Initial value: \(O_2_{\text{n}} \)
Mitochondrial oxygen concentration.

\(O_{2,\text{c}} \)
Implementation Name: \(02\text{c} \)
Units: mM
Initial value: \(O_{2,\text{c,n}} \)
Capillary oxygen concentration.

\(r \)
Implementation Name: \(r \)
Units: cm
Initial value: \(r_n \)
Typical blood vessel radius.

\(v_{\text{CO}_2} \)
Implementation Name: \(v_{-\text{c}} \)
Units: mmHg
Initial value: \(v_{\text{CO}_2,\text{n}} \)
Filtered carbon dioxide partial pressure.

\(v_{\text{O}_2} \)
Implementation Name: \(v_{-\text{o}} \)
Units: mM
Initial value: \(v_{\text{O}_2,\text{n}} \)
Filtered capillary oxygen concentration.

\(v_{\text{Pa}} \)
Implementation Name: \(v_{-\text{p}} \)
Units: mmHg
Initial value: \(v_{\text{Pa},\text{n}} \)
Filtered arterial blood pressure.

\(v_{\text{u}} \)
Implementation Name: \(v_{-\text{u}} \)
Units: dimensionless
Initial value: \(v_{\text{u,n}} \)
Filtered demand.

\(H\text{bO}_2,\text{v} \)
Implementation Name: \(X0v \)
Units: mM
Initial value: \(H\text{bO}_2,\text{v,n} \)
Venous concentration of oxygen bound to haemoglobin.
2.6 Intermediate Variables

$$Cu_{A,r} = CCO_{tot} - Cu_{A,o}$$
Implementation Name: ared
Units: mM
Initial value: 0
Concentration of reduced Cu$_A$.

$$a_{3,o} = CCO_{tot} - a_{3,r}$$
Implementation Name: b
Units: mM
Initial value: 0
Concentration of oxidised cytochrome a$_3$.

$$C_{0,i} = \frac{10^{-pH_m} - 10^{-pH_m-dpH}}{dpH}$$
Implementation Name: C_{0i}
Units: dimensionless
Initial value: 0
Natural buffering capacity of protons in mitochondria.

$$CBF = G (P_a - P_v)$$
Implementation Name: CBF
Units: ml$^{-1}$blood brain ml$^{-1}$brain s$^{-1}$
Initial value: CBF$_{in}$
Cerebral blood flow.

$$\Delta oxCCO = \Delta oxCCO_{off} + 1000 Vol_{mit} (Cu_{A,o} - Cu_{A,o,n})$$
Implementation Name: C00
Units: mM
Initial value: 0
Cytochrome c oxidase signal measured by NIRS.

$$CMRO_2 = f_3 Vol_{mit}$$
Implementation Name: CMRO2
Units: mM s$^{-1}$
Initial value: 0
Rate of cerebral oxygen metabolism.

$$\Delta p = \psi + Z (pH_m - pH_o)$$
Implementation Name: Dp
Units: mV
Initial value: 0
Proton motive force across the mitochondrial inner membrane.

$$\eta = R_{P_a} \left(\frac{V_{P_a}}{V_{P_a,n}} - 1 \right) + R_{O_2} \left(\frac{V_{O_2}}{V_{O_2,n}} - 1 \right) + R_{CO_2} \left(1 - \frac{V_{CO_2}}{V_{CO_2,n}} \right) + R_u \left(1 - \frac{V_u}{V_u,n} \right)$$
Implementation Name: eta
Units: dimensionless
Initial value: 0
Merged autoregulation stimulus.

$$f_1 = k_1 Cu_{A,o} - k_{-1} Cu_{A,r}$$
Implementation Name: f1
Units: mM s$^{-1}$
Initial value: 0
Reaction rate for the reduction of Cu$_A$.

$$f_2 = k_2 Cu_{A,r} a_{3,o} - k_{-2} Cu_{A,o} a_{3,r}$$
Implementation Name: f2
2.6 Intermediate Variables

Units: mM s$^{-1}$
Initial value: 0
Reaction rate for the reduction of a_3.

\[f_3 = \frac{k_3 O_2 a_3 r \exp \left(-c_3 (\Delta p - \Delta p_{30}) \right)}{1 + \exp \left(-c_3 (\Delta p - \Delta p_{30}) \right)} \]

Implementation Name: f_3
Units: mM s$^{-1}$
Initial value: 0
Reaction rate for the reduction of O_2.

\[G = K_G r^4 \]

Implementation Name: G
Units: ml$^{-1}$ blood$^{-1}$ mmHg$^{-1}$ s$^{-1}$
Initial value: 0
Effective conductance of the whole blood flow compartment.

\[HbO_2 = (V_a HbO_{2,a} + V_v HbO_{2,v}) \text{ blood}_{hb} \]
Implementation Name: Hb02
Units: uM
Initial value: 0
Oxygenated haemoglobin signal measured by NIRS.

\[HbT = (V_a + V_v) Hb_{tot} \text{ blood}_{hb} \]
Implementation Name: HbT
Units: uM
Initial value: 0
Total haemoglobin signal measured by NIRS.

\[HHb = HbT - HbO_2 \]
Implementation Name: HhT
Units: uM
Initial value: 0
Deoxygenated haemoglobin signal measured by NIRS.

\[J_{O_2} = \text{fmin} \left(D_{O_2} (O_2,c - O_2), CBF HbO_{2,a} \right) \]
Implementation Name: J_{O2}
Units: mM s$^{-1}$
Initial value: 0
Oxygen flux from blood to tissue.

\[k_1 = k_{1,0} \exp \left(-c_{k_1} (\Delta p - \Delta p_{n}) \right) \]
Implementation Name: $k1$
Units: s$^{-1}$
Initial value: 0
Forward reaction rate for the reduction of Cu_A.

\[k_2 = k_{2,n} \exp \left(-c_{k_2} (\Delta p - \Delta p_{n}) \right) \]
Implementation Name: $k2$
Units: s$^{-1}$
Initial value: 0
Forward reaction rate for the reduction of a_3.

\[K_{eq1} = 10^{Z (\frac{\Delta p}{4} - \varepsilon_1)} \]
Implementation Name: $Keq1$
Units: dimensionless
Initial value: 0
Equilibrium constant for the Cu_A reduction reaction.

\[K_{eq2} = 10^{Z (\frac{\Delta p}{8} - \varepsilon_2)} \]
Implementation Name: Keq_2
Units: dimensionless
Initial value: 0
Equilibrium constant for the a_3 reduction reaction.

\[k_{-1} = \frac{k_1}{K_{eq1}} \]

Implementation Name: kn1
Units: s$^{-1}$
Initial value: 0
Reverse reaction rate for the reduction of Cu_A.

\[k_{-2} = \frac{k_2}{K_{eq2}} \]

Implementation Name: kn2
Units: s$^{-1}$
Initial value: 0
Reverse reaction rate for the reduction of a_3.

\[L = L_{CV} + L_{lk} \]

Implementation Name: L
Units: mM s$^{-1}$
Initial value: 0
Rate of proton return to the mitochondrial matrix.

\[L_{CV} = \frac{CV_{inh} L_{CV, max} (1 - \exp(-\theta))}{1 + r_{CV} \exp(-\theta)} \]

Implementation Name: L_{CV}
Units: mM s$^{-1}$
Initial value: 0
Rate at which protons re-enter the mitochondrial matrix due to ADP phosphorylation.

\[L_{lk} = k_{unc} L_{lk0} (\exp(\Delta p k_{lk2}) - 1) \]

Implementation Name: L_{lk}
Units: mM s$^{-1}$
Initial value: 0
Rate at which protons re-enter the mitochondrial matrix via leak channels.

\[\mu = \frac{k_{aut} (\exp(\eta) - 1)}{\exp(\eta) + 1} \]

Implementation Name: μ
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation response.

\[p\text{H}_m = -\log_{10} \left(\frac{H^+}{1000} \right) \]

Implementation Name: $p\text{H}_m$
Units: dimensionless
Initial value: 0
Mitochondrial pH.

\[r_{buffi} = \frac{C_{buffi}}{C_{0,i}} \]

Implementation Name: r_{buffi}
Units: dimensionless
Initial value: 0
Buffering capacity for protons in mitochondria.

\[R_{Hi} = r_{buffi} \]
2.7 Parameters

Implementation Name: \(R_{\text{Hi}} \)
- **Units:** dimensionless
- **Initial value:** 0
 Relative mitochondrial volume for protons, taking into account buffering effect of pH.

\[
S_{c,\text{O}_2} = \frac{S_{a,\text{O}_2} + S_{v,\text{O}_2}}{2}
\]

Implementation Name: ScO2
- **Units:** dimensionless
- **Initial value:** \(S_{c,\text{O}_2} \)
 Capillary oxygen saturation.

\[
S_{v,\text{O}_2} = \frac{HbO_2}{Hb_{\text{tot}}}
\]

Implementation Name: SvO2
- **Units:** dimensionless
- **Initial value:** \(S_{v,\text{O}_2} \)
 Venous oxygen saturation.

\[
\theta = k_{CV} (\Delta p + Z \log_{10} (u) - \Delta p_{CV,0})
\]

Implementation Name: theta
- **Units:** dimensionless
- **Initial value:** 0
 Driving force Complex V.

\[
TOI = \frac{100HbO_2}{HbT}
\]

Implementation Name: TOI
- **Units:** dimensionless
- **Initial value:** 0
 Total oxygenation index.

\[
V_{mca} = CBF \times CBF_{\text{scale}}
\]

Implementation Name: Vmca
- **Units:** cm s\(^{-1}\)
- **Initial value:** 0
 Blood velocity in the middle cerebral artery.

\[
V_a = V_{a,n} \left(\frac{r}{r_n} \right)^2
\]

Implementation Name: Vol_art
- **Units:** dimensionless
- **Initial value:** 0
 Relative arterial blood volume.

\(\text{Cu}_{a,\text{frac},n} \)

- **Implementation Name:** a_frac_n
- **Units:** dimensionless
- **Initial value:** 0.8
 Normal oxidised fraction of Cu_A.

\(\text{Cu}_{A,o,n} \)

- **Implementation Name:** a_n
- **Units:** mM
- **Initial value:** \(CCO_{\text{tot}} \times \text{Cu}_{a,\text{frac},n} \)
 Normal concentration of oxidised cytochrome c oxidase.
\(Cu_{A,r,n} \)
- **Implementation Name**: \texttt{ared}_n
- **Units**: mM
- **Initial value**: \(\text{CCO}_{\text{tot}} - Cu_{A,o,n} \)
- Normal concentration of reduced Cu

\(a_{3,o,n} \)
- **Implementation Name**: \texttt{b}_n
- **Units**: mM
- **Initial value**: \(\text{CCO}_{\text{tot}} - a_{3,r,n} \)
- Normal concentration of oxidised cytochrome a

\(\text{blood}_{\text{hb}} \)
- **Implementation Name**: \texttt{blood}_hb
- **Units**: dimensionless
- **Initial value**: 10.00
- Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to \(\mu \)M, and number of binding sites.

\(a_{3,r,n} \)
- **Implementation Name**: \texttt{bred}_n
- **Units**: mM
- \[\frac{f_a}{C_{O_2,n}} \]
- **Initial value**: \(\exp(-c_3(\Delta p_n - \Delta p_{30})) / (1 + \exp(-c_3(\Delta p_n - \Delta p_{30}))) \)
- Normal concentration of reduced cytochrome a3.

\(c_3 \)
- **Implementation Name**: \texttt{c3}
- **Units**: mV\(^{-1}\)
- **Initial value**: 0.11
- Parameter controlling the sensitivity of the reduction of a3 to \(\Delta p \).

\(C_{\text{buffi}} \)
- **Implementation Name**: \texttt{C缓冲}
- **Units**: dimensionless
- **Initial value**: 0.022
- Buffering capacity of protons in mitochondria.

\(C_{\text{im}} \)
- **Implementation Name**: \texttt{C_1m}
- **Units**: mM mV\(^{-1}\)
- **Initial value**: 0.00675
- Capacitance of the mitochondrial inner membrane.

\(C_{\text{NADH}} = \frac{Z}{2} \log_{10} \left(\frac{1}{\text{NAD}} \right) \)
- **Implementation Name**: \texttt{C_NADH}
- **Units**: mV
- **Initial value**: 0
- Excess redox potential for NADH at normal demand.

\(C_{\text{NADH},n} \)
- **Implementation Name**: \texttt{C_NADH_n}
- **Units**: mV
- **Initial value**: \(\frac{Z}{2} \log_{10} \left(\frac{1}{\text{NADH}} \right) \)
- Normal value of \(C_{\text{NADH}} \).
2.7 Parameters

CBF_n
- Implementation Name: CBF_n
- Units: $\text{ml}_{\text{blood}} \text{ ml}_{\text{brain}}^{-1} \text{s}^{-1}$
- Initial value: 0.0125
- Normal cerebral blood flow.

$\text{CBF}_{\text{scale}}$
- Implementation Name: $\text{CBF}_{\text{scale}}$
- Units: cm
- Initial value: 5000
- Scale constant relating blood flow to arterial velocity.

$\Delta \text{oxCCO}_{\text{off}}$
- Implementation Name: $\text{CCO}_{\text{offset}}$
- Units: uM
- Initial value: 0
- Signal offset for the NIRS CCO measurement.

c_{k_1}
- Implementation Name: c_{k_1}
- Units: mV$^{-1}$
- Initial value: 0.01
- Parameter controlling sensitivity of k_1 to Δp.

c_{k_2}
- Implementation Name: c_{k_2}
- Units: mV$^{-1}$
- Initial value: 0.02
- Parameter controlling sensitivity of k_2 to Δp.

$\text{CMRO}_{2,n}$
- Implementation Name: $\text{CMRO}_{2,n}$
- Units: mM s$^{-1}$
- Initial value: 0.034
- Normal metabolic rate of oxygen consumption.

CV_{inh}
- Implementation Name: CV_{inh}
- Units: dimensionless
- Initial value: 1
- Control parameter representing the action of Complex V inhibitors.

$\text{CCO}_{\text{tot}} = \frac{\text{CCO}_{\text{tis}}}{\text{Vol}_{\text{mit}}}$
- Implementation Name: $\text{cytox}_{\text{tot}}$
- Units: mM
- Initial value: 0
- Concentration of cytochrome c oxidase in mitochondria.

CCO_{tis}
- Implementation Name: $\text{cytox}_{\text{tot}, \text{tis}}$
- Units: mM
- Initial value: 0.0055
- Concentration of cytochrome c oxidase in tissue.

D_{NADH}
- Implementation Name: D_{NADH}
- Units: dimensionless
- Initial value: 0.01
- Scale parameter for the dependence of NADH redox potential on demand.
\[D_{O_2} \]
Implementation Name: \texttt{D.02}
Units: s\(^{-1}\)
Initial value: \(\frac{I_{O_2,n}}{O_{2,n} - O_{2,n}} \)
Diffusion rate for oxygen between capillaries and mitochondria.

\[\Delta p_{3,corr} \]
Implementation Name: \texttt{dp3_corr}
Units: mV
Initial value: -25
Difference between \(\Delta p_{30} \) and normal \(\Delta p \).

\[\Delta p_{30} = \Delta p_n + \Delta p_{3,corr} \]
Implementation Name: \texttt{dp.30}
Units: mV
Initial value: 0
Value of \(\Delta p \) to which \(a_3 \) reduction reaction is maximally sensitive.

\[\Delta p_{CV,0} \]
Implementation Name: \texttt{dp_CV0}
Units: mV
Initial value: 90
Value of \(\Delta p \) at which \(L_{CV} \) is zero under normal demand.

\[\Delta p_n \]
Implementation Name: \texttt{dp_n}
Units: mV
Initial value: \(\psi_n + Z \Delta p_{H_n} \)
Normal value of \(\Delta p \)

\[dpH \]
Implementation Name: \texttt{dpH}
Units: dimensionless
Initial value: 0.001
Parameter in the mitochondrial proton buffering relationship.

\[\Delta p_{H_n} \]
Implementation Name: \texttt{dpH_n}
Units: dimensionless
Initial value: \(pH_{m,n} - pH_{o,n} \)
Normal pH difference across the mitochondrial inner membrane.

\[\psi_n \]
Implementation Name: \texttt{dpsi_n}
Units: mV
Initial value: 145
Normal mitochondrial inner membrane potential.

\[E_{1,NADH} = E_0(Cu_A) - E_0(NADH) + C_{NADH} \]
Implementation Name: \texttt{E1NADH}
Units: mV
Initial value: 0
Value of \(E_1 \) when the reducing substrate is NADH.

\[E_{1,NADH,n} \]
Implementation Name: \texttt{E1NADH_n}
Units: mV
Initial value: \(E_0(Cu_A) - E_0(NADH) + C_{NADH,n} \)
Normal value of \(E_{1,NADH} \).
2.7 Parameters

E_1
- **Implementation Name:** $E_{1,1}$
- **Units:** mV
- **Initial value:** $E_{1,NADH}$
 - The energy provided by electron transfer to Cu$_{A,r}$.

$E_{1,n}$
- **Implementation Name:** $E_{1,1n}$
- **Units:** mV
- **Initial value:** $E_{1,NADH,n}$
 - Normal value of E_1.

E_2
- **Implementation Name:** $E_{2,2}$
- **Units:** mV
- **Initial value:** $E_{2,NADH}$
 - Energy provided by the transfer of four electrons from Cu$_{A,r}$ to a$_{3,o}$.

$E_0(a_3)$
- **Implementation Name:** $E_{0,a30}$
- **Units:** mV
- **Initial value:** 350
 - Standard redox potential for cytochrome a$_3$.

$E_0(Cu_A)$
- **Implementation Name:** $E_{0,c0}$
- **Units:** mV
- **Initial value:** 247
 - Standard redox potential for Cu$_A$.

$E_0(NADH)$
- **Implementation Name:** $E_{0,N0}$
- **Units:** mV
- **Initial value:** −320
 - Standard redox potential for NADH.

f_n
- **Implementation Name:** $f_{n,n}$
- **Units:** mM s$^{-1}$
- **Initial value:** $\frac{CMRO_{2,n}}{Vol_{mit}}$
 - Normal resting value of f_1 and f_2.

G_n
- **Implementation Name:** $G_{n,n}$
- **Units:** ml$^{-1}$ blood ml$^{-1}$ brain mmHg$^{-1}$ s$^{-1}$
- **Initial value:** $\frac{CBF_n}{P_{a,n} - P_{v,n}}$
 - Normal blood vessel conductance.

H^{+}_{n}
- **Implementation Name:** $H_{n,n}$
- **Units:** mM
- **Initial value:** $10^{3-pH_{n,n}}$
 - Normal mitochondrial proton concentration.

$J_{O_2,n}$
- **Implementation Name:** $J_{O2,n}$
- **Units:** mM s$^{-1}$
- **Initial value:** $CMRO_{2,n}$
 - Normal oxygen flux from blood to tissue.
\[k_{1,0} \]
Implementation Name: \(k_{10} \)
Units: \(s^{-1} \)
Initial value: \(k_{1,0} \frac{NADH}{NADH_k} \)
Forward reaction rate for the reduction of \(Cu_A \) at normal \(\Delta p \).

\[k_{1,n} \]
Implementation Name: \(k_{1,n} \)
Units: \(s^{-1} \)
Initial value: \(\frac{f_n}{Cu_{A,o,n} - \frac{1}{K_{eq1,n}} Cu_{A,r,n}} \)
Forward reaction rate for the reduction of \(Cu_A \) at normal \(\Delta p \) and NADH.

\[k_{2,n} \]
Implementation Name: \(k_{2,n} \)
Units: \(s^{-1} \)
Initial value: \(\frac{f_n}{Cu_{A,r,n} - \frac{1}{K_{eq2,n}} Cu_{A,o,n} a_{3,r,n}} \)
Normal forward reaction rate for the reduction of \(a_3 \).

\[k_3 = \frac{k_{3,0}}{1 + \exp(-c_3 - \Delta p_{30})} \]
Implementation Name: \(k_3 \)
Units: \(s^{-1} \)
Initial value: 0
Forward reaction rate for the reduction of \(O_2 \).

\[k_{3,0} \]
Implementation Name: \(k_{30} \)
Units: \(s^{-1} \)
Initial value: \(2.5E+5 \)
Apparent second order rate constant for reduction of \(O_2 \) at zero \(\Delta p \).

\[k_{aut} \]
Implementation Name: \(k_{aut} \)
Units: dimensionless
Initial value: 1
Overall functioning of autoregulatory response.

\[K_G \]
Implementation Name: \(K_G \)
Units: \(ml_{blood} ml_{brain}^{-1} mmHg^{-1} s^{-1} cm^{-4} \)
Initial value: \(G_n pow(r_n/4) \)
Proportionality constant in Poiseuille relation for conductance.

\[k_{lk2} \]
Implementation Name: \(k_{lk2} \)
Units: \(mV^{-1} \)
Initial value: 0.038
Constant controlling the depending of the leak rate \(L_{lk} \) on \(\Delta p \).

\[k_{unc} \]
Implementation Name: \(k_{unc} \)
Units: dimensionless
Initial value: 1
Control parameter simulating the effect of adding uncouplers to the system.
$$k_{CV} = \frac{-1}{\Delta p_n - \Delta p_{CV,0}} \log \left(\frac{1 - L_{CV,0}}{1 + r_{CV} L_{CV,0}} \right)$$

Implementation Name: kCV
Units: mV$^{-1}$
Initial value: 0
Parameter controlling the sensitivity of Complex V flux to driving force.

$$K_{eq1,n}$$
Implementation Name: Keq1_n
Units: dimensionless
Initial value: $10^{2.2} \left(\frac{p_{1\Delta p_n}}{p_{1\Delta p_n} - E_{1,n}} \right)$
Normal value of the equilibrium constant for the Cu$_A$ reduction reaction.

$$K_{eq2,n}$$
Implementation Name: Keq2_n
Units: dimensionless
Initial value: $10^{2.2} \left(\frac{p_{3\Delta p_n}}{p_{3\Delta p_n} - E_{2}} \right)$
Normal value of the equilibrium constant for the a$_3$ reduction reaction.

$$L_{CV,0}$$
Implementation Name: L$_{CV0}$
Units: dimensionless
Initial value: 0.4
Normal Complex V flux as a fraction of maximum possible flux.

$$L_{CV,frac} = 1 - L_{lk,frac}$$
Implementation Name: L$_{CVfrac}$
Units: dimensionless
Initial value: 0
Normal fraction of proton entry into mitochondria which is due to ADP phosphorylation.

$$L_{CV,max} = \frac{L_{CV,n}}{L_{CV,0}}$$
Implementation Name: L$_{CVmax}$
Units: mM s$^{-1}$
Initial value: 0
The maximum rate of proton flow through Complex V.

$$L_{CV,n}$$
Implementation Name: L$_{CVn}$
Units: mM s$^{-1}$
Initial value: $L_n L_{CV,frac}$
The resting flow of protons into the matrix through Complex V.

$$L_{lk0}$$
Implementation Name: L$_{lk0}$
Units: mM s$^{-1}$
Initial value: $L_{lk,n} \exp(\Delta p_n k_{l2}) - 1$
Constant controlling the depending of the leak rate L_{lk} on Δp.

$$L_{lk,frac}$$
Implementation Name: L$_{lkfrac}$
Units: dimensionless
Initial value: 0.25
Normal fraction of proton entry into mitochondria which is via leak channels.

$$L_{lk,n}$$
Implementation Name: L$_{lkn}$
Units: mM s$^{-1}$
Initial value: $L_n L_{lk,frac}$
The resting flow of protons into the matrix via leak channels.

$L_n = P_{tot} f_o$
Implementation Name: L_n
Units: mM s\(^{-1}\)
Initial value: 0
The normal total flow of protons back into mitochondria.

λ_0
Implementation Name: λ_{a0}
Units: cm
Initial value: 0.02507
Intercept of the fitted linear model for blood vessel radius.

λ_μ
Implementation Name: $\lambda_{a\mu}$
Units: cm
Initial value: -0.0004422
Fitted linear dependence of blood vessel radius on autoregulatory stimuli.

λ_{Pa}
Implementation Name: λ_{aPa}
Units: cm mmHg
Initial value: -0.6327
Fitted linear dependence of blood vessel radius on reciprocal of blood pressure.

$\lambda_{Pa,\mu}$
Implementation Name: $\lambda_{aPa,\mu}$
Units: cm mmHg
Initial value: -0.5286
Fitted joint dependence of blood vessel radius on autoregulatory stimuli and reciprocal of blood pressure.

h_h
Implementation Name: n_{h}
Units: dimensionless
Initial value: 2.5
Hill coefficient for oxygen dissociation from haemoglobin.

$NADH = \frac{NAD_{pool}}{1 + \frac{NAD}{NADH}}$
Implementation Name: $NADH$
Units: mM
Initial value: 0
Concentration of NADH in the mitochondria.

$NADH_n$
Implementation Name: $NADHn$
Units: mM
Initial value: $\frac{NAD_{pool}}{1 + \frac{NAD}{NADH_n}}$
Normal concentration of NADH in the mitochondria.

$\frac{NAD}{NADH}$
Implementation Name: $\frac{NAD}{NADH}$
Units: dimensionless
Initial value: $\frac{NAD}{NADH_n} \text{pow}(u, 2D_{NADH})$
NAD/NADH ratio.
2.7 Parameters

\(\frac{NAD}{NADH} \)
Implementation Name: \(\text{NADNADHratn} \)
Units: dimensionless
Initial value: 9
Normal NAD/NADH ratio.

\(NAD_{\text{pool}} \)
Implementation Name: \(\text{NADpool} \)
Units: dimensionless
Initial value: 3
Relative size of the NAD pool, used to estimate normal mitochondrial NADH.

\(O_2, n \)
Implementation Name: \(\text{02_n} \)
Units: mM
Initial value: 0.024
Normal mitochondrial oxygen concentration.

\(O_{2,c, n} \)
Implementation Name: \(\text{02c_n} \)
Units: mM
Initial value: \(\phi \ \text{pow} \left(\frac{S_{c,O_2,n}}{1-S_{c,O_2,n}} \cdot \frac{1}{n_H} \right) \)
Normal capillary oxygen concentration.

\(p_1 = p_{tot} - p_{23} \)
Implementation Name: \(p1 \)
Units: dimensionless
Initial value: 0
Proton cost of the reaction reducing Cu\(_A\).

\(p_3 \)
Implementation Name: \(p2 \)
Units: dimensionless
Initial value: 4
Proton cost of the reaction reducing a\(_3\).

\(p_{23} \)
Implementation Name: \(p23 \)
Units: dimensionless
Initial value: 8
Total protons removed from the mitochondrial matrix by the reductions of a\(_3\) and O\(_2\).

\(p_3 \)
Implementation Name: \(p3 \)
Units: dimensionless
Initial value: \(p_{23} - p_3 \)
Proton cost of the reaction reducing O\(_2\).

\(P_a \)
Implementation Name: \(P_a \)
Units: mmHg
Initial value: \(P_{a,n} \)
Mean arterial blood pressure.

\(P_{a,n} \)
Implementation Name: \(P_{an} \)
Units: mmHg
Initial value: 100
Normal arterial blood pressure.
Implementation Name: p_{C1}
Units: dimensionless
Initial value: 8
Protons pumped by Complex I.

Implementation Name: p_{C3}
Units: dimensionless
Initial value: 4
Protons pumped by Complex III.

Implementation Name: p_{tot}
Units: dimensionless
Initial value: $p_{tot,NADH}$
Total protons removed from the mitochondrial matrix by the three modelled electron transport reactions.

$P_{tot,NADH} = P_{C1} + P_{C3} + P_{23}$

Implementation Name: $P_{tot,NADH}$
Units: dimensionless
Initial value: 0
Total protons pumped when the reducing agent is NADH.

Implementation Name: P_v
Units: mmHg
Initial value: P_v,n
Venous blood pressure.

Implementation Name: $P_{v,n}$
Units: mmHg
Initial value: 4
Normal venous blood pressure.

Implementation Name: P_{a,CO_2}
Units: mmHg
Initial value: $P_{a,CO_2,n}$
Arterial partial pressure of carbon dioxide.

Implementation Name: $P_{a,CO_2,n}$
Units: mmHg
Initial value: 40
Normal arterial partial pressure of carbon dioxide.

Implementation Name: pH_{mn}
Units: dimensionless
Initial value: 7.4
Normal mitochondrial pH.

Implementation Name: pH_o
Units: dimensionless
Initial value: 7
Extra-mitochondrial pH.
2.7 Parameters

$pH_{o,n}$
Implementation Name: pH_on
Units: dimensionless
Initial value: 7
Normal extra-mitochondrial pH.

ϕ
Implementation Name: phi
Units: mM
Initial value: 0.036
Oxygen concentration at half-maximal saturation.

R_{CO_2}
Implementation Name: R_{aut_c}
Units: dimensionless
Initial value: 2.2
Autoregulatory reactivity to carbon dioxide.

R_{O_2}
Implementation Name: R_{aut_o}
Units: dimensionless
Initial value: 1.5
Autoregulatory reactivity to oxygen.

R_{Pa}
Implementation Name: R_{aut_p}
Units: dimensionless
Initial value: 4
Autoregulatory reactivity to blood pressure.

R_u
Implementation Name: R_{aut_u}
Units: dimensionless
Initial value: 0.5
Autoregulatory reactivity to demand.

r_{CV}
Implementation Name: r_{CV}
Units: dimensionless
Initial value: 5
Parameter controlling the ratio of maximal to minimal rates of oxidative phosphorylation.

r_n
Implementation Name: r_{n}
Units: cm
Initial value: 0.0187
Normal blood vessel radius. Normal effective blood vessel radius.

$S_{a,O_2,n}$
Implementation Name: Sa02_n
Units: dimensionless
Initial value: 0.96
Normal arterial oxygen saturation.

S_{a,O_2}
Implementation Name: Sa02sup
Units: dimensionless
Initial value: $S_{a,O_2,n}$
Arterial oxygen saturation.
$S_{c,O_2,n}$
Implementation Name: ScO_2,n
Units: dimensionless
Initial value: $\frac{S_{c,O_2,n} + S_{v,O_2,n}}{2}$
Normal capillary oxygen saturation.

$S_{v,O_2,n}$
Implementation Name: SvO_2,n
Units: dimensionless
Initial value: $\frac{HbO_2,v,n}{Hbtot,n}$
Normal venous oxygen saturation.

t
Implementation Name: t
Units: s
Initial value: 0
Time over which the system evolves.

τ_{CO_2}
Implementation Name: τ_c
Units: s
Initial value: 5
Filter time constant for stimulus effect of carbon dioxide.

τ_{O_2}
Implementation Name: τ_o
Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

τ_{Pa}
Implementation Name: τ_p
Units: s
Initial value: 5
Filter time constant for stimulus effect of blood pressure.

τ_{u}
Implementation Name: τ_u
Units: s
Initial value: 0.5
Filter time constant for stimulus effect of demand.

u
Implementation Name: u
Units: dimensionless
Initial value: u_n
Parameter indicating metabolic demand.

u_n
Implementation Name: u_n
Units: dimensionless
Initial value: 1
Normal demand.

$\nu_{CO_2,n}$
Implementation Name: ν_{cn}
Units: mmHg
Initial value: $Pa_{CO_2,n}$
2.7 Parameters

Normal filtered carbon dioxide partial pressure. Normal filtered carbon dioxide partial pressure.

\(v_{O_2,n} \)
- Implementation Name: \(v_{\text{on}} \)
- Units: \(\text{mM} \)
- Initial value: \(O_{2,c,n} \)
- Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

\(v_{P_a,n} \)
- Implementation Name: \(v_{\text{pn}} \)
- Units: \(\text{mmHg} \)
- Initial value: \(P_a,n \)
- Normal filtered arterial blood pressure. Normal filtered blood pressure.

\(v_{u,n} \)
- Implementation Name: \(v_{\text{un}} \)
- Units: dimensionless
- Initial value: \(u_n \)
- Normal filtered demand. Normal filtered demand.

\(V\text{Arat}_n \)
- Implementation Name: \(V\text{Arat}_n \)
- Units: dimensionless
- Initial value: 3
- Normal volume ratio of veins to arteries in brain tissue.

\(V_a,n \)
- Implementation Name: \(V\text{ol}_{\text{ar}n} \)
- Units: dimensionless
- Initial value: \(\frac{1}{1 + V\text{Arat}_n} \)
- Normal relative arterial blood volume.

\(V\text{ol}_{\text{mit}} \)
- Implementation Name: \(V\text{ol}_{\text{mit}} \)
- Units: dimensionless
- Initial value: 0.067
- Fraction of brain tissue volume that is mitochondria.

\(V_v \)
- Implementation Name: \(V\text{ol}_{\text{ven}} \)
- Units: dimensionless
- Initial value: \(\frac{V\text{Arat}_n}{1 + V\text{Arat}_n} \)
- Relative venous blood volume.

\(HbO_{2,a} = Hb_{\text{tot}} S_a,O_2 \)
- Implementation Name: \(X0a \)
- Units: \(\text{mM} \)
- Initial value: \(HbO_{2,a,n} \)
- Arterial concentration of oxygen bound to haemoglobin.

\(HbO_{2,a,n} \)
- Implementation Name: \(X0a_n \)
- Units: \(\text{mM} \)
- Initial value: \(Hb_{\text{tot},n} S_a,O_2,n \)
- Normal arterial concentration of oxygen bound to haemoglobin.

\(HbO_{2,v,n} \)
- Implementation Name: \(X0v_n \)
Units: mM
Initial value: \(\frac{CBF_n \cdot HbO_{2,n,H} - I_O_{2,n}}{CBF_n} \)
Normal venous concentration of oxygen bound to haemoglobin.

Hb\text{tot}
Implementation Name: X\text{tot}
Units: mM
Initial value: 9.1
Total concentration of haemoglobin O\(_2\) binding sites in blood (4 times haemoglobin concentration).

Hb\text{tot,n}
Implementation Name: X\text{tot_n}
Units: mM
Initial value: 9.1
Normal total concentration of haemoglobin O\(_2\) binding sites in blood (4 times haemoglobin concentration).

Z
Implementation Name: Z
Units: mV
Initial value: 59.028
Proportionality constant in calculation of driving forces due to concentration differences.
Defined as \(RT / F \), where \(F \) is Faraday’s constant, \(R \) the ideal gas constant and \(T \) the absolute temperature.
3 BSB2

3.1 Overview
Simplified model in which the blood flow submodel is replaced with variant B2.
• 9 differential state variables
• 3 algebraic state variables
• 35 intermediate variables
• 121 parameters
• 4 declared inputs
• 33 default outputs

3.2 Differential Equations

\[
\frac{dC_{H_{4}O}}{dt} = 4f_{3} - 4f_{1}
\]
(3.1)

\[
\frac{da_{3,x}}{dt} = 4f_{3} - 4f_{3}
\]
(3.2)

\[
\frac{d\psi}{dt} = \frac{p_{3}f_{3} + p_{1}f_{1} + p_{3}f_{3} - L}{C_{im}}
\]
(3.3)

\[
\frac{dH^{+}}{dt} = \frac{1}{R_{Hi}} L - \frac{p_{3}}{R_{Hi}} f_{3} - \frac{p_{1}}{R_{Hi}} f_{1} - \frac{p_{3}}{R_{Hi}} f_{3}
\]
(3.4)

\[
\frac{dO_{2}}{dt} = \frac{1}{Vol_{mit}} J_{O_{2}} - f_{3}
\]
(3.5)

\[
\frac{d\nu_{CO_{2}}}{dt} = \frac{1}{\tau_{CO_{2}}} (P_{aCO_{2}} - \nu_{CO_{2}})
\]
(3.6)

\[
\frac{d\nu_{O_{2}}}{dt} = \frac{1}{\tau_{O_{2}}} (O_{2,c} - \nu_{O_{2}})
\]
(3.7)

\[
\frac{d\nu_{P_{a}}}{dt} = \frac{1}{\tau_{P_{a}}} (P_{a} - \nu_{P_{a}})
\]
(3.8)
\[
\frac{dv_u}{dl} = \frac{1}{\tau_u} (u - v_u)
\]
\hspace{1cm} (3.9)

3.3 Algebraic Equations

\[
\phi \left(\frac{S_{c,O_2}}{1 - S_{c,O_2}} \right) \frac{1}{N} - O_{2,c} = 0
\]
\hspace{1cm} (3.10)

\[
\lambda_0 + \frac{\lambda_p}{p_a} + \lambda_p \mu - r = 0
\]
\hspace{1cm} (3.11)

\[
\text{CBF} \ (HbO}_{2,a} - HbO}_{2,o} - I_{O_2} = 0
\]
\hspace{1cm} (3.12)

3.4 Chemical Reactions

\[
\frac{L}{R_{Hi}} \xrightarrow{} H^+ \hspace{1cm} (3.13)
\]

\[
\frac{J_{O_2}}{Vol_{mit}} \xrightarrow{} O_2 \hspace{1cm} (3.14)
\]

\[
\frac{p_3}{R_{Hi}} H^+ \xrightarrow{f_3} 4 \text{Cu}_{A,o} + 4 a_{3,r} \hspace{1cm} (3.15)
\]

\[
4 \text{Cu}_{A,o} + \frac{p_1}{R_{Hi}} H^+ \xrightarrow{f_1} \hspace{1cm} (3.16)
\]

\[
O_2 + 4 a_{3,r} + \frac{p_3}{R_{Hi}} H^+ \xrightarrow{f_3} \hspace{1cm} (3.17)
\]

3.5 State Variables

\[
C_{\text{Cu}_{A,o}}
\]
Implementation Name: a
Units: mM
Initial value: \(C_{\text{Cu}_{A,o,n}}\)
Concentration of oxidised cytochrome c oxidase.

\[
a_{3,r}
\]
Implementation Name: brød
Units: mM
Initial value: \(a_{3,r,n}\)
Concentration of reduced cytochrome a_3.
3.5 State Variables

ψ
Implementation Name: Dpsi
Units: mV
Initial value: ψ_n
Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

H^+
Implementation Name: H
Units: mM
Initial value: H^+_n
Mitochondrial proton concentration.

O_2
Implementation Name: O2
Units: mM
Initial value: O_{2,n}
Mitochondrial oxygen concentration.

O_{2,c}
Implementation Name: O_{2,c}
Units: mM
Initial value: O_{2,c,n}
Capillary oxygen concentration.

r
Implementation Name: r
Units: cm
Initial value: r_n
Typical blood vessel radius.

v_{CO_2}
Implementation Name: v_{CO_2}
Units: mmHg
Initial value: v_{CO_2,n}
Filtered carbon dioxide partial pressure.

v_{O_2}
Implementation Name: v_{O_2}
Units: mM
Initial value: v_{O_2,n}
Filtered capillary oxygen concentration.

v_{Pa}
Implementation Name: v_{Pa}
Units: mmHg
Initial value: v_{Pa,n}
Filtered arterial blood pressure.

v_{iu}
Implementation Name: v_{iu}
Units: dimensionless
Initial value: v_{iu,n}
Filtered demand.

HbO_{2,c}
Implementation Name: X0v
Units: mM
Initial value: HbO_{2,c,n}
Venous concentration of oxygen bound to haemoglobin.
3.6 Intermediate Variables

\[\text{Cu}_{A,r} = \text{CCO}_{\text{tot}} - \text{Cu}_{A,o} \]

Implementation Name: ared
Units: mM
Initial value: 0
Concentration of reduced CuA.

\[a_{3,o} = \text{CCO}_{\text{tot}} - a_{3,r} \]

Implementation Name: b
Units: mM
Initial value: 0
Concentration of oxidised cytochrome a3.

\[C_{0,i} = \frac{10^{-pH_a} - 10^{-pH_m} - dPH}{dPH} \]

Implementation Name: \(C_{0,i} \)
Units: dimensionless
Initial value: 0
Natural buffering capacity of protons in mitochondria.

\[\text{CBF} = G (P_a - P_v) \]

Implementation Name: CBF
Units: ml_blood ml_brain s\(^{-1}\)
Initial value: CBF\(_n\)
Cerebral blood flow.

\[\Delta \text{oxCCO} = \Delta \text{oxCCO}_{\text{off}} + 1000 \text{Vol}_{\text{mit}} (\text{Cu}_{A,o} - \text{Cu}_{A,o,n}) \]

Implementation Name: \(\text{CCO} \)
Units: mM
Initial value: 0
Cytochrome c oxidase signal measured by NIRS.

\[\text{CMRO}_2 = f_3 \text{Vol}_{\text{mit}} \]

Implementation Name: CMRO2
Units: mM s\(^{-1}\)
Initial value: 0
Rate of cerebral oxygen metabolism.

\[\Delta p = \psi + Z (pH_m - pH_o) \]

Implementation Name: \(\Delta p \)
Units: mV
Initial value: 0
Proton motive force across the mitochondrial inner membrane.

\[\eta = R_P \left(\frac{\nu_P}{\nu_{P,n}} - 1 \right) + R_O_2 \left(\frac{\nu_{O_2}}{\nu_{O_2,n}} - 1 \right) + R_{CO_2} \left(1 - \frac{\nu_{CO_2}}{\nu_{CO_2,n}} \right) + R_u \left(1 - \frac{\nu_u}{\nu_{u,n}} \right) \]

Implementation Name: \(\eta \)
Units: dimensionless
Initial value: 0
Merged autoregulation stimulus.

\[f_1 = k_1 \text{Cu}_{A,o} - k_{-1} \text{Cu}_{A,r} \]

Implementation Name: \(f_1 \)
Units: mM s\(^{-1}\)
Initial value: 0
Reaction rate for the reduction of CuA.

\[f_2 = k_2 \text{Cu}_{A,r} a_{3,o} - k_{-2} \text{Cu}_{A,o} a_{3,r} \]

Implementation Name: \(f_2 \)
3.6 Intermediate Variables

Units: mM s$^{-1}$
Initial value: 0
Reaction rate for the reduction of a_3.

$$f_3 = \frac{k_3 O_2 a_{3,r} \exp(-c_3 (\Delta p - \Delta p_{30}))}{1 + \exp(-c_3 (\Delta p - \Delta p_{30}))}$$

Implementation Name: f_3
Units: mM s$^{-1}$
Initial value: 0
Reaction rate for the reduction of O_2.

$$G = K_G t^4$$
Implementation Name: G
Units: ml$^{-1}$ brain mmHg$^{-1}$ s$^{-1}$
Initial value: 0
Effective conductance of the whole blood flow compartment.

$$HbO_2 = (V_a HbO_{2,a} + V_v HbO_{2,v}) blood_{hb}$$
Implementation Name: HbO_2
Units: uM
Initial value: 0
Oxygenated haemoglobin signal measured by NIRS.

$$HbT = (V_a + V_v) Hb_{tot} blood_{hb}$$
Implementation Name: HbT
Units: uM
Initial value: 0
Total haemoglobin signal measured by NIRS.

$$HHb = HbT - HbO_2$$
Implementation Name: HHb
Units: uM
Initial value: 0
Deoxygenated haemoglobin signal measured by NIRS.

$$J_{O_2} = f_{min} (D_{O_2} (O_2,c - O_2), CBF HbO_{2,a})$$
Implementation Name: J_{O2}
Units: mM s$^{-1}$
Initial value: 0
Oxygen flux from blood to tissue.

$$k_1 = k_{1,0} \exp(-c_{k_1} (\Delta p - \Delta p_n))$$
Implementation Name: k_1
Units: s$^{-1}$
Initial value: 0
Forward reaction rate for the reduction of Cu_A.

$$k_2 = k_{2,n} \exp(-c_{k_2} (\Delta p - \Delta p_n))$$
Implementation Name: k_2
Units: s$^{-1}$
Initial value: 0
Forward reaction rate for the reduction of a_3.

$$K_{eq1} = 10^{\frac{1}{2} \left(\frac{\Delta H}{4} - \epsilon_1 \right)}$$
Implementation Name: K_{eq1}
Units: dimensionless
Initial value: 0
Equilibrium constant for the Cu_A reduction reaction.

$$K_{eq2} = 10^{\frac{1}{2} \left(\frac{\Delta H}{4} - \epsilon_2 \right)}$$
Implementation Name: k_{eq2}
Units: dimensionless
Initial value: 0
Equilibrium constant for the a_3 reduction reaction.

$$k_{-1} = \frac{k_1}{K_{eq1}}$$

Implementation Name: k_{n1}
Units: s^{-1}
Initial value: 0
Reverse reaction rate for the reduction of Cu_A.

$$k_{-2} = \frac{k_2}{K_{eq2}}$$

Implementation Name: k_{n2}
Units: s^{-1}
Initial value: 0
Reverse reaction rate for the reduction of a_3.

$$L = L_{CV} + L_{lk}$$

Implementation Name: L
Units: mM s$^{-1}$
Initial value: 0
Rate of proton return to the mitochondrial matrix.

$$L_{CV} = \frac{CV_{inh} L_{CV,max} (1 - \exp(-\theta))}{1 + r_{CV} \exp(-\theta)}$$

Implementation Name: L_{CV}
Units: mM s$^{-1}$
Initial value: 0
Rate at which protons re-enter the mitochondrial matrix due to ADP phosphorylation.

$$L_{lk} = k_{unc} L_{lk0} (\exp(\Delta p k_{lk2}) - 1)$$

Implementation Name: L_{lk}
Units: mM s$^{-1}$
Initial value: 0
Rate at which protons re-enter the mitochondrial matrix via leak channels.

$$\mu = \frac{k_{aut} (\exp(\eta) - 1)}{\exp(\eta) + 1}$$

Implementation Name: mu
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation response.

$$pH_m = -\log_{10}\left(\frac{H^+}{1000}\right)$$

Implementation Name: pH_m
Units: dimensionless
Initial value: 0
Mitochondrial pH.

$$r_{buffi} = \frac{C_{buffi}}{C_{0,i}}$$

Implementation Name: r_{buffi}
Units: dimensionless
Initial value: 0
Buffering capacity for protons in mitochondria.

$$R_{Hi} = r_{buffi}$$
3.7 Parameters

Implementation Name: \(R_{Hi} \)
Units: dimensionless
Initial value: 0
Relative mitochondrial volume for protons, taking into account buffering effect of pH.

\[
S_{c,O_2} = \frac{S_{a,O_2} + S_{v,O_2}}{2}
\]
Implementation Name: Sc02
Units: dimensionless
Initial value: \(S_{c,O_2,n} \)
Capillary oxygen saturation.

\[
S_{v,O_2} = \frac{HbO_2}{Hb_{tot}}
\]
Implementation Name: Sv02
Units: dimensionless
Initial value: \(S_{v,O_2,n} \)
Venous oxygen saturation.

\[\theta = k_{CV} \left(\Delta p + Z \log_{10} (u) - \Delta p_{CV,0} \right)\]
Implementation Name: theta
Units: dimensionless
Initial value: 0
Driving force Complex V.

\[
TOI = \frac{100HbO_2}{HbT}
\]
Implementation Name: TOI
Units: dimensionless
Initial value: 0
Total oxygenation index.

\[
V_{mca} = CBF \times CBF_{scale}
\]
Implementation Name: Vmca
Units: cm s\(^{-1}\)
Initial value: 0
Blood velocity in the middle cerebral artery.

\[
V_a = V_{a,n} \left(\frac{r}{r_n} \right)^2
\]
Implementation Name: V0l_art
Units: dimensionless
Initial value: 0
Relative arterial blood volume.

3.7 Parameters

\(Cu_{a,frac,n} \)
Implementation Name: a_frac_n
Units: dimensionless
Initial value: 0.8
Normal oxidised fraction of Cu\(_A\).

\(CU_{A,o,n} \)
Implementation Name: a_n
Units: mM
Initial value: \(CCO_{tot} \times Cu_{a,frac,n} \)
Normal concentration of oxidised cytochrome c oxidase.
Cu_{A,r,n}
Implementation Name: ared_n
Units: mM
Initial value: \(CCO_{tot} - Cu_{A,o,n} \)
Normal concentration of reduced Cu_A.

\(a_{3,o,n} \)
Implementation Name: b_n
Units: mM
Initial value: \(CCO_{tot} - a_{3,r,n} \)
Normal concentration of oxidised cytochrome a_3.

\(\text{blood}_{hb} \)
Implementation Name: blood_hb
Units: dimensionless
Initial value: 10.00
Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to \(\mu \)M, and number of binding sites.

\(a_{3,r,n} \)
Implementation Name: bred_n
Units: mM
\[
\frac{f_a}{O_2} \left(\frac{\exp(-c_3(\Delta p_n - \Delta p_30))}{1+\exp(-c_3(\Delta p_n - \Delta p_30))} \right)
\]
Initial value:
Normal concentration of reduced cytochrome a_3.

\(c_3 \)
Implementation Name: c3
Units: mV^{-1}
Initial value: 0.11
Parameter controlling the sensitivity of the reduction of a_3 to \(\Delta p \).

\(C_{buffer} \)
Implementation Name: C_buffer
Units: dimensionless
Initial value: 0.022
Buffering capacity of protons in mitochondria.

\(C_{im} \)
Implementation Name: C_im
Units: mM mV^{-1}
Initial value: 0.00675
Capacitance of the mitochondrial inner membrane.

\[
C_{NADH} = \frac{Z}{2} \log_{10} \left(\frac{1}{\frac{NAD}{NADH}} \right)
\]
Implementation Name: C_NADH
Units: mV
Initial value: 0
Excess redox potential for NADH at normal demand.

\(C_{NADH,n} \)
Implementation Name: C_NADH_n
Units: mV
Initial value:
Normal value of \(C_{NADH} \).
3.7 Parameters

CBFn
- Implementation Name: CBFn
- Units: ml_blood ml_brain s\(^{-1}\)
- Initial value: 0.0125
- Normal cerebral blood flow.

CBFs
- Implementation Name: CBFscale
- Units: cm
- Initial value: 5000
- Scale constant relating blood flow to arterial velocity.

ΔoxCCO_off
- Implementation Name: CCO_offset
- Units: uM
- Initial value: 0
- Signal offset for the NIRS CCO measurement.

c_k_1
- Implementation Name: ck1
- Units: mV\(^{-1}\)
- Initial value: 0.01
- Parameter controlling sensitivity of \(k_1\) to \(Δp\).

c_k_2
- Implementation Name: ck2
- Units: mV\(^{-1}\)
- Initial value: 0.02
- Parameter controlling sensitivity of \(k_2\) to \(Δp\).

CMRO_2_n
- Implementation Name: CMRO_2_n
- Units: mM s\(^{-1}\)
- Initial value: 0.034
- Normal metabolic rate of oxygen consumption.

CV_inh
- Implementation Name: CV_inh
- Units: dimensionless
- Initial value: 1
- Control parameter representing the action of Complex V inhibitors.

\[
CCO_{tot} = \frac{CCO_{tis}}{Vol_{mit}}
\]
- Implementation Name: cytox_tot
- Units: mM
- Initial value: 0
- Concentration of cytochrome c oxidase in mitochondria.

CCO_tis
- Implementation Name: cytox_tot_tis
- Units: mM
- Initial value: 0.0055
- Concentration of cytochrome c oxidase in tissue.

D_NADH
- Implementation Name: D_NADH
- Units: dimensionless
- Initial value: 0.01
- Scale parameter for the dependence of NADH redox potential on demand.
D_{O_2}
Implementation Name: $d_{0,2}$
Units: s$^{-1}$
Initial value: $\frac{I_{O_2,n}}{O_{2,c,n} - O_{2,n}}$
Diffusion rate for oxygen between capillaries and mitochondria.

$\Delta p_{3,corr}$
Implementation Name: $dp_{3,corr}$
Units: mV
Initial value: -25
Difference between Δp_{30} and normal Δp.

$\Delta p_{30} = \Delta p_n + \Delta p_{3,corr}$
Implementation Name: dp_{30}
Units: mV
Initial value: 0
Value of Δp to which a_3 reduction reaction is maximally sensitive.

$\Delta p_{CV,0}$
Implementation Name: dp_{CV0}
Units: mV
Initial value: 90
Value of Δp at which L_{CV} is zero under normal demand.

Δp_n
Implementation Name: dp_n
Units: mV
Initial value: $\psi_n + Z \Delta pH_n$
Normal value of Δp

dpH
Implementation Name: dpH
Units: dimensionless
Initial value: 0.001
Parameter in the mitochondrial proton buffering relationship.

ΔpH_n
Implementation Name: dpH_n
Units: dimensionless
Initial value: $pH_{m,n} - pH_{o,n}$
Normal pH difference across the mitochondrial inner membrane.

ψ_n
Implementation Name: $dpsi_n$
Units: mV
Initial value: 145
Normal mitochondrial inner membrane potential.

$E_{1,NADH} = E_0(Cu_A) - E_0(NADH) + C_{NADH}$
Implementation Name: $E1NADH$
Units: mV
Initial value: 0
Value of E_1 when the reducing substrate is NADH.

$E_{1,NADH,n}$
Implementation Name: $E1NADH_n$
Units: mV
Initial value: $E_0(Cu_A) - E_0(NADH) + C_{NADH,n}$
Normal value of $E_{1,NADH}$.
3.7 Parameters

E_1
- Implementation Name: $E_{1,1}$
- Units: mV
- Initial value: $E_{1,NADH}$
- The energy provided by electron transfer to $Cu_{A,r}$.

$E_{1,n}$
- Implementation Name: $E_{1,1n}$
- Units: mV
- Initial value: $E_{1,NADH,n}$
- Normal value of E_1.

E_2
- Implementation Name: $E_{2,2}$
- Units: mV
- Initial value: $E_{0}(a_3) - E_0(Cu_A)$
- Energy provided by the transfer of four electrons from $Cu_{A,r}$ to $a_{3,o}$.

$E_0(a_3)$
- Implementation Name: $E_{a3,0}$
- Units: mV
- Initial value: 350
- Standard redox potential for cytochrome a_3.

$E_0(Cu_A)$
- Implementation Name: E_{c0}
- Units: mV
- Initial value: 247
- Standard redox potential for Cu_A.

$E_0(NADH)$
- Implementation Name: E_{N0}
- Units: mV
- Initial value: -320
- Standard redox potential for NADH.

f_n
- Implementation Name: $f_{n,n}$
- Units: mM s$^{-1}$
- Initial value: $CMRO_{2,n}$
- Normal resting value of f_1 and f_2.

G_n
- Implementation Name: $G_{n,n}$
- Units: ml$^{blood} / (ml_{brain} mmHg s^{-1})$
- Initial value: $P_{o,n} - P_{v,n}$
- Normal blood vessel conductance.

H_{n}^+
- Implementation Name: $H_{n,n}$
- Units: mM
- Initial value: $10^{3-pH_{n,n}}$
- Normal mitochondrial proton concentration.

$J_{O2,n}$
- Implementation Name: $J_{O2,n}$
- Units: mM s$^{-1}$
- Initial value: $CMRO_{2,n}$
- Normal oxygen flux from blood to tissue.
\[k_{1,0} \]

Implementation Name: \(k_{10} \)
Units: \(s^{-1} \)
Initial value: \(\frac{k_{1,n} NADH}{NADH_H} \)
Forward reaction rate for the reduction of Cu\(_A\) at normal \(\Delta p \).

\[k_{1,n} \]

Implementation Name: \(k_{1,n} \)
Units: \(s^{-1} \)
Initial value: \(\frac{f_n}{C_{Cu,A,\rho,n} - \frac{1}{\kappa_{eq,n}} C_{Cu,A,r,n}} \)
Forward reaction rate for the reduction of Cu\(_A\) at normal \(\Delta p \) and NADH.

\[k_{2,n} \]

Implementation Name: \(k_{2,n} \)
Units: \(s^{-1} \)
Initial value: \(\frac{f_n}{C_{Cu,A,r,n} a_{3,\rho,n} - \frac{1}{\kappa_{eq,n}} C_{Cu,A,\rho,n} a_{3,r,n}} \)
Normal forward reaction rate for the reduction of \(a_3 \).

\[k_3 = \frac{k_{3,0}}{1 + \exp(-c_3 - \Delta p_{30})} \]

Implementation Name: \(k_3 \)
Units: \(s^{-1} \)
Initial value: 0
Forward reaction rate for the reduction of \(O_2 \).

\[k_{3,0} \]

Implementation Name: \(k_{30} \)
Units: \(s^{-1} \)
Initial value: \(2.5E + 5 \)
Apparent second order rate constant for reduction of \(O_2 \) at zero \(\Delta p \).

\[k_{aut} \]

Implementation Name: \(k_{aut} \)
Units: dimensionless
Initial value: 1
Overall functioning of autoregulatory response.

\[K_G \]

Implementation Name: \(K_G \)
Units: \(ml_{\text{blood}} ml_{\text{brain}}^{-1} mmHg^{-1} s^{-1} \ cm^{-4} \)
Initial value: \(G_n \ pow(r_n, 4) \)
Proportionality constant in Poiseuille relation for conductance.

\[k_{lk2} \]

Implementation Name: \(k_{lk2} \)
Units: \(\text{mV}^{-1} \)
Initial value: 0.038
Constant controlling the depending of the leak rate \(L_{lk} \) on \(\Delta p \).

\[k_{unc} \]

Implementation Name: \(k_{unc} \)
Units: dimensionless
Initial value: 1
Control parameter simulating the effect of adding uncouplers to the system.
3.7 Parameters

\[k_{CV} = \frac{-1}{\Delta p_n - \Delta p_{CV,0}} \log \left(\frac{1 - L_{CV,0}}{1 + r_{CV} L_{CV,0}} \right) \]

Implementation Name: \(k_{CV} \)
Units: mV\(^{-1}\)
Initial value: 0
Parameter controlling the sensitivity of Complex V flux to driving force.

\[K_{eq1,n} \]
Implementation Name: \(K_{eq1,n} \)
Units: dimensionless
Initial value: \(10^{-1} \left(\frac{\Delta p_n}{p_1 \Delta p_n - E_{1,n}} \right) \)
Normal value of the equilibrium constant for the Cu\(_A\) reduction reaction.

\[K_{eq2,n} \]
Implementation Name: \(K_{eq2,n} \)
Units: dimensionless
Initial value: \(10^{-1} \left(\frac{\Delta p_n}{p_3 \Delta p_n - E_{2,n}} \right) \)
Normal value of the equilibrium constant for the a\(_3\) reduction reaction.

\[L_{CV,0} \]
Implementation Name: \(L_{CV,0} \)
Units: dimensionless
Initial value: 0.4
Normal Complex V flux as a fraction of maximum possible flux.

\[L_{CV,frac} = 1 - L_{lk,frac} \]
Implementation Name: \(L_{CV,frac} \)
Units: dimensionless
Initial value: 0
Normal fraction of proton entry into mitochondria which is due to ADP phosphorylation.

\[L_{CV,max} = \frac{L_{CV,n}}{L_{CV,0}} \]
Implementation Name: \(L_{CV,max} \)
Units: mM s\(^{-1}\)
Initial value: 0
The maximum rate of proton flow through Complex V.

\[L_{CV,n} \]
Implementation Name: \(L_{CV,n} \)
Units: mM s\(^{-1}\)
Initial value: \(L_{n} L_{CV,frac} \)
The resting flow of protons into the matrix through Complex V.

\[L_{lk,0} \]
Implementation Name: \(L_{lk,0} \)
Units: mM s\(^{-1}\)
Initial value: \(\frac{L_{lk,n}}{\exp (\Delta p_n k_{lk2}) - 1} \)
Constant controlling the depending of the leak rate \(L_{lk} \) on \(\Delta p \).

\[L_{lk,frac} \]
Implementation Name: \(L_{lk,frac} \)
Units: dimensionless
Initial value: 0.25
Normal fraction of proton entry into mitochondria which is via leak channels.

\[L_{lk,n} \]
Implementation Name: \(L_{lk,n} \)
Units: mM s\(^{-1}\)
Initial value: $L_n L_{lk,frac}$
The resting flow of protons into the matrix via leak channels.

$L_n = p_{tot} f_n$
Implementation Name: L_n
Units: mM s$^{-1}$
Initial value: 0
The normal total flow of protons back into mitochondria.

λ_0
Implementation Name: $1am_0$
Units: cm
Initial value: 0.02327
Intercept of the fitted linear model for blood vessel radius.

λ_μ
Implementation Name: $1am_\mu$
Units: cm
Initial value: -0.006375
Fitted linear dependence of blood vessel radius on autoregulatory stimuli.

λ_{Pa}
Implementation Name: $1am_{Pa}$
Units: cm mmHg
Initial value: -0.4697
Fitted linear dependence of blood vessel radius on reciprocal of blood pressure.

n_h
Implementation Name: n_h
Units: dimensionless
Initial value: 2.5
Hill coefficient for oxygen dissociation from haemoglobin.

$NADH = \frac{NAD_{pool}}{1 + \frac{NAD}{NADH}}$
Implementation Name: NADH
Units: mM
Initial value: 0
Concentration of NADH in the mitochondria.

$NADH_n$
Implementation Name: $NADH_n$
Units: mM
Initial value: $\frac{NAD_{pool}}{1 + \frac{NAD}{NADH}}$
Normal concentration of NADH in the mitochondria.

$\frac{NAD}{NADH}$
Implementation Name: $NAD/NADH$
Units: dimensionless
Initial value: $\text{pow}(u, 2D_{NADH})$
NAD/NADH ratio.

$\frac{NAD_n}{NADH_n}$
Implementation Name: $NAD/NADH_n$
Units: dimensionless
Initial value: 9
Normal NAD/NADH ratio.
3.7 Parameters

NAD_{pool}
Implementation Name: NADpool
Units: dimensionless
Initial value: 3
Relative size of the NAD pool, used to estimate normal mitochondrial NADH.

$O_{2,n}$
Implementation Name: O2_n
Units: mM
Initial value: 0.024
Normal mitochondrial oxygen concentration.

$O_{2,c,n}$
Implementation Name: O2c_n
Units: mM
Initial value: $\phi^{\text{pow}} \left(\frac{S_{c, O_2, n}}{1 - S_{c, O_2, n}} \right)$
Normal capillary oxygen concentration.

$p_1 = p_{tot} - p_{23}$
Implementation Name: p1
Units: dimensionless
Initial value: 0
Proton cost of the reaction reducing Cu_A.

p_3
Implementation Name: p2
Units: dimensionless
Initial value: 4
Proton cost of the reaction reducing a3.

p_{23}
Implementation Name: p23
Units: dimensionless
Initial value: 8
Total protons removed from the mitochondrial matrix by the reductions of a3 and O2.

p_3
Implementation Name: p3
Units: dimensionless
Initial value: $p_{23} - p_3$
Proton cost of the reaction reducing O2.

P_a
Implementation Name: P_a
Units: mmHg
Initial value: $P_{a,n}$
Mean arterial blood pressure.

$P_{a,n}$
Implementation Name: P_an
Units: mmHg
Initial value: 100
Normal arterial blood pressure.

p_{C1}
Implementation Name: p_C1
Units: dimensionless
Initial value: 8
Protons pumped by Complex I.
Implementation Name: p_{C3}
Units: dimensionless
Initial value: 4
Protons pumped by Complex III.

Implementation Name: p_{tot}
Units: dimensionless
Initial value: $p_{tot,NADH}$
Total protons removed from the mitochondrial matrix by the three modelled electron transport reactions.

\[p_{tot,NADH} = p_{C1} + p_{C3} + p_{23} \]

Implementation Name: $p_{tot,NADH}$
Units: dimensionless
Initial value: 0
Total protons pumped when the reducing agent is NADH.

Implementation Name: P_v
Units: mmHg
Initial value: $P_{v,n}$
Venous blood pressure.

Implementation Name: $P_{v,n}$
Units: mmHg
Initial value: 4
Normal venous blood pressure.

Implementation Name: Pa_{CO_2}
Units: mmHg
Initial value: $Pa_{CO_2,n}$
Arterial partial pressure of carbon dioxide.

Implementation Name: $Pa_{CO_2,n}$
Units: mmHg
Initial value: 40
Normal arterial partial pressure of carbon dioxide.

Implementation Name: pH_{mn}
Units: dimensionless
Initial value: 7.4
Normal mitochondrial pH.

Implementation Name: pH_o
Units: dimensionless
Initial value: 7
Extra-mitochondrial pH.

Implementation Name: $pH_{o,n}$
Units: dimensionless
Initial value: 7
Normal extra-mitochondrial pH.
3.7 Parameters

\(\phi \)
Implementation Name: \(\text{phi} \)
Units: mM
Initial value: 0.036
Oxygen concentration at half-maximal saturation.

\(R_{CO_2} \)
Implementation Name: \(R_{\text{aut}c} \)
Units: dimensionless
Initial value: 2.2
Autoregulatory reactivity to carbon dioxide.

\(R_{O_2} \)
Implementation Name: \(R_{\text{auto}} \)
Units: dimensionless
Initial value: 1.5
Autoregulatory reactivity to oxygen.

\(R_P \)
Implementation Name: \(R_{\text{aut}p} \)
Units: dimensionless
Initial value: 4
Autoregulatory reactivity to blood pressure.

\(R_u \)
Implementation Name: \(R_{\text{aut}u} \)
Units: dimensionless
Initial value: 0.5
Autoregulatory reactivity to demand.

\(r_{CV} \)
Implementation Name: \(r_{CV} \)
Units: dimensionless
Initial value: 5
Parameter controlling the ratio of maximal to minimal rates of oxidative phosphorylation.

\(r_n \)
Implementation Name: \(r_n \)
Units: cm
Initial value: 0.0187
Normal blood vessel radius. Normal effective blood vessel radius.

\(S_{a,O_2,n} \)
Implementation Name: \(Sa02_n \)
Units: dimensionless
Initial value: 0.96
Normal arterial oxygen saturation.

\(S_{a,O_2} \)
Implementation Name: \(Sa02\sup \)
Units: dimensionless
Initial value: \(S_{a,O_2,n} \)
Arterial oxygen saturation.

\(S_{c,O_2,n} \)
Implementation Name: \(Sc02_n \)
Units: dimensionless
Initial value: \(\frac{S_{a,O_2,n} + S_{v,O_2,n}}{2} \)
Normal capillary oxygen saturation.
\[S_{v,O_2,n} \]
Implementation Name: \(S_{vO2,n} \)
Units: dimensionless
Initial value: \(\frac{HbO_{2,v,n}}{Hb_{tot,n}} \)
Normal venous oxygen saturation.

\[t \]
Implementation Name: \(t \)
Units: s
Initial value: 0
Time over which the system evolves.

\[\tau_{CO_2} \]
Implementation Name: \(\tau_{c} \)
Units: s
Initial value: 5
Filter time constant for stimulus effect of carbon dioxide.

\[\tau_{O_2} \]
Implementation Name: \(\tau_{o} \)
Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

\[\tau_{Pa} \]
Implementation Name: \(\tau_{p} \)
Units: s
Initial value: 5
Filter time constant for stimulus effect of blood pressure.

\[\tau_{u} \]
Implementation Name: \(\tau_{u} \)
Units: s
Initial value: 0.5
Filter time constant for stimulus effect of demand.

\[u \]
Implementation Name: \(u \)
Units: dimensionless
Initial value: \(u_n \)
Parameter indicating metabolic demand.

\[u_n \]
Implementation Name: \(u_n \)
Units: dimensionless
Initial value: 1
Normal demand.

\[v_{CO_2,n} \]
Implementation Name: \(v_{c,n} \)
Units: mmHg
Initial value: \(P_{aCO_2,n} \)
Normal filtered carbon dioxide partial pressure. Normal filtered carbon dioxide partial pressure.

\[v_{O_2,n} \]
Implementation Name: \(v_{o,n} \)
Units: mM
Initial value: \(O_{2,c,n} \)
3.7 Parameters

Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

\(v_{P_{\alpha,n}} \)
- Implementation Name: \(v_{\alpha _pn} \)
- Units: mmHg
- Initial value: \(P_{\alpha,n} \)
- Normal filtered arterial blood pressure. Normal filtered blood pressure.

\(v_{u,n} \)
- Implementation Name: \(v_{_un} \)
- Units: dimensionless
- Initial value: \(u_n \)
- Normal filtered demand. Normal filtered demand.

\(V\text{Arat}_{n} \)
- Implementation Name: \(V\text{Arat}_n \)
- Units: dimensionless
- Initial value: 3
- Normal volume ratio of veins to arteries in brain tissue.

\(V_{\alpha,n} \)
- Implementation Name: \(V_{\alpha _artn} \)
- Units: dimensionless
- Initial value: \(\frac{1}{1 + V\text{Arat}_{n}} \)
- Normal relative arterial blood volume.

\(V\text{ol}_{\text{mit}} \)
- Implementation Name: \(V\text{ol}_\text{mit} \)
- Units: dimensionless
- Initial value: 0.067
- Fraction of brain tissue volume that is mitochondria.

\(V_{p} \)
- Implementation Name: \(V\text{ol}_\text{ven} \)
- Units: dimensionless
- Initial value: \(\frac{V\text{ol}_{\text{artn}}}{1 + V\text{Arat}_{n}} \)
- Relative venous blood volume.

\(H\text{bO}_2,a = H\text{b}_{\text{tot}} \cdot S_{a,\text{O}_2} \)
- Implementation Name: \(X0a \)
- Units: mM
- Initial value: \(H\text{bO}_2,a,n \)
- Arterial concentration of oxygen bound to haemoglobin.

\(H\text{bO}_2,a,n \)
- Implementation Name: \(X0a_{_n} \)
- Units: mM
- Initial value: \(H\text{b}_{\text{tot},n} \cdot S_{a,\text{O}_2,n} \)
- Normal arterial concentration of oxygen bound to haemoglobin.

\(H\text{bO}_2,v,n \)
- Implementation Name: \(X0v_{_n} \)
- Units: mM
- Initial value: \(\frac{C\text{BF}_n \cdot H\text{bO}_2,a,n - J_{\text{O}_2,n}}{C\text{BF}_n} \)
- Normal venous concentration of oxygen bound to haemoglobin.

\(H\text{b}_{\text{tot}} \)
- Implementation Name: \(X\text{tot} \)
Units: mM
Initial value: 9.1
Total concentration of haemoglobin O₂ binding sites in blood (4 times haemoglobin concentration).

Implementation Name: \(X_{\text{tot,n}} \)
Units: mM
Initial value: 9.1
Normal total concentration of haemoglobin O₂ binding sites in blood (4 times haemoglobin concentration).

\(Z \)
Implementation Name: \(Z \)
Units: mV
Initial value: 59.028
Proportionality constant in calculation of driving forces due to concentration differences. Defined as \(RT/F \), where \(F \) is Faraday’s constant, \(R \) the ideal gas constant and \(T \) the absolute temperature.
4 BSB3

4.1 Overview

Simplified model in which the blood flow submodel is replaced with variant B3.

- 9 differential state variables
- 3 algebraic state variables
- 35 intermediate variables
- 120 parameters
- 4 declared inputs
- 33 default outputs

4.2 Differential Equations

\[
\frac{d C_{u_{A,v}}}{dt} = 4f_3 - 4f_1 \tag{4.1}
\]

\[
\frac{d a_{3,r}}{dt} = 4f_3 - 4f_3 \tag{4.2}
\]

\[
\frac{d \psi}{dt} = \frac{p_3 f_3 + p_1 f_1 + p_3 f_3 - L}{C_{im}} \tag{4.3}
\]

\[
\frac{d H^+}{dt} = \frac{1}{R_{Hi}} L - \frac{p_3}{R_{Hi}} f_3 - \frac{p_1}{R_{Hi}} f_1 - \frac{p_3}{R_{Hi}} f_3 \tag{4.4}
\]

\[
\frac{d O_2}{dt} = \frac{1}{Vol_{mit}} J_{O_2} - f_3 \tag{4.5}
\]

\[
\frac{d v_{CO_2}}{dt} = \frac{1}{\tau_{CO_2}} (p_{a_{CO_2}} - v_{CO_2}) \tag{4.6}
\]

\[
\frac{d v_{O_2}}{dt} = \frac{1}{\tau_{O_2}} (O_{2,c} - v_{O_2}) \tag{4.7}
\]

\[
\frac{d v_{P_a}}{dt} = \frac{1}{\tau_{P_a}} (P_a - v_{P_a}) \tag{4.8}
\]
\[
\frac{dv_u}{dt} = \frac{1}{r_u} \left(u - v_u \right)
\]

4.3 Algebraic Equations

\[
\phi \left(\frac{S_c O_2}{1 - S_c O_2} \right)^{\frac{1}{n}} - O_{2,c} = 0
\]

\[
\lambda_0 + \lambda_\mu \mu - r = 0
\]

\[
CBF \left(HbO_{2,a} - HbO_{2,v} \right) - J_{O_2} = 0
\]

4.4 Chemical Reactions

\[
\xrightarrow{L} \frac{1}{R_{Hi}} H^+
\]

\[
\xrightarrow{J_{O_2}} \frac{1}{Vol_{mit}} O_2
\]

\[
\xrightarrow{p_3} \frac{R_{Hi}}{H^+} \xrightarrow{f_3} 4 \text{Cu}_{A,o} + 4 \text{a}_{3,r}
\]

\[
4 \text{Cu}_{A,o} + \xrightarrow{p_1} \frac{R_{Hi}}{H^+} \xrightarrow{f_1}
\]

\[
O_2 + 4 \text{a}_{3,r} + \xrightarrow{p_3} \frac{R_{Hi}}{H^+} \xrightarrow{f_3}
\]

4.5 State Variables

- \(Cu_{A,o}\)
 - Implementation Name: a
 - Units: mM
 - Initial value: \(Cu_{A,o,n}\)
 - Concentration of oxidised cytochrome c oxidase.

- \(a_{3,r}\)
 - Implementation Name: bred
 - Units: mM
 - Initial value: \(a_{3,r,n}\)
 - Concentration of reduced cytochrome a_3.
4.5 State Variables

ψ
- Implementation Name: Dpsi
- Units: mV
- Initial value: ψ_n
 Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

H^+
- Implementation Name: H
- Units: mM
- Initial value: H^+_n
 Mitochondrial proton concentration.

O_2
- Implementation Name: O2
- Units: mM
- Initial value: $O_{2,n}$
 Mitochondrial oxygen concentration.

$O_{2,c}$
- Implementation Name: O2c
- Units: mM
- Initial value: $O_{2,c,n}$
 Capillary oxygen concentration.

r
- Implementation Name: r
- Units: cm
- Initial value: r_n
 Typical blood vessel radius.

v_{CO_2}
- Implementation Name: v_C
- Units: mmHg
- Initial value: $v_{CO_2,n}$
 Filtered carbon dioxide partial pressure.

v_{O_2}
- Implementation Name: v_O
- Units: mM
- Initial value: $v_{O_2,n}$
 Filtered capillary oxygen concentration.

v_{Pa}
- Implementation Name: v_P
- Units: mmHg
- Initial value: $v_{Pa,n}$
 Filtered arterial blood pressure.

v_d
- Implementation Name: v_u
- Units: dimensionless
- Initial value: $v_{u,n}$
 Filtered demand.

$HbO_{2,v}$
- Implementation Name: X0v
- Units: mM
- Initial value: $HbO_{2,v,n}$
 Venous concentration of oxygen bound to haemoglobin.
4.6 Intermediate Variables

\[\text{Cu}_{A,r} = \text{CCO}_{\text{tot}} - \text{Cu}_{A,o} \]
Implementation Name: \textit{ared}
Units: mM
Initial value: 0
Concentration of reduced Cu\(_A\).

\[a_{3,o} = \text{CCO}_{\text{tot}} - a_{3,r} \]
Implementation Name: \textit{b}
Units: mM
Initial value: 0
Concentration of oxidised cytochrome a\(_3\).

\[C_{0,i} = 10^{-pH_m} - 10^{-pH_m - dPH} \frac{dpH}{dpH} \]
Implementation Name: \textit{C0i}
Units: dimensionless
Initial value: 0
Natural buffering capacity of protons in mitochondria.

\[\text{CBF} = G \left(P_a - P_v \right) \]
Implementation Name: \textit{CBF}
Units: ml_blood ml_brain s\(^{-1}\)
Initial value: \(\text{CBF}_{\text{ref}} \)
Cerebral blood flow.

\[\Delta \text{oxCCO} = \Delta \text{oxCCO}_{\text{off}} + 1000 \text{Vol}_{\text{mit}} \left(\text{Cu}_{A,o} - \text{Cu}_{A,o,n} \right) \]
Implementation Name: \textit{CCCC}
Units: uM
Initial value: 0
Cytochrome c oxidase signal measured by NIRS.

\[\text{CMRO}_2 = f_3 \text{Vol}_{\text{mit}} \]
Implementation Name: \textit{CMRO2}
Units: mM s\(^{-1}\)
Initial value: 0
Rate of cerebral oxygen metabolism.

\[\Delta p = \psi + Z \left(pH_m - pH_v \right) \]
Implementation Name: \textit{Dp}
Units: mV
Initial value: 0
Proton motive force across the mitochondrial inner membrane.

\[\eta = R_p \left(\frac{v_p}{v_p,n} - 1 \right) + R_O_2 \left(\frac{v_O_2}{v_O_2,n} - 1 \right) + R_{CO_2} \left(1 - \frac{v_{CO_2}}{v_{CO_2,n}} \right) + R_u \left(1 - \frac{v_u}{v_{u,n}} \right) \]
Implementation Name: \textit{eta}
Units: dimensionless
Initial value: 0
Merged autoregulation stimulus.

\[f_1 = k_1 \text{Cu}_{A,o} - k_{-1} \text{Cu}_{A,r} \]
Implementation Name: \textit{f1}
Units: mM s\(^{-1}\)
Initial value: 0
Reaction rate for the reduction of Cu\(_A\).

\[f_3 = k_2 \text{Cu}_{A,r} a_{3,o} - k_{-2} \text{Cu}_{A,o} a_{3,r} \]
Implementation Name: \textit{f2}
4.6 Intermediate Variables

\[\begin{align*}
\text{Units: mM s}^{-1} \\
\text{Initial value: 0} \\
\text{Reaction rate for the reduction of } a_3.
\end{align*} \]

\[f_3 = \frac{k_3 O_2 a_{\text{3,r}} \exp \left(-c_3 \left(\Delta p - \Delta p_{\text{30}} \right) \right)}{1 + \exp \left(-c_3 \left(\Delta p - \Delta p_{\text{30}} \right) \right)} \]

Implementation Name: \(f_3 \)

\[\text{Units: mM s}^{-1} \]

\[\text{Initial value: 0} \]

\[\text{Reaction rate for the reduction of O}_2. \]

\[G = K_G r^4 \]

Implementation Name: \(G \)

\[\text{Units: ml}_{\text{blood}} \cdot \text{ml}_{\text{brain}}^{-1} \cdot \text{mmHg}^{-1} \cdot \text{s}^{-1} \]

\[\text{Initial value: 0} \]

Effect of conductance of the whole blood flow compartment.

\[\text{HbO}_2 = (V_a HbO_{2,a} + V_v HbO_{2,v}) \text{ blood}_{\text{hb}} \]

Implementation Name: \(\text{HbO}_2 \)

\[\text{Units: } \text{uM} \]

\[\text{Initial value: 0} \]

Oxygenated haemoglobin signal measured by NIRS.

\[\text{HbT} = (V_a + V_v) Hb_{\text{tot}} \text{ blood}_{\text{hb}} \]

Implementation Name: \(\text{HbT} \)

\[\text{Units: } \text{uM} \]

\[\text{Initial value: 0} \]

Total haemoglobin signal measured by NIRS.

\[HHb = \text{HbT} - \text{HbO}_2 \]

Implementation Name: \(\text{HHb} \)

\[\text{Units: } \text{uM} \]

\[\text{Initial value: 0} \]

Deoxygenated haemoglobin signal measured by NIRS.

\[J_{O2} = \text{fmin} \left(D_{O2} (O_2,c - O_2), CBF HbO_{2,a} \right) \]

Implementation Name: \(J_{O2} \)

\[\text{Units: mM s}^{-1} \]

\[\text{Initial value: 0} \]

Oxygen flux from blood to tissue.

\[k_1 = k_{1,0} \exp \left(-c_{k_1} \left(\Delta p - \Delta p_{\mu} \right) \right) \]

Implementation Name: \(k_1 \)

\[\text{Units: s}^{-1} \]

\[\text{Initial value: 0} \]

Forward reaction rate for the reduction of Cu\(_A\).

\[k_2 = k_{2,0} \exp \left(-c_{k_2} \left(\Delta p - \Delta p_{\mu} \right) \right) \]

Implementation Name: \(k_2 \)

\[\text{Units: s}^{-1} \]

\[\text{Initial value: 0} \]

Forward reaction rate for the reduction of \(a_3 \).

\[K_{\text{eq}1} = 10^\frac{1}{Z} \left(\frac{\alpha_{\text{h}}}{\Delta E_{\text{h}}} - e_1 \right) \]

Implementation Name: \(K_{\text{eq}1} \)

\[\text{Units: dimensionless} \]

\[\text{Initial value: 0} \]

Equilibrium constant for the Cu\(_A\) reduction reaction.

\[K_{\text{eq}2} = 10^\frac{1}{Z} \left(\frac{\alpha_{\text{h}}}{\Delta E_{\text{h}}} - e_2 \right) \]
Implementation Name: K_{eq2}
Units: dimensionless
Initial value: 0
Equilibrium constant for the a_3 reduction reaction.

$$k_{-1} = \frac{k_1}{K_{eq1}}$$
Implementation Name: $kn1$
Units: s$^{-1}$
Initial value: 0
Reverse reaction rate for the reduction of Cu_A.

$$k_{-2} = \frac{k_2}{K_{eq2}}$$
Implementation Name: $kn2$
Units: s$^{-1}$
Initial value: 0
Reverse reaction rate for the reduction of a_3.

$$L = L_{CV} + L_{lk}$$
Implementation Name: L
Units: mM s$^{-1}$
Initial value: 0
Rate of proton return to the mitochondrial matrix.

$$L_{CV} = \frac{CV_{inh} L_{CV,max} (1 - \exp(-\theta))}{1 + r_{CV} \exp(-\theta)}$$
Implementation Name: L_{CV}
Units: mM s$^{-1}$
Initial value: 0
Rate at which protons re-enter the mitochondrial matrix due to ADP phosphorylation.

$$L_{lk} = k_{unc} L_{lk0} (\exp(\Delta p k_{lk2}) - 1)$$
Implementation Name: L_{lk}
Units: mM s$^{-1}$
Initial value: 0
Rate at which protons re-enter the mitochondrial matrix via leak channels.

$$\mu = \frac{k_{aut} (\exp(\eta) - 1)}{\exp(\eta) + 1}$$
Implementation Name: mu
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation response.

$$pH_m = -\log_{10}(\frac{H^+}{1000})$$
Implementation Name: pH_m
Units: dimensionless
Initial value: 0
Mitochondrial pH.

$$r_{buffi} = \frac{C_{buffi}}{C_{0,j}}$$
Implementation Name: r_{buffi}
Units: dimensionless
Initial value: 0
Buffering capacity for protons in mitochondria.

$$R_{Hi} = r_{buffi}$$
4.7 Parameters

Implementation Name: \text{R}_{\text{Hi}}
Units: dimensionless
Initial value: 0
Relative mitochondrial volume for protons, taking into account buffering effect of pH.

\[S_{c,\text{O}_2} = \frac{S_{a,\text{O}_2} + S_{v,\text{O}_2}}{2} \]
Implementation Name: Sc02
Units: dimensionless
Initial value: \(S_{c,\text{O}_2} \)
Capillary oxygen saturation.

\[S_{v,\text{O}_2} = \frac{HbO_{2,v}}{Hb_{\text{tot}}} \]
Implementation Name: Sv02
Units: dimensionless
Initial value: \(S_{v,\text{O}_2} \)
Venous oxygen saturation.

\[\theta = k_{CV} (\Delta P + Z \log_{10} (u) - \Delta P_{CV,0}) \]
Implementation Name: theta
Units: dimensionless
Initial value: 0
Driving force Complex V.

\[T0I = \frac{100HbO_2}{HbT} \]
Implementation Name: T0I
Units: dimensionless
Initial value: 0
Total oxygenation index.

\[V_{mca} = \frac{CBF \cdot CBF_{\text{scale}}}{1} \]
Implementation Name: Vmca
Units: cm s\(^{-1}\)
Initial value: 0
Blood velocity in the middle cerebral artery.

\[V_a = V_{a,n} \left(\frac{r}{r_n} \right)^2 \]
Implementation Name: Vol_art
Units: dimensionless
Initial value: 0
Relative arterial blood volume.

\[Cu_{a,\text{frac},n} \]
Implementation Name: a_frac_n
Units: dimensionless
Initial value: 0.8
Normal oxidised fraction of \(Cu_A \).

\[Cu_{A,\rho,n} \]
Implementation Name: a_n
Units: mM
Initial value: \(CCO_{\text{tot}} Cu_{a,\text{frac},n} \)
Normal concentration of oxidised cytochrome c oxidase.
$Cu_{A,r,n}$
Implementation Name: a_red_n
Units: mM
Initial value: $CCO_{\text{tot}} - Cu_{A,o,n}$
Normal concentration of reduced Cu.

$a_{3,o,n}$
Implementation Name: b_n
Units: mM
Initial value: $CCO_{\text{tot}} - a_{3,r,n}$
Normal concentration of oxidised cytochrome a$_3$.

$blood_{hb}$
Implementation Name: b_lood_hb
Units: dimensionless
Initial value: 10.00
Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to μM, and number of binding sites.

$a_{3,r,n}$
Implementation Name: b_red_n
Units: mM
Initial value:
$\frac{f_a}{O_2}$
Normal concentration of reduced cytochrome a$_3$.

c_3
Implementation Name: c3
Units: mV$^{-1}$
Initial value: 0.11
Parameter controlling the sensitivity of the reduction of a$_3$ to Δp.

C_{buffer}
Implementation Name: c_buffer
Units: dimensionless
Initial value: 0.022
Buffering capacity of protons in mitochondria.

C_{im}
Implementation Name: c_im
Units: mM mV$^{-1}$
Initial value: 0.00675
Capacitance of the mitochondrial inner membrane.

$C_{\text{NADH}} = \frac{Z}{2} \log_{10} \left(\frac{1}{\text{NAD} \text{NADH}} \right)$
Implementation Name: c_NADH
Units: mV
Initial value: 0
Excess redox potential for NADH at normal demand.

C_{NADH_n}
Implementation Name: c_NADH_n
Units: mV
Initial value: $\frac{Z}{2} \log_{10} \left(\frac{1}{\text{NAD}_n \text{NADH}_n} \right)$
Normal value of C_{NADH}.
4.7 Parameters

CBF_n
Implementation Name: CBF_n
Units: $ml_{blood} ml_{brain} s^{-1}$
Initial value: 0.0125
Normal cerebral blood flow.

$CBFscale$
Implementation Name: $CBFscale$
Units: cm
Initial value: 5000
Scale constant relating blood flow to arterial velocity.

$\Delta oxCCO_{off}$
Implementation Name: CCO_{offset}
Units: uM
Initial value: 0
Signal offset for the NIRS CCO measurement.

ck_1
Implementation Name: $ck1$
Units: mV$^{-1}$
Initial value: 0.01
Parameter controlling sensitivity of k_1 to Δp.

ck_2
Implementation Name: $ck2$
Units: mV$^{-1}$
Initial value: 0.02
Parameter controlling sensitivity of k_2 to Δp.

$CMRO_{2,n}$
Implementation Name: $CMR2_n$
Units: mM s$^{-1}$
Initial value: 0.034
Normal metabolic rate of oxygen consumption.

CV_{inh}
Implementation Name: CV_{inh}
Units: dimensionless
Initial value: 1
Control parameter representing the action of Complex V inhibitors.

$CCO_{tot} = \frac{CCO_{tot}}{Vol_{mit}}$
Implementation Name: $cytox_{tot}$
Units: mM
Initial value: 0
Concentration of cytochrome c oxidase in mitochondria.

CCO_{tis}
Implementation Name: $cytox_{tot, tis}$
Units: mM
Initial value: 0.0055
Concentration of cytochrome c oxidase in tissue.

D_{NADH}
Implementation Name: D_{NADH}
Units: dimensionless
Initial value: 0.01
Scale parameter for the dependence of NADH redox potential on demand.
\(D_{O_2} \)
- Implementation Name: \(D_{O_2} \)
- Units: \(s^{-1} \)
- Initial value: \(\frac{I_{O_2,n}}{O_{2,c,n} - O_{2,m,n}} \)
- Diffusion rate for oxygen between capillaries and mitochondria.

\(\Delta p_{3,corr} \)
- Implementation Name: \(\Delta p_{3,corr} \)
- Units: mV
- Initial value: \(-25\)
- Difference between \(\Delta p_{30} \) and normal \(\Delta p \).

\(\Delta p_{30} = \Delta p_n + \Delta p_{3,corr} \)
- Implementation Name: \(\Delta p_{30} \)
- Units: mV
- Initial value: 0
- Value of \(\Delta p \) to which \(a_3 \) reduction reaction is maximally sensitive.

\(\Delta p_{CV,0} \)
- Implementation Name: \(\Delta p_{CV,0} \)
- Units: mV
- Initial value: 90
- Value of \(\Delta p \) at which \(L_{CV} \) is zero under normal demand.

\(\Delta p_n \)
- Implementation Name: \(\Delta p_n \)
- Units: mV
- Initial value: \(\psi_n + Z \Delta pH_n \)
- Normal value of \(\Delta p \)

\(dpH \)
- Implementation Name: \(dpH \)
- Units: dimensionless
- Initial value: 0.001
- Parameter in the mitochondrial proton buffering relationship.

\(\Delta pH_n \)
- Implementation Name: \(\Delta pH_n \)
- Units: dimensionless
- Initial value: \(pH_{m,n} - pH_{o,n} \)
- Normal pH difference across the mitochondrial inner membrane.

\(\psi_n \)
- Implementation Name: \(\psi_n \)
- Units: mV
- Initial value: 145
- Normal mitochondrial inner membrane potential.

\(E_{1,NADH} = E_0(Cu_A) - E_0(NADH) + C_{NADH} \)
- Implementation Name: \(E_{1,NADH} \)
- Units: mV
- Initial value: 0
- Value of \(E_1 \) when the reducing substrate is NADH.

\(E_{1,NADH,n} \)
- Implementation Name: \(E_{1,NADH,n} \)
- Units: mV
- Initial value: \(E_0(Cu_A) - E_0(NADH) + C_{NADH,n} \)
- Normal value of \(E_{1,NADH} \).
4.7 Parameters

\(E_1 \)
- Implementation Name: \(E_{1,1} \)
- Units: mV
- Initial value: \(E_{1,NADH} \)
The energy provided by electron transfer to \(\text{Cu}_{A,r} \).

\(E_{1,n} \)
- Implementation Name: \(E_{1,1n} \)
- Units: mV
- Initial value: \(E_{1,NADH,n} \)
- Normal value of \(E_1 \).

\(E_2 \)
- Implementation Name: \(E_{2,2} \)
- Units: mV
- Initial value: \(E_{1,NADH,n} \)
- Energy provided by the transfer of four electrons from \(\text{Cu}_{A,r} \) to \(a_{3,o} \).

\(\mathcal{E}_0(a_3) \)
- Implementation Name: \(\mathcal{E}_{0,30} \)
- Units: mV
- Initial value: 350
- Standard redox potential for cytochrome \(a_3 \).

\(\mathcal{E}_0(\text{Cu}_A) \)
- Implementation Name: \(\mathcal{E}_{0,c0} \)
- Units: mV
- Initial value: 247
- Standard redox potential for \(\text{Cu}_A \).

\(\mathcal{E}_0(\text{NADH}) \)
- Implementation Name: \(\mathcal{E}_{0,w0} \)
- Units: mV
- Initial value: –320
- Standard redox potential for NADH.

\(f_n \)
- Implementation Name: \(f_{n,n} \)
- Units: mM s\(^{-1}\)
- Initial value: \(\frac{\text{CMRO}_2}{V_{\text{Volmit}}} \)
- Normal resting value of \(f_1 \) and \(f_2 \).

\(G_n \)
- Implementation Name: \(G_{n,n} \)
- Units: ml\(_{\text{blood}}\) ml\(_{\text{brain}}^{-1}\) mmHg\(^{-1}\) s\(^{-1}\)
- Initial value: \(\frac{P_{a,n} - P_{v,n}}{C_{\text{BF}_n}} \)
- Normal blood vessel conductance.

\(H_{n}^+ \)
- Implementation Name: \(H_{n,n} \)
- Units: mM
- Initial value: \(10^{3-pH_{n,n}} \)
- Normal mitochondrial proton concentration.

\(J_{O_2,n} \)
- Implementation Name: \(J_{02,n} \)
- Units: mM s\(^{-1}\)
- Initial value: \(\text{CMRO}_2 \)
- Normal oxygen flux from blood to tissue.
$k_{1,0}$

Implementation Name: $k10$
Units: s^{-1}
Initial value: $k_{1,n} \frac{NADH}{NADH_n}$
Forward reaction rate for the reduction of Cu$_A$ at normal Δp.

$k_{1,n}$

Implementation Name: $k1_n$
Units: s^{-1}
Initial value: $f_n \frac{1}{K_{eq1,n} Cu_{A,r,n}}$
Forward reaction rate for the reduction of Cu$_A$ at normal Δp and NADH.

$k_{2,n}$

Implementation Name: $k2_n$
Units: s^{-1}
Initial value: $f_n \frac{1}{K_{eq2,n} Cu_{A,o,n} a_{3,r,n}}$
Normal forward reaction rate for the reduction of a_3.

$k_3 = \frac{k_{3,0}}{1+\exp\left(-c_3-\Delta p_{30}\right)}$

Implementation Name: $k3$
Units: s^{-1}
Initial value: 0
Forward reaction rate for the reduction of O$_2$.

$k_{3,0}$

Implementation Name: $k30$
Units: s^{-1}
Initial value: $2.5E+5$
Apparent second order rate constant for reduction of O$_2$ at zero Δp.

k_{aut}

Implementation Name: k_{aut}
Units: dimensionless
Initial value: 1
Overall functioning of autoregulatory response.

K_G

Implementation Name: k_G
Units: $ml_{blood} \cdot ml_{brain}^{-1} \cdot mmHg^{-1} \cdot s^{-1} \cdot cm^{-4}$
Initial value: $G_n \frac{1}{\text{pow} \left(r_n, 4 \right)}$
Proportionality constant in Poiseuille relation for conductance.

k_{lk2}

Implementation Name: k_{lk2}
Units: mV^{-1}
Initial value: 0.038
Constant controlling the depending of the leak rate L_{lk} on Δp.

k_{unc}

Implementation Name: k_{unc}
Units: dimensionless
Initial value: 1
Control parameter simulating the effect of adding uncouplers to the system.
4.7 Parameters

\[k_{CV} = \frac{-1}{\Delta p_n - \Delta p_{CV,0}} \log \left(\frac{1 - L_{CV,0}}{1 + r_{CV} L_{CV,0}} \right) \]

Implementation Name: \(k_{CV} \)
Units: \(\text{mV}^{-1} \)
Initial value: 0
Parameter controlling the sensitivity of Complex V flux to driving force.

\[K_{eq1,n} \]
Implementation Name: \(K_{eq1,n} \)
Units: dimensionless
Initial value: \(10^{-1} \left(\frac{1}{P_{\Delta p_n}} - E_{1,n} \right) \)
Normal value of the equilibrium constant for the CuA reduction reaction.

\[K_{eq2,n} \]
Implementation Name: \(K_{eq2,n} \)
Units: dimensionless
Initial value: \(10^{-1} \left(\frac{1}{P_{\Delta p_n}} - E_{2} \right) \)
Normal value of the equilibrium constant for the a3 reduction reaction.

\[L_{CV,0} \]
Implementation Name: \(L_{CV0} \)
Units: dimensionless
Initial value: 0.4
Normal Complex V flux as a fraction of maximum possible flux.

\[L_{CV,frac} = 1 - L_{lk,frac} \]
Implementation Name: \(L_{CVfrac} \)
Units: dimensionless
Initial value: 0
Normal fraction of proton entry into mitochondria which is due to ADP phosphorylation.

\[L_{CV,max} = \frac{L_{CV,n}}{L_{CV,0}} \]
Implementation Name: \(L_{CVmax} \)
Units: \(\text{mM s}^{-1} \)
Initial value: 0
The maximum rate of proton flow through Complex V.

\[L_{CV,n} \]
Implementation Name: \(L_{CVn} \)
Units: \(\text{mM s}^{-1} \)
Initial value: \(L_n L_{CV,frac} \)
The resting flow of protons into the matrix through Complex V.

\[L_{lk0} \]
Implementation Name: \(L_{lk0} \)
Units: \(\text{mM s}^{-1} \)
Initial value: \(\exp \left(\frac{\Delta p_n k_{lk2}}{L_{lk,n}} - 1 \right) \)
Constant controlling the depending of the leak rate \(L_{lk} \) on \(\Delta p \).

\[L_{lk,frac} \]
Implementation Name: \(L_{lkfrac} \)
Units: dimensionless
Initial value: 0.25
Normal fraction of proton entry into mitochondria which is via leak channels.

\[L_{lk,n} \]
Implementation Name: \(L_{lkn} \)
Units: \(\text{mM s}^{-1} \)
Initial value: $L_n L_{lk,frac}$
The resting flow of protons into the matrix via leak channels.

$L_n = p_{tot} f_n$
Implementation Name: L_n
Units: mM s$^{-1}$
Initial value: 0
The normal total flow of protons back into mitochondria.

λ_0
Implementation Name: $\lambda_{am,0}$
Units: cm
Initial value: 0.01856
Intercept of the fitted linear model for blood vessel radius.

λ_μ
Implementation Name: $\lambda_{am,\mu}$
Units: cm
Initial value: -0.003935
Fitted linear dependence of blood vessel radius on autoregulatory stimuli.

n_h
Implementation Name: n_h
Units: dimensionless
Initial value: 2.5
Hill coefficient for oxygen dissociation from haemoglobin.

$NADH = \frac{NAD_{pool}}{1 + \frac{NAD}{NADH}}$
Implementation Name: NADH
Units: mM
Initial value: 0
Concentration of NADH in the mitochondria.

$NADH_n$
Implementation Name: NADH_n
Units: mM
Initial value: $\frac{NAD_{pool}}{1 + \frac{NAD}{NADH_n}}$
Normal concentration of NADH in the mitochondria.

$\frac{NAD}{NADH}$
Implementation Name: NAD/NADH
Units: dimensionless
Initial value: $\frac{NAD}{NADH_\mu} \text{pow} (u, 2D_{NADH})$
NAD/NADH ratio.

$\frac{NAD}{NADH_n}$
Implementation Name: NAD/NADH_n
Units: dimensionless
Initial value: 9
Normal NAD/NADH ratio.

NAD_{pool}
Implementation Name: NADpool
Units: dimensionless
Initial value: 3
Relative size of the NAD pool, used to estimate normal mitochondrial NADH.
4.7 Parameters

\(O_{2,n}\)
- Implementation Name: O2_n
- Units: mM
- Initial value: 0.024
 Normal mitochondrial oxygen concentration.

\(O_{2,c,n}\)
- Implementation Name: O2c_n
- Units: mM
- Initial value: \(\phi \text{ pow} \left(\frac{S_c,O_{2,n}}{1 - S_c,O_{2,n}} \cdot \frac{1}{h_b} \right)\)
 Normal capillary oxygen concentration.

\(p_1 = p_{tot} - p_{23}\)
- Implementation Name: p1
- Units: dimensionless
- Initial value: 0
 Proton cost of the reaction reducing Cu_A.

\(p_3\)
- Implementation Name: p2
- Units: dimensionless
- Initial value: 4
 Proton cost of the reaction reducing a_3.

\(p_{23}\)
- Implementation Name: p23
- Units: dimensionless
- Initial value: 8
 Total protons removed from the mitochondrial matrix by the reductions of a_3 and O_2.

\(p_3\)
- Implementation Name: p3
- Units: dimensionless
- Initial value: \(p_{23} - p_3\)
 Proton cost of the reaction reducing O_2.

\(P_a\)
- Implementation Name: P_a
- Units: mmHg
- Initial value: \(P_{a,n}\)
 Mean arterial blood pressure.

\(P_{a,n}\)
- Implementation Name: P_an
- Units: mmHg
- Initial value: 100
 Normal arterial blood pressure.

\(P_{C1}\)
- Implementation Name: p_C1
- Units: dimensionless
- Initial value: 8
 Protons pumped by Complex I.

\(P_{C3}\)
- Implementation Name: p_C3
- Units: dimensionless
- Initial value: 4
 Protons pumped by Complex III.
\[P_{\text{tot}} \]
Implementation Name: \(p_{\text{tot}} \)
Units: dimensionless
Initial value: \(p_{\text{tot}}\text{NADH} \)
Total protons removed from the mitochondrial matrix by the three modelled electron transport reactions.

\[P_{\text{tot}}\text{NADH} = p_{C_{1}} + p_{C_{3}} + p_{23} \]
Implementation Name: \(p_{\text{tot}}\text{NADH} \)
Units: dimensionless
Initial value: 0
Total protons pumped when the reducing agent is NADH.

\[P_{\text{v}} \]
Implementation Name: \(P_{\text{v}} \)
Units: mmHg
Initial value: \(P_{\text{v,n}} \)
Venous blood pressure.

\[P_{\text{v,n}} \]
Implementation Name: \(P_{\text{v,n}} \)
Units: mmHg
Initial value: 4
Normal venous blood pressure.

\[P_{\text{aCO}_2} \]
Implementation Name: \(P_{\text{aCO}_2} \)
Units: mmHg
Initial value: \(P_{\text{aCO}_2,n} \)
Arterial partial pressure of carbon dioxide.

\[P_{\text{aCO}_2,n} \]
Implementation Name: \(P_{\text{aCO}_2,n} \)
Units: mmHg
Initial value: 40
Normal arterial partial pressure of carbon dioxide.

\[P_{\text{Hm,n}} \]
Implementation Name: \(P_{\text{Hm,n}} \)
Units: dimensionless
Initial value: 7.4
Normal mitochondrial pH.

\[P_{\text{H}} \]
Implementation Name: \(P_{\text{H}} \)
Units: dimensionless
Initial value: 7
Extra-mitochondrial pH.

\[P_{\text{H,o,n}} \]
Implementation Name: \(P_{\text{H,o,n}} \)
Units: dimensionless
Initial value: 7
Normal extra-mitochondrial pH.

\(\phi \)
Implementation Name: \(\phi \)
Units: mM
Initial value: 0.036
Oxygen concentration at half-maximal saturation.
4.7 Parameters

\(R_{CO_2} \)
- Implementation Name: \(R_{autc} \)
- Units: dimensionless
- Initial value: 2.2
- Autoregulatory reactivity to carbon dioxide.

\(R_{O_2} \)
- Implementation Name: \(R_{auto} \)
- Units: dimensionless
- Initial value: 1.5
- Autoregulatory reactivity to oxygen.

\(R_{Pa} \)
- Implementation Name: \(R_{autp} \)
- Units: dimensionless
- Initial value: 4
- Autoregulatory reactivity to blood pressure.

\(R_u \)
- Implementation Name: \(R_{autu} \)
- Units: dimensionless
- Initial value: 0.5
- Autoregulatory reactivity to demand.

\(r_{CV} \)
- Implementation Name: \(r_{CV} \)
- Units: dimensionless
- Initial value: 5
- Parameter controlling the ratio of maximal to minimal rates of oxidative phosphorylation.

\(r_n \)
- Implementation Name: \(r_n \)
- Units: cm
- Initial value: 0.0187
- Normal blood vessel radius. Normal effective blood vessel radius.

\(S_{a,O_2,n} \)
- Implementation Name: \(SaO2_n \)
- Units: dimensionless
- Initial value: 0.96
- Normal arterial oxygen saturation.

\(S_{a,O_2} \)
- Implementation Name: \(SaO2sup \)
- Units: dimensionless
- Initial value: \(S_{a,O_2,n} \)
- Arterial oxygen saturation.

\(S_{c,O_2,n} \)
- Implementation Name: \(ScO2_n \)
- Units: dimensionless
- Initial value: \(\frac{S_{a,O_2,n} + S_{c,O_2,n}}{2} \)
- Normal capillary oxygen saturation.

\(S_{v,O_2,n} \)
- Implementation Name: \(S_vO2_n \)
- Units: dimensionless
- Initial value: \(\frac{HbO_2,v,n}{HbO_2,tot,n} \)
- Normal venous oxygen saturation.
Implementation Name: t
Units: s
Initial value: 0
Time over which the system evolves.

Implementation Name: τ_{CO_2}
Units: s
Initial value: 5
Filter time constant for stimulus effect of carbon dioxide.

Implementation Name: τ_{O_2}
Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

Implementation Name: τ_{P_a}
Units: s
Initial value: 5
Filter time constant for stimulus effect of blood pressure.

Implementation Name: τ_u
Units: s
Initial value: 0.5
Filter time constant for stimulus effect of demand.

Implementation Name: u
Units: dimensionless
Initial value: u_n
Parameter indicating metabolic demand.

Implementation Name: u_n
Units: dimensionless
Initial value: 1
Normal demand.

Implementation Name: $v_{CO_2,n}$
Units: mmHg
Initial value: $P_{tCO_2,n}$
Normal filtered carbon dioxide partial pressure. Normal filtered carbon dioxide partial pressure.

Implementation Name: $v_{O_2,n}$
Units: mM
Initial value: $O_{2,c,n}$
Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

Implementation Name: $v_{P_a,n}$
Units: mmHg
Initial value: $P_{a,n}$
4.7 Parameters

Normal filtered arterial blood pressure. Normal filtered blood pressure.

\(v_{u,n} \)
- Implementation Name: \(v_{_un} \)
- Units: dimensionless
- Initial value: \(u_n \)
- Normal filtered demand. Normal filtered demand.

\(V_{Arat_n} \)
- Implementation Name: \(\text{Varat}_n \)
- Units: dimensionless
- Initial value: 3
- Normal volume ratio of veins to arteries in brain tissue.

\(V_{a,n} \)
- Implementation Name: \(\text{Volart}_n \)
- Units: dimensionless
- Initial value: \(\frac{1}{1 + \text{Varat}_n} \)
- Normal relative arterial blood volume.

\(V_{mit} \)
- Implementation Name: \(\text{Volmit} \)
- Units: dimensionless
- Initial value: 0.067
- Fraction of brain tissue volume that is mitochondria.

\(V_p \)
- Implementation Name: \(\text{Volven} \)
- Units: dimensionless
- Initial value: \(\frac{1}{1 + \text{Varat}_n} \)
- Relative venous blood volume.

\(HbO_{2,a} = Hb_{\text{tot}} S_{a,O_2} \)
- Implementation Name: \(\text{XOa} \)
- Units: mM
- Initial value: \(HbO_{2,a,n} \)
- Arterial concentration of oxygen bound to haemoglobin.

\(HbO_{2,a,n} \)
- Implementation Name: \(\text{XO}_a{}_{_n} \)
- Units: mM
- Initial value: \(Hb_{\text{tot},n} S_{a,O_2,n} \)
- Normal arterial concentration of oxygen bound to haemoglobin.

\(HbO_{2,v,n} \)
- Implementation Name: \(\text{XO}_v{}_{_n} \)
- Units: mM
- Initial value: \(\frac{\text{CBF}_n HbO_{2,a,n} - I_{O_2,n}}{\text{CBF}_n} \)
- Normal venous concentration of oxygen bound to haemoglobin.

\(Hb_{\text{tot}} \)
- Implementation Name: \(\text{Xtot} \)
- Units: mM
- Initial value: 9.1
- Total concentration of haemoglobin O\(_2\) binding sites in blood (4 times haemoglobin concentration).

\(Hb_{\text{tot},n} \)
- Implementation Name: \(\text{Xtot}_n \)
Units: mM
Initial value: 9.1
Normal total concentration of haemoglobin O\textsubscript{2} binding sites in blood (4 times haemoglobin concentration).

Z
Implementation Name: Z
Units: mV
Initial value: 59.028
Proportionality constant in calculation of driving forces due to concentration differences. Defined as \(RT/F \), where \(F \) is Faraday’s constant, \(R \) the ideal gas constant and \(T \) the absolute temperature.
5 BSB4

5.1 Overview

Simplified model in which the blood flow submodel is replaced with variant B4.

- 9 differential state variables
- 3 algebraic state variables
- 35 intermediate variables
- 120 parameters
- 4 declared inputs
- 33 default outputs

5.2 Differential Equations

\[\frac{dC_{4,0}}{dt} = 4f_3 - 4f_1 \]
(5.1)

\[\frac{d\alpha_{3,r}}{dt} = 4f_3 - 4f_3 \]
(5.2)

\[\frac{d\psi}{dt} = \frac{p_3 f_3 + p_1 f_1 + p_3 f_3 - L}{C_{im}} \]
(5.3)

\[\frac{dH^+}{dt} = \frac{1}{R_{Hi}} L - \frac{p_3}{R_{Hi}} f_3 - \frac{p_1}{R_{Hi}} f_1 - \frac{p_3}{R_{Hi}} f_3 \]
(5.4)

\[\frac{dO_2}{dt} = \frac{1}{Vol_{mit}} I_{O_2} - f_3 \]
(5.5)

\[\frac{dV_{CO_2}}{dt} = \frac{1}{\tau_{CO_2}} (P_{a,CO_2} - v_{CO_2}) \]
(5.6)

\[\frac{dV_{O_2}}{dt} = \frac{1}{\tau_{O_2}} (O_{2,c} - v_{O_2}) \]
(5.7)

\[\frac{dV_p}{dt} = \frac{1}{\tau_p} (P_a - v_p) \]
(5.8)
\[\frac{d\nu_d}{dt} = \frac{1}{\tau_u} (u - \nu_u) \] (5.9)

5.3 Algebraic Equations

\[\phi \left(\frac{S_{c,O_2}}{1 - S_{c,O_2}} \right) \frac{1}{\tau_t} - O_{2,c} = 0 \] (5.10)

\[\lambda_0 + \frac{\lambda_{p_a}}{P_a} - r = 0 \] (5.11)

\[\text{CBF} \ (HbO}_{2,a} - HbO}_{2,o}) - IO_2 = 0 \] (5.12)

5.4 Chemical Reactions

\[\xrightarrow{L} \frac{1}{R_{Hi}} \text{H}^+ \] (5.13)

\[\xrightarrow{J_{O_2}} \frac{1}{Vol_{mit}} \text{O}_2 \] (5.14)

\[\frac{P_3}{R_{Hi}} \text{H}^+ \xrightarrow{f_3} 4 \text{Cu}_{A,o} + 4 \text{a}_{3,r} \] (5.15)

\[4 \text{Cu}_{A,o} + \frac{P_1}{R_{Hi}} \text{H}^+ \xrightarrow{f_1} \] (5.16)

\[\text{O}_2 + 4 \text{a}_{3,r} + \frac{P_3}{R_{Hi}} \text{H}^+ \xrightarrow{f_3} \] (5.17)

5.5 State Variables

\(C_{\text{Cu}_{A,o}} \)

- Implementation Name: a
- Units: mM
- Initial value: \(C_{\text{Cu}_{A,o,n}} \)
 Concentration of oxidised cytochrome c oxidase.

\(\text{a}_{3,r} \)

- Implementation Name: b3rd
- Units: mM
- Initial value: \(\text{a}_{3,r,n} \)
 Concentration of reduced cytochrome a3.
5.5 State Variables

\(\psi \)
Implementation Name: Dpsi
Units: mV
Initial value: \(\psi_n \)
Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

\(H^+ \)
Implementation Name: H
Units: mM
Initial value: \(H^+_n \)
Mitochondrial proton concentration.

\(O_2 \)
Implementation Name: 02
Units: mM
Initial value: \(O_{2,n} \)
Mitochondrial oxygen concentration.

\(O_{2,c} \)
Implementation Name: 02c
Units: mM
Initial value: \(O_{2,c,n} \)
Capillary oxygen concentration.

\(r \)
Implementation Name: r
Units: cm
Initial value: \(r_n \)
Typical blood vessel radius.

\(\nu_{CO_2} \)
Implementation Name: \(\nu_{c} \)
Units: mmHg
Initial value: \(\nu_{CO_2,n} \)
Filtered carbon dioxide partial pressure.

\(\nu_{O_2} \)
Implementation Name: \(\nu_{o} \)
Units: mM
Initial value: \(\nu_{O_2,n} \)
Filtered capillary oxygen concentration.

\(\nu_{Pa} \)
Implementation Name: \(\nu_{p} \)
Units: mmHg
Initial value: \(\nu_{Pa,n} \)
Filtered arterial blood pressure.

\(\nu_{u} \)
Implementation Name: \(\nu_{u} \)
Units: dimensionless
Initial value: \(\nu_{u,n} \)
Filtered demand.

\(HbO_{2,v} \)
Implementation Name: \(\chi_{0v} \)
Units: mM
Initial value: \(HbO_{2,v,n} \)
Venous concentration of oxygen bound to haemoglobin.
5.6 Intermediate Variables

\[Cu_{A,r} = CCO_{tot} - Cu_{A,o} \]
- Implementation Name: ared
- Units: mM
- Initial value: 0
- Concentration of reduced CuA.

\[a_{3,o} = CCO_{tot} - a_{3,r} \]
- Implementation Name: b
- Units: mM
- Initial value: 0
- Concentration of oxidised cytochrome a3.

\[C_{0,i} = \frac{10^{-pH_{in}} - 10^{-pH_{in} - dpH}}{dpH} \]
- Implementation Name: C_0i
- Units: dimensionless
- Initial value: 0
- Natural buffering capacity of protons in mitochondria.

\[CBF = G (P_a - P_v) \]
- Implementation Name: CBF
- Units: ml brain\(^{-1}\) s\(^{-1}\)
- Initial value: CBF\(_{ref}\)
- Cerebral blood flow.

\[\Delta oxCCO = \Delta oxCCO_{off} + 1000 Vol_{mit} (Cu_{A,o} - Cu_{A,r,n}) \]
- Implementation Name: CCCO
- Units: mM
- Initial value: 0
- Cytochrome c oxidase signal measured by NIRS.

\[CMRO_2 = f_3 Vol_{mit} \]
- Implementation Name: CMRO2
- Units: mM s\(^{-1}\)
- Initial value: 0
- Rate of cerebral oxygen metabolism.

\[\Delta p = \psi + Z (pH_m - pH_o) \]
- Implementation Name: Dp
- Units: mV
- Initial value: 0
- Proton motive force across the mitochondrial inner membrane.

\[\eta = R_P \left(\frac{V_P}{V_{P,o,n}} - 1 \right) + R_{O_2} \left(\frac{V_{O_2}}{V_{O_2,n}} - 1 \right) + R_{CO_2} \left(1 - \frac{V_{CO_2}}{V_{CO_2,n}} \right) + R_u \left(1 - \frac{V_u}{V_{u,n}} \right) \]
- Implementation Name: eta
- Units: dimensionless
- Initial value: 0
- Merged autoregulation stimulus.

\[f_1 = k_1 Cu_{A,o} - k_{-1} Cu_{A,r} \]
- Implementation Name: f1
- Units: mM s\(^{-1}\)
- Initial value: 0
- Reaction rate for the reduction of CuA.

\[f_3 = k_2 Cu_{A,r} a_{3,o} - k_{-2} Cu_{A,o} a_{3,r} \]
- Implementation Name: f2
5.6 Intermediate Variables

Units: mM s$^{-1}$
Initial value: 0
Reaction rate for the reduction of a_3.

\[f_3 = \frac{k_3 O_2 a_3 r \exp \left(-c_3 (\Delta p - \Delta p_{30}) \right)}{1 + \exp \left(-c_3 (\Delta p - \Delta p_{30}) \right)} \]

Implementation Name: f_3
Units: mM s$^{-1}$
Initial value: 0
Reaction rate for the reduction of O_2.

\[G = K_G r^4 \]

Implementation Name: G
Units: ml$^{-1}$ blood ml$^{-1}$ brain mmHg$^{-1}$ s$^{-1}$
Initial value: 0
Effective conductance of the whole blood flow compartment.

\[HbO_2 = (V_a HbO_2_a + V_v HbO_2_v) \text{ blood}_{hb} \]
Implementation Name: Hb02
Units: uM
Initial value: 0
Oxygenated haemoglobin signal measured by NIRS.

\[HbT = (V_a + V_v) HbTot \text{ blood}_{hb} \]
Implementation Name: HbT
Units: uM
Initial value: 0
Total haemoglobin signal measured by NIRS.

\[HHb = HbT - HbO_2 \]
Implementation Name: HHb
Units: uM
Initial value: 0
Deoxygenated haemoglobin signal measured by NIRS.

\[J_{O2} = \text{fmin} \left(D_{O2} (O_{2c} - O_2), CBF HbO_2_a \right) \]
Implementation Name: J_{O2}
Units: mM s$^{-1}$
Initial value: 0
Oxygen flux from blood to tissue.

\[k_1 = k_{1,0} \exp \left(-c_{k_1} (\Delta p - \Delta p_n) \right) \]
Implementation Name: k1
Units: s$^{-1}$
Initial value: 0
Forward reaction rate for the reduction of Cu_A.

\[k_2 = k_{2,n} \exp \left(-c_{k_2} (\Delta p - \Delta p_n) \right) \]
Implementation Name: k2
Units: s$^{-1}$
Initial value: 0
Forward reaction rate for the reduction of a_3.

\[K_{eq1} = 10^\frac{1}{p} \left(\frac{Hb}{4 - \varepsilon_1} \right) \]
Implementation Name: Keq1
Units: dimensionless
Initial value: 0
Equilibrium constant for the Cu_A reduction reaction.

\[K_{eq2} = 10^\frac{1}{q} \left(\frac{Hb}{4 - \varepsilon_2} \right) \]
Implementation Name: \(k_{eq2} \)
Units: dimensionless
Initial value: 0
Equilibrium constant for the \(a_3 \) reduction reaction.

\[
k_{-1} = \frac{k_1}{K_{eq1}}
\]

Implementation Name: \(kn1 \)
Units: \(s^{-1} \)
Initial value: 0
Reverse reaction rate for the reduction of \(Cu_A \).

\[
k_{-2} = \frac{k_2}{K_{eq2}}
\]

Implementation Name: \(kn2 \)
Units: \(s^{-1} \)
Initial value: 0
Reverse reaction rate for the reduction of \(a_3 \).

\[
L = L_{CV} + L_{lk}
\]

Implementation Name: \(L \)
Units: mM s\(^{-1} \)
Initial value: 0
Rate of proton return to the mitochondrial matrix.

\[
L_{CV} = \frac{CV_{inh} L_{CV,max} (1 - \exp(-\theta))}{1 + r_{CV} \exp(-\theta)}
\]

Implementation Name: \(L_{CV} \)
Units: mM s\(^{-1} \)
Initial value: 0
Rate at which protons re-enter the mitochondrial matrix due to ADP phosphorylation.

\[
L_{lk} = k_{unc} L_{lk0} (\exp(\Delta p k_{lk2}) - 1)
\]

Implementation Name: \(L_{lk} \)
Units: mM s\(^{-1} \)
Initial value: 0
Rate at which protons re-enter the mitochondrial matrix via leak channels.

\[
\mu = \frac{k_{aut} (\exp(\eta) - 1)}{\exp(\eta) + 1}
\]

Implementation Name: \(\mu \)
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation response.

\[
pH_m = -\log_{10} \left(\frac{H^+}{1000} \right)
\]

Implementation Name: \(pH_m \)
Units: dimensionless
Initial value: 0
Mitochondrial pH.

\[
r_{buffi} = \frac{C_{buffi}}{C_{0i}}
\]

Implementation Name: \(r_{buffi} \)
Units: dimensionless
Initial value: 0
Buffering capacity for protons in mitochondria.

\[
R_{Hi} = r_{buffi}
\]
5.7 Parameters

Implementation Name: \(R_{Hi} \)
Units: dimensionless
Initial value: 0
Relative mitochondrial volume for protons, taking into account buffering effect of pH.

\[
S_{c,O_2} = \frac{S_a,O_2 + S_v,O_2}{2}
\]
Implementation Name: Sc02
Units: dimensionless
Initial value: \(S_{c,O_2,n} \)
Capillary oxygen saturation.

\[
S_{v,O_2} = \frac{HbO_2,v}{HbTot}
\]
Implementation Name: Sv02
Units: dimensionless
Initial value: \(S_{v,O_2,n} \)
Venous oxygen saturation.

\[
\theta = k_{CV} (\Delta p + Z \log_{10} (u) - \Delta p_{CV,0})
\]
Implementation Name: theta
Units: dimensionless
Initial value: 0
Driving force Complex V.

\[
TOI = \frac{100HbO_2}{HbT}
\]
Implementation Name: TOI
Units: dimensionless
Initial value: 0
Total oxygenation index.

\[
V_{mca} = CBF \cdot CBF_{scale}
\]
Implementation Name: Vmca
Units: cm s\(^{-1}\)
Initial value: 0
Blood velocity in the middle cerebral artery.

\[
V_a = V_{a,n} \left(\frac{r}{r_n} \right)^2
\]
Implementation Name: Vol_art
Units: dimensionless
Initial value: 0
Relative arterial blood volume.

5.7 Parameters

\(Cu_{a,frac,n} \)
Implementation Name: a_frac_n
Units: dimensionless
Initial value: 0.8
Normal oxidised fraction of Cu\(_A\).

\(Cu_{A,frac,n} \)
Implementation Name: a_n
Units: mM
Initial value: \(CCO_{tot} Cu_{a,frac,n} \)
Normal concentration of oxidised cytochrome c oxidase.
\[Cu_{A,r,n} \]
Implementation Name: ared.n
Units: mM
Initial value: \(CCO_{tot} - Cu_{A,o,n} \)
Normal concentration of reduced Cu.

\[a_{3,o,n} \]
Implementation Name: b_n
Units: mM
Initial value: \(CCO_{tot} - a_{3,r,n} \)
Normal concentration of oxidised cytochrome a3.

\[blood_{hb} \]
Implementation Name: blood hb
Units: dimensionless
Initial value: 10.00
Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to \(\mu \)M, and number of binding sites.

\[a_{3,r,n} \]
Implementation Name: bred_n
Units: mM
\[
\frac{f_a}{C_{a,n}} \frac{\exp(-c_3(\Delta p_n - \Delta p_30))}{1+\exp(-c_3(\Delta p_n - \Delta p_30))}
\]
Normal concentration of reduced cytochrome a3.

\[c_3 \]
Implementation Name: c3
Units: mV\(^{-1}\)
Initial value: 0.11
Parameter controlling the sensitivity of the reduction of a3 to \(\Delta p \).

\[C_{buffi} \]
Implementation Name: C_buffi
Units: dimensionless
Initial value: 0.022
Buffering capacity of protons in mitochondria.

\[C_{im} \]
Implementation Name: C_im
Units: mM mV\(^{-1}\)
Initial value: 0.00675
Capacitance of the mitochondrial inner membrane.

\[C_{NADH} = \frac{Z}{2} \log_{10} \left(\frac{1}{NAD/NADH} \right) \]
Implementation Name: C_NADH
Units: mV
Initial value: 0
Excess redox potential for NADH at normal demand.

\[C_{NADH,n} \]
Implementation Name: C_NADH_n
Units: mV
Initial value: \(\frac{Z}{2} \log_{10} \left(\frac{1}{NAD/NADH} \right) \)
Normal value of \(C_{NADH} \).
5.7 Parameters

\(CBF_n \)
Implementation Name: CBFn
Units: \(\text{ml}_{\text{blood}} \text{ ml}^{-1} \text{s}^{-1} \)
Initial value: 0.0125
Normal cerebral blood flow.

\(CBF_{\text{scale}} \)
Implementation Name: CBFscale
Units: cm
Initial value: 5000
Scale constant relating blood flow to arterial velocity.

\(\Delta oxCCO_{\text{off}} \)
Implementation Name: CCO_offset
Units: uM
Initial value: 0
Signal offset for the NIRS CCO measurement.

\(c_{k_1} \)
Implementation Name: ck1
Units: mV\(^{-1}\)
Initial value: 0.01
Parameter controlling sensitivity of \(k_1 \) to \(\Delta p \).

\(c_{k_2} \)
Implementation Name: ck2
Units: mV\(^{-1}\)
Initial value: 0.02
Parameter controlling sensitivity of \(k_2 \) to \(\Delta p \).

\(CMRO_{2,n} \)
Implementation Name: CMRO2_n
Units: mM s\(^{-1}\)
Initial value: 0.034
Normal metabolic rate of oxygen consumption.

\(CV_{\text{inh}} \)
Implementation Name: CVinh
Units: dimensionless
Initial value: 1
Control parameter representing the action of Complex V inhibitors.

\(CCO_{\text{tot}} = \frac{CCO_{\text{tis}}}{Vol_{\text{mit}}} \)
Implementation Name: cytox_tot
Units: mM
Initial value: 0
Concentration of cytochrome c oxidase in mitochondria.

\(CCO_{\text{tis}} \)
Implementation Name: cytox_tot_tis
Units: mM
Initial value: 0.0055
Concentration of cytochrome c oxidase in tissue.

\(D_{\text{NADH}} \)
Implementation Name: D_NADH
Units: dimensionless
Initial value: 0.01
Scale parameter for the dependence of NADH redox potential on demand.
D_{O_2}
Implementation Name: $D_{0.02}$
Units: s$^{-1}$
Initial value: $\frac{I_{O_2,n}}{O_{2,c,n} - O_{2,n}}$
Diffusion rate for oxygen between capillaries and mitochondria.

$\Delta p_{3,corr}$
Implementation Name: $\Delta p_{3,corr}$
Units: mV
Initial value: -25
Difference between Δp_{30} and normal Δp.

$\Delta p_{30} = \Delta p_n + \Delta p_{3,corr}$
Implementation Name: Δp_{30}
Units: mV
Initial value: 0
Value of Δp to which a_3 reduction reaction is maximally sensitive.

$\Delta p_{CV,0}$
Implementation Name: Δp_{CV0}
Units: mV
Initial value: 90
Value of Δp at which L_{CV} is zero under normal demand.

Δp_n
Implementation Name: Δp_n
Units: mV
Initial value: $\psi_n + Z \Delta pH_n$
Normal value of Δp

dpH
Implementation Name: dpH
Units: dimensionless
Initial value: 0.001
Parameter in the mitochondrial proton buffering relationship.

ΔpH_n
Implementation Name: ΔpH_n
Units: dimensionless
Initial value: $pH_{n,n} - pH_{o,n}$
Normal pH difference across the mitochondrial inner membrane.

ψ_n
Implementation Name: ψ_n
Units: mV
Initial value: 145
Normal mitochondrial inner membrane potential.

$E_{1,NADH} = E_0(Cu_A) - E_0(NADH) + \epsilon_{NADH}$
Implementation Name: $E_{1,NADH}$
Units: mV
Initial value: 0
Value of E_1 when the reducing substrate is NADH.

$E_{1,NADH,n}$
Implementation Name: $E_{1,NADH,n}$
Units: mV
Initial value: $E_0(Cu_A) - E_0(NADH) + \epsilon_{NADH,n}$
Normal value of $E_{1,NADH}$.
5.7 Parameters

E_1
Implementation Name: $E_{1,1}$
Units: mV
Initial value: $E_{1,NADH}$
The energy provided by electron transfer to $Cu_{A,r}$.

$E_{1,n}$
Implementation Name: $E_{1,1,n}$
Units: mV
Initial value: $E_{1,NADH,n}$
Normal value of E_1.

E_2
Implementation Name: $E_{2,2}$
Units: mV
Initial value: $E_{2,NADH,n}$
Energy provided by the transfer of four electrons from $Cu_{A,r}$ to $a_{3,0}$.

$\mathcal{E}_0(a_3)$
Implementation Name: $\mathcal{E}_{0,a30}$
Units: mV
Initial value: 350
Standard redox potential for cytochrome a_3.

$\mathcal{E}_0(Cu_A)$
Implementation Name: $\mathcal{E}_{0,c0}$
Units: mV
Initial value: 247
Standard redox potential for Cu_A.

$\mathcal{E}_0(NADH)$
Implementation Name: $\mathcal{E}_{0,w0}$
Units: mV
Initial value: −320
Standard redox potential for NADH.

f_n
Implementation Name: $f_{1,n}$
Units: mM s$^{-1}$
Initial value: $\frac{CMRO_2_{2,n}}{Vol_{mit}}$
Normal resting value of f_1 and f_2.

G_n
Implementation Name: $G_{a,n}$
Units: ml$^{-1}$ blood ml$^{-1}$ brain mmHg$^{-1}$ s$^{-1}$
Initial value: $P_{a,n} - P_{o,n}$
Normal blood vessel conductance.

H_n^+
Implementation Name: $H_{1,n}$
Units: mM
Initial value: $10^{3-pH_{m,n}}$
Normal mitochondrial proton concentration.

$JO_{2,n}$
Implementation Name: $J_{02,n}$
Units: mM s$^{-1}$
Initial value: $CMRO_2_{2,n}$
Normal oxygen flux from blood to tissue.
$k_{1,0}$
Implementation Name: k10
Units: s^{-1}
Initial value: $k_{1,n} \frac{NADH}{NADH_p}$
Forward reaction rate for the reduction of Cu$_A$ at normal Δp.

$k_{1,n}$
Implementation Name: k1_n
Units: s^{-1}
Initial value: $f_n \frac{Cu_{A,0,n} - \frac{1}{K_{eq,n}} Cu_{A,r,n}}{Cu_{A,0,n} a_{3,0,n} - \frac{1}{K_{eq,n}} Cu_{A,0,n} a_{3,r,n}}$
Forward reaction rate for the reduction of Cu$_A$ at normal Δp and NADH.

$k_{2,n}$
Implementation Name: k2_n
Units: s^{-1}
Initial value: $f_n \frac{Cu_{A,r,n} a_{3,0,n} - \frac{1}{K_{eq,n}} Cu_{A,0,n} a_{3,r,n}}{Cu_{A,0,n} a_{3,0,n} - \frac{1}{K_{eq,n}} Cu_{A,0,n} a_{3,r,n}}$
Normal forward reaction rate for the reduction of a$_3$.

$k_3 = \frac{k_{3,0}}{1 + \exp(-c_3 - \Delta p_{30})}$
Implementation Name: k3
Units: s^{-1}
Initial value: 0
Forward reaction rate for the reduction of O$_2$.

$k_{3,0}$
Implementation Name: k30
Units: s^{-1}
Initial value: $2.5E+5$
Apparent second order rate constant for reduction of O$_2$ at zero Δp.

k_{aut}
Implementation Name: k_aut
Units: dimensionless
Initial value: 1
Overall functioning of autoregulatory response.

K_G
Implementation Name: k_G
Units: $ml_{blood} ml_{brain} mmHg^{-1} s^{-1} cm^{-4}$
Initial value: $G_n \frac{pow(r_n,4)}{4}$
Proportionality constant in Poiseuille relation for conductance.

k_{l2}
Implementation Name: k_l2
Units: mV^{-1}
Initial value: 0.038
Constant controlling the depending of the leak rate L_{lk} on Δp.

k_{unc}
Implementation Name: k_unc
Units: dimensionless
Initial value: 1
Control parameter simulating the effect of adding uncouplers to the system.
5.7 Parameters

\[k_{CV} = \frac{-1}{\Delta p_n - \Delta p_{CV,0}} \log \left(\frac{1 - L_{CV,0}}{1 + r_{CV} L_{CV,0}} \right) \]

Implementation Name: \(k_{CV} \)
Units: mV\(^{-1}\)
Initial value: 0
Parameter controlling the sensitivity of Complex V flux to driving force.

\[K_{eq1,n} \]
Implementation Name: \(K_{eq1,n} \)
Units: dimensionless
Initial value: \(10^{-1} \)
Z\((p_1 \Delta p_n^{4} - E_{1,n}) \)
Normal value of the equilibrium constant for the Cu\(\text{A} \) reduction reaction.

\[K_{eq2,n} \]
Implementation Name: \(K_{eq2,n} \)
Units: dimensionless
Initial value: \(10^{-1} \)
Z\((p_3 \Delta p_n^{4} - E_{2}) \)
Normal value of the equilibrium constant for the a\(_3 \) reduction reaction.

\[L_{CV,0} \]
Implementation Name: \(L_{CV0} \)
Units: dimensionless
Initial value: 0.4
Normal Complex V flux as a fraction of maximum possible flux.

\[L_{CV,frac} = 1 - L_{lk,frac} \]
Implementation Name: \(L_{CVfrac} \)
Units: dimensionless
Initial value: 0
Normal fraction of proton entry into mitochondria which is due to ADP phosphorylation.

\[L_{CV,max} = \frac{L_{CV,n}}{L_{CV,0}} \]
Implementation Name: \(L_{CVmax} \)
Units: mM s\(^{-1}\)
Initial value: 0
The maximum rate of proton flow through Complex V.

\[L_{CV,n} \]
Implementation Name: \(L_{CVn} \)
Units: mM s\(^{-1}\)
Initial value: \(L_n L_{CV,frac} \)
The resting flow of protons into the matrix through Complex V.

\[L_{lk0} \]
Implementation Name: \(L_{lk0} \)
Units: mM s\(^{-1}\)
Initial value: \(\exp(\Delta p_n k_{lk2}) - 1 \)
Constant controlling the depending of the leak rate \(L_{lk} \) on \(\Delta p \).

\[L_{lk,frac} \]
Implementation Name: \(L_{lkfrac} \)
Units: dimensionless
Initial value: 0.25
Normal fraction of proton entry into mitochondria which is via leak channels.

\[L_{lk,n} \]
Implementation Name: \(L_{lkn} \)
Units: mM s\(^{-1}\)
Initial value: $L_n L_{lk,frac}$
The resting flow of protons into the matrix via leak channels.

$L_n = \rho \ell f_n$
- Implementation Name: L_n
- Units: mM s$^{-1}$
- Initial value: 0
The normal total flow of protons back into mitochondria.

λ_0
- Implementation Name: λ_{0}
- Units: cm
- Initial value: 0.01650
Intercept of the fitted linear model for blood vessel radius.

λ_{pa}
- Implementation Name: λ_{pa}
- Units: cm mmHg
- Initial value: 0.2483
Fitted linear dependence of blood vessel radius on reciprocal of blood pressure.

n_h
- Implementation Name: n_h
- Units: dimensionless
- Initial value: 2.5
Hill coefficient for oxygen dissociation from haemoglobin.

$NADH = \frac{NAD_{pool}}{1 + \frac{NAD}{NADH}}$
- Implementation Name: $NADH$
- Units: mM
- Initial value: 0
Concentration of NADH in the mitochondria.

$NADH_n$
- Implementation Name: $NADH_n$
- Units: mM
- Initial value: $\frac{NAD_{pool}}{1 + \frac{NAD}{NADH}}$
Normal concentration of NADH in the mitochondria.

$\frac{NAD}{NADH}$
- Implementation Name: $\frac{NAD}{NADH}$
- Units: dimensionless
- Initial value: $\frac{NAD_{n}}{NADH_{n}}\text{pow} \left(u, 2D_{NADH} \right)$
NAD/NADH ratio.

$\frac{NAD}{NADH}$
- Implementation Name: $\frac{NAD}{NADH}$
- Units: dimensionless
- Initial value: 9
Normal NAD/NADH ratio.

NAD_{pool}
- Implementation Name: NAD_{pool}
- Units: dimensionless
- Initial value: 3
Relative size of the NAD pool, used to estimate normal mitochondrial NADH.
5.7 Parameters

\(O_{2,n} \)
- Implementation Name: \(O_{2,n} \)
- Units: mM
- Initial value: 0.024
 Normal mitochondrial oxygen concentration.

\(O_{2,c,n} \)
- Implementation Name: \(O_{2c,n} \)
- Units: mM
- Initial value: \(\phi \text{ pow} \left(\frac{S_c, O_{2,n}}{1 - S_c, O_{2,n}} \right) \)
 Normal capillary oxygen concentration.

\(p_1 = p_{\text{tot}} - p_{23} \)
- Implementation Name: \(p_1 \)
- Units: dimensionless
- Initial value: 0
 Proton cost of the reaction reducing Cu.A.

\(p_3 \)
- Implementation Name: \(p_2 \)
- Units: dimensionless
- Initial value: 4
 Proton cost of the reaction reducing a₃.

\(p_{23} \)
- Implementation Name: \(p_{23} \)
- Units: dimensionless
- Initial value: 8
 Total protons removed from the mitochondrial matrix by the reductions of a₃ and \(O_2 \).

\(p_3 \)
- Implementation Name: \(p_3 \)
- Units: dimensionless
- Initial value: \(p_{23} - p_3 \)
 Proton cost of the reaction reducing \(O_2 \).

\(P_a \)
- Implementation Name: \(P_{a,n} \)
- Units: mmHg
- Initial value: \(P_{a,n} \)
 Mean arterial blood pressure.

\(P_{a,n} \)
- Implementation Name: \(P_{a,an} \)
- Units: mmHg
- Initial value: 100
 Normal arterial blood pressure.

\(P_{C1} \)
- Implementation Name: \(p_{C1} \)
- Units: dimensionless
- Initial value: 8
 Protons pumped by Complex I.

\(P_{C3} \)
- Implementation Name: \(p_{C3} \)
- Units: dimensionless
- Initial value: 4
 Protons pumped by Complex III.
\(p_{\text{tot}} \)

Implementation Name: \(p_{\text{tot}} \)

Units: dimensionless

Initial value: \(p_{\text{tot}} \)

Total protons removed from the mitochondrial matrix by the three modelled electron transport reactions.

\[p_{\text{tot}}, \text{NADH} = p_{\text{1}} + p_{\text{3}} + p_{\text{23}} \]

Implementation Name: \(p_{\text{tot}} \text{NADH} \)

Units: dimensionless

Initial value: 0

Total protons pumped when the reducing agent is NADH.

\(p_v \)

Implementation Name: \(p_v \)

Units: mmHg

Initial value: \(p_v \)

Venous blood pressure.

\(p_{v,n} \)

Implementation Name: \(p_{v,n} \)

Units: mmHg

Initial value: 4

Normal venous blood pressure.

\(P_{a\text{CO}_2} \)

Implementation Name: \(P_{a\text{CO}_2} \)

Units: mmHg

Initial value: \(P_{a\text{CO}_2,n} \)

Arterial partial pressure of carbon dioxide.

\(P_{a\text{CO}_2,n} \)

Implementation Name: \(P_{a\text{CO}_2,n} \)

Units: mmHg

Initial value: 40

Normal arterial partial pressure of carbon dioxide.

\(p_{H_{mn}} \)

Implementation Name: \(p_{H_{mn}} \)

Units: dimensionless

Initial value: 7.4

Normal mitochondrial pH.

\(p_{H_o} \)

Implementation Name: \(p_{H_o} \)

Units: dimensionless

Initial value: 7

Extra-mitochondrial pH.

\(p_{H_{0,n}} \)

Implementation Name: \(p_{H_{0,n}} \)

Units: dimensionless

Initial value: 7

Normal extra-mitochondrial pH.

\(\phi \)

Implementation Name: \(\phi \)

Units: mM

Initial value: 0.036

Oxygen concentration at half-maximal saturation.
5.7 Parameters

R_{CO_2}
Implementation Name: R_{auto}
Units: dimensionless
Initial value: 2.2
Autoregulatory reactivity to carbon dioxide.

R_O_2
Implementation Name: R_{auto}
Units: dimensionless
Initial value: 1.5
Autoregulatory reactivity to oxygen.

R_P_a
Implementation Name: R_{autop}
Units: dimensionless
Initial value: 4
Autoregulatory reactivity to blood pressure.

R_u
Implementation Name: R_{autu}
Units: dimensionless
Initial value: 0.5
Autoregulatory reactivity to demand.

r_{CV}
Implementation Name: r_{CV}
Units: dimensionless
Initial value: 5
Parameter controlling the ratio of maximal to minimal rates of oxidative phosphorylation.

r_m
Implementation Name: r_m
Units: cm
Initial value: 0.0187
Normal blood vessel radius. Normal effective blood vessel radius.

$S_{a,O_2,n}$
Implementation Name: SaO_2_n
Units: dimensionless
Initial value: 0.96
Normal arterial oxygen saturation.

S_{a,O_2}
Implementation Name: SaO_2sup
Units: dimensionless
Initial value: $S_{a,O_2,n}$
Arterial oxygen saturation.

$S_{c,O_2,n}$
Implementation Name: ScO_2_n
Units: dimensionless
Initial value: $S_{a,O_2,n} + S_{v,O_2,n}$
2
Normal capillary oxygen saturation.

$S_{v,O_2,n}$
Implementation Name: SvO_2_n
Units: dimensionless
Initial value: $\frac{HbO_2, v,n}{Hb_{tot, n}}$
Normal venous oxygen saturation.
Implementation Name: t
Units: s
Initial value: 0
Time over which the system evolves.

τ_{CO_2}
Implementation Name: t_{c}
Units: s
Initial value: 5
Filter time constant for stimulus effect of carbon dioxide.

τ_{O_2}
Implementation Name: t_{o}
Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

τ_{P_a}
Implementation Name: t_{p}
Units: s
Initial value: 5
Filter time constant for stimulus effect of blood pressure.

τ_{u}
Implementation Name: t_{u}
Units: s
Initial value: 0.5
Filter time constant for stimulus effect of demand.

u
Implementation Name: u
Units: dimensionless
Initial value: u_n
Parameter indicating metabolic demand.

u_n
Implementation Name: u_n
Units: dimensionless
Initial value: 1
Normal demand.

$\nu_{CO_2,n}$
Implementation Name: $v_{c,n}$
Units: mmHg
Initial value: $P_{a,CO_2,n}$
Normal filtered carbon dioxide partial pressure. Normal filtered carbon dioxide partial pressure.

$\nu_{O_2,n}$
Implementation Name: $v_{o,n}$
Units: mM
Initial value: $O_{2,c,n}$
Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

$\nu_{P_a,n}$
Implementation Name: $v_{p,n}$
Units: mmHg
Initial value: $P_{a,n}$
5.7 Parameters

Normal filtered arterial blood pressure. Normal filtered blood pressure.

\(v_{u,n} \)

- Implementation Name: \(v_{\text{un}} \)
- Units: dimensionless
- Initial value: \(u_n \)
- Normal filtered demand. Normal filtered demand.

\(V\text{Arat}_n \)

- Implementation Name: \(V\text{Arat}_\text{n} \)
- Units: dimensionless
- Initial value: 3
- Normal volume ratio of veins to arteries in brain tissue.

\(V_{a,n} \)

- Implementation Name: \(\text{Vol}_{\text{artn}} \)
- Units: dimensionless
- Initial value: \(\frac{1}{1 + V\text{Arat}_n} \)
- Normal relative arterial blood volume.

\(\text{Vol}_{\text{mit}} \)

- Implementation Name: \(\text{Vol}_{\text{mit}} \)
- Units: dimensionless
- Initial value: 0.067
- Fraction of brain tissue volume that is mitochondria.

\(V_p \)

- Implementation Name: \(\text{Vol}_{\text{ven}} \)
- Units: dimensionless
- Initial value: \(\frac{1}{1 + V\text{Arat}_n} \)
- Relative venous blood volume.

\(HbO_{2,a} = Hb_{\text{tot}} S_{a,O_2} \)

- Implementation Name: \(Xo_{a} \)
- Units: mM
- Initial value: \(HbO_{2,a,n} \)
- Arterial concentration of oxygen bound to haemoglobin.

\(HbO_{2,a,n} \)

- Implementation Name: \(Xo_{a,n} \)
- Units: mM
- Initial value: \(Hb_{\text{tot},n} S_{a,O_2,n} \)
- Normal arterial concentration of oxygen bound to haemoglobin.

\(HbO_{2,v,n} \)

- Implementation Name: \(Xo_{v,n} \)
- Units: mM
- Initial value: \(\frac{\text{CBF}_n HbO_{2,a,n} - J_{O_2,n}}{\text{CBF}_n} \)
- Normal venous concentration of oxygen bound to haemoglobin.

\(Hb_{\text{tot}} \)

- Implementation Name: \(X_{\text{tot}} \)
- Units: mM
- Initial value: 9.1
- Total concentration of haemoglobin \(O_2 \) binding sites in blood (4 times haemoglobin concentration).

\(Hb_{\text{tot},n} \)

- Implementation Name: \(X_{\text{tot},n} \)
Units: mM
Initial value: 9.1
Normal total concentration of haemoglobin O₂ binding sites in blood (4 times haemoglobin concentration).

Z
Implementation Name: Z
Units: mV
Initial value: 59.028
Proportionality constant in calculation of driving forces due to concentration differences. Defined as RT/F, where F is Faraday’s constant, R the ideal gas constant and T the absolute temperature.
6 BSM0

6.1 Overview

Simplified model in which the metabolic submodel is replaced with variant M0.

- 9 differential state variables
- 3 algebraic state variables
- 27 intermediate variables
- 96 parameters
- 4 declared inputs
- 33 default outputs

6.2 Differential Equations

\[\frac{dC_{U,A,0}}{dt} = 4f_3 - 4f_1 \]
(6.1)

\[\frac{d\alpha_{3,r}}{dt} = 4f_3 - 4f_3 \]
(6.2)

\[\frac{d\psi}{dt} = \frac{p_3 f_3 + p_1 f_1 + p_3 f_3 - L}{C_{im}} \]
(6.3)

\[\frac{d\nu_{p}}{dt} = \frac{1}{\tau_{p_v}} (P_a - v_P) \]
(6.8)
\[
\frac{dv_u}{dt} = \frac{1}{\tau_u} (u - v_u)
\]

(6.9)

6.3 Algebraic Equations

\[
\phi \left(\frac{S_{c,O_2}}{1 - S_{c,O_2}} \right) \frac{1}{\tau} - O_{2,c} = 0
\]

(6.10)

\[T_e + T_m - (P_1 - P_{ic}) \ r = 0\]

(6.11)

\[CBF \ (HbO_{2,a} - HbO_{2,v}) - J_{O_2} = 0\]

(6.12)

6.4 Chemical Reactions

\[\overset{L}{\rightarrow} \frac{1}{R_{Hi}} \ H^+\]

(6.13)

\[\overset{j_{O_2}}{\rightarrow} \frac{1}{Vol_{mit}} \ O_2\]

(6.14)

\[
\frac{p_3}{R_{Hi}} \ H^+ \overset{f_3}{\rightarrow} 4 \ Cu_{A,o} + 4 \ a_{3,r}
\]

(6.15)

\[4 \ Cu_{A,o} + \frac{p_1}{R_{Hi}} \ H^+ \overset{f_1}{\rightarrow}\]

(6.16)

\[O_2 + 4 \ a_{3,r} + \frac{p_3}{R_{Hi}} \ H^+ \overset{f_3}{\rightarrow}\]

(6.17)

6.5 State Variables

- **\(Cu_{A,o}\)**
 - Implementation Name: \(a\)
 - Units: mM
 - Initial value: \(Cu_{A,o,n}\)
 - Concentration of oxidised cytochrome c oxidase.

- **\(a_{3,r}\)**
 - Implementation Name: \(br\ ed\)
 - Units: mM
 - Initial value: \(a_{3,r,n}\)
 - Concentration of reduced cytochrome \(a_3\).
6.5 State Variables

\(\psi \)
- Implementation Name: Dpsi
- Units: mV
- Initial value: \(\psi_n \)
 Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

\(H^+ \)
- Implementation Name: H
- Units: mM
- Initial value: \(H^+_n \)
 Mitochondrial proton concentration.

\(O_2 \)
- Implementation Name: 02
- Units: mM
- Initial value: \(O_{2,n} \)
 Mitochondrial oxygen concentration.

\(O_{2,c} \)
- Implementation Name: 02c
- Units: mM
- Initial value: \(O_{2,c,n} \)
 Capillary oxygen concentration.

\(r \)
- Implementation Name: r
- Units: cm
- Initial value: \(r_n \)
 Typical blood vessel radius.

\(v_{CO_2} \)
- Implementation Name: v_c
- Units: mmHg
- Initial value: \(v_{CO_2,n} \)
 Filtered carbon dioxide partial pressure.

\(v_{O_2} \)
- Implementation Name: v_o
- Units: mM
- Initial value: \(v_{O_2,n} \)
 Filtered capillary oxygen concentration.

\(v_P \)
- Implementation Name: v_p
- Units: mmHg
- Initial value: \(v_{P,n} \)
 Filtered arterial blood pressure.

\(v_u \)
- Implementation Name: v_u
- Units: dimensionless
- Initial value: \(v_{u,n} \)
 Filtered demand.

\(HbO_{2,v} \)
- Implementation Name: X0v
- Units: mM
- Initial value: \(HbO_{2,v,n} \)
 Venous concentration of oxygen bound to haemoglobin.
6.6 Intermediate Variables

\[CBF = G \left(P_a - P_v \right) \]
Implementation Name: CBF
Units: \(\text{ml}_{\text{blood}} \text{ ml}^{-1} \text{s}^{-1} \)
Initial value: \(CBF_n \)
Cerebral blood flow.

\[\Delta \text{oxCCO} = \Delta \text{oxCCO}_{\text{off}} + 1000 \text{Vol}_{\text{mit}} \left(\text{Cu}_{A,0} - \text{Cu}_{A,0,n} \right) \]
Implementation Name: CCO
Units: uM
Initial value: 0
Cytochrome c oxidase signal measured by NIRS.

\[\text{CMRO}_2 = f_3 \text{Vol}_{\text{mit}} \]
Implementation Name: CMRO2
Units: mM s\(^{-1}\)
Initial value: 0
Rate of cerebral oxygen metabolism.

\[\Delta p = \psi - Z \left(4 + \log_{10} (H^+) \right) \]
Implementation Name: \(\Delta p \)
Units: mV
Initial value: 0
Proton motive force across the mitochondrial inner membrane.

\[\eta = R_P \left(\frac{v_{P_a}}{v_{P_{a,n}}} - 1 \right) + R_{O_2} \left(\frac{v_{O_2}}{v_{O_{2,n}}} - 1 \right) + R_{CO_2} \left(1 - \frac{v_{CO_2}}{v_{CO_{2,n}}} \right) + R_u \left(1 - \frac{v_u}{v_{u,n}} \right) \]
Implementation Name: \(\eta \)
Units: dimensionless
Initial value: 0
Merged autoregulation stimulus.

\[f_1 = \lambda_{f_1} + \lambda_{f_1,a} \log (u) + \lambda_{f_1,P} \Delta p + \lambda_{f_1,a} \log (\text{Cu}_{A,0}) \]
Implementation Name: \(f_1 \)
Units: mM s\(^{-1}\)
Initial value: 0
Reaction rate for the reduction of \(\text{Cu}_{A} \).

\[f_2 = \lambda_{f_2} + \lambda_{f_2,P} \log (\Delta p) + \lambda_{f_2,a} \log (\text{Cu}_{A,0}) + \lambda_{f_2,b} \log (a_{3,r}) \]
Implementation Name: \(f_2 \)
Units: mM s\(^{-1}\)
Initial value: 0
Reaction rate for the reduction of \(a_3 \).

\[f_3 = \lambda_{f_3} + \lambda_{f_3,P} \log (\Delta p) + \lambda_{f_3,O} \log (O_2) + \lambda_{f_3,b} \log (a_{3,r}) \]
Implementation Name: \(f_3 \)
Units: mM s\(^{-1}\)
Initial value: 0
Reaction rate for the reduction of \(O_2 \).

\[G = K_G r^4 \]
Implementation Name: \(G \)
Units: \(\text{ml}_{\text{blood}} \text{ ml}^{-1} \text{mmHg}^{-1} \text{s}^{-1} \)
Initial value: 0
Effective conductance of the whole blood flow compartment.

\[h = \sqrt{r^2 + 2r_0 h_0 + h_0^2} - r \]
Implementation Name: \(h \)
Units: cm
6.6 Intermediate Variables

Initial value: \(h_n \)
Thickness of the blood vessel walls.

\[
HbO_2 = (V_a HbO_2, a + V_v HbO_2, v) \text{ blood}_{hb}
\]
Implementation Name: \(\text{HbO2} \)
Units: \(\text{uM} \)
Initial value: 0
Oxygenated haemoglobin signal measured by NIRS.

\[
HbT = (V_a + V_v) Hb_{tot} \text{ blood}_{hb}
\]
Implementation Name: \(\text{HbT} \)
Units: \(\text{uM} \)
Initial value: 0
Total haemoglobin signal measured by NIRS.

\[
HHb = HbT - HbO_2
\]
Implementation Name: \(\text{HHb} \)
Units: \(\text{uM} \)
Initial value: 0
Deoxygenated haemoglobin signal measured by NIRS.

\[
J_{O_2} = f_{\text{min}} (D_{O_2} (O_2, c - O_2), CBF HbO_2, a)
\]
Implementation Name: \(J_{O2} \)
Units: \(\text{mM s}^{-1} \)
Initial value: 0
Oxygen flux from blood to tissue.

\[
L = \lambda_L + \lambda_{L,\theta} \theta + \lambda_{L,p} \Delta P
\]
Implementation Name: \(L \)
Units: \(\text{mM s}^{-1} \)
Initial value: 0
Rate of proton return to the mitochondrial matrix.

\[
\mu = \frac{\mu_{\text{min}} + \mu_{\text{max}} \exp(\eta)}{1 + \exp(\eta)}
\]
Implementation Name: \(\mu \)
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation reponse.

\[
R_{Hi} = \frac{R_{Hi,H}}{H^+}
\]
Implementation Name: \(R_{Hi} \)
Units: dimensionless
Initial value: 0
Relative mitochondrial volume for protons, taking into account buffering effect of pH.

\[
S_c,O_2 = \frac{S_a,O_2 + S_v,O_2}{2}
\]
Implementation Name: \(S_cO2 \)
Units: dimensionless
Initial value: \(S_c,O_2,n \)
Capillary oxygen saturation.

\[
\sigma_e = \sigma_{e,0} \left(\exp \left(\frac{K_e (r - r_0)}{r_0} \right) - 1 \right) - \sigma_{coll}
\]
Implementation Name: \(\sigma_{e} \)
Units: \(\text{mm Hg} \)
Initial value: 0
Elastic stress in blood vessel walls.
\[S_{v,O_2} = \frac{HbO_2,v}{Hb_{tot}} \]

Implementation Name: SvO2
Units: dimensionless
Initial value: \(S_{v,O_2,n} \)
Venous oxygen saturation.

\[T_e = \sigma_e \cdot h \]

Implementation Name: Te
Units: mm Hg cm
Initial value: 0
Elastic tension in the blood vessel walls.

\[T_m = T_{max} \exp \left(-\text{pow} \left(\left| \frac{r - r_m}{r_1 - r_m} \right|^n, n_m \right) \right) \]

Implementation Name: Tm
Units: mm Hg cm
Initial value: 0
Muscular tension in the blood vessel walls.

\[T_{max} = T_{max,0} \left(1 + k_{aut} \mu \right) \]

Implementation Name: Tmax
Units: mm Hg cm
Initial value: 0
Maximal muscular tension in the blood vessel walls.

\[\theta = k CV \left(\Delta p + Z \log_{10} (u) - 90 \right) \]

Implementation Name: theta
Units: dimensionless
Initial value: 0
Driving force Complex V.

\[\text{TOI} = \frac{100HbO_2}{HbT} \]

Implementation Name: TOI
Units: dimensionless
Initial value: 0
Total oxygenation index.

\[V_{mca} = CBF \cdot CBF_{scale} \]

Implementation Name: Vmca
Units: cm s\(^{-1}\)
Initial value: 0
Blood velocity in the middle cerebral artery.

\[V_a = V_{a,0} \left(\frac{r}{r_n} \right)^2 \]

Implementation Name: V01_art
Units: dimensionless
Initial value: 0
Relative arterial blood volume.

6.7 Parameters

\[C_{H_A,O_2} \]

Implementation Name: a,n
Units: mM
6.7 Parameters

Initial value: 0.06567
Normal concentration of oxidised cytochrome c oxidase.

\(\text{blood}_{hb} \)
Implementation Name: \(\text{blood}_{hb} \)
Units: dimensionless
Initial value: 10.00
Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to \(\mu \text{M} \), and number of binding sites.

\(a_{3r,n} \)
Implementation Name: \(\text{bred}_{n} \)
Units: mM
Initial value: 0.001408
Normal concentration of reduced cytochrome a3.

\(C_{im} \)
Implementation Name: \(C_{im} \)
Units: mM mV\(^{-1}\)
Initial value: 0.00675
Capacitance of the mitochondrial inner membrane.

\(CBF_{n} \)
Implementation Name: \(CBF_{n} \)
Units: \(\text{ml}_{\text{blood}} \text{ ml}_{\text{brain}}^{-1} \text{s}^{-1} \)
Initial value: 0.0125
Normal cerebral blood flow.

\(CBF_{scale} \)
Implementation Name: \(CBF_{scale} \)
Units: cm
Initial value: 5000
Scale constant relating blood flow to arterial velocity.

\(\Delta_{\text{oxCCO}_{off}} \)
Implementation Name: \(\text{CCO}_{\text{offset}} \)
Units: uM
Initial value: 0
Signal offset for the NIRS CCO measurement.

\(\text{CMRO}_{2,n} \)
Implementation Name: \(\text{CMRO}_{2,n} \)
Units: mM \text{s}^-1
Initial value: 0.034
Normal metabolic rate of oxygen consumption.

\(D_{O_{2}} \)
Implementation Name: \(D_{O_{2}} \)
Units: \text{s}^-1
Initial value: \(\frac{\text{I}_{O_{2,n}}}{\text{O}_{2,n} - \text{O}_{2,n}} \)
Diffusion rate for oxygen between capillaries and mitochondria.

\(\psi_{n} \)
Implementation Name: \(\text{psi}_{n} \)
Units: mV
Initial value: 145
Normal mitochondrial inner membrane potential.

\(\lambda_{f_{1}} \)
Implementation Name: \(f_{1,0} \)
Units: mM s\(^{-1}\)

Initial value: 0.1221

Fitted intercept for the linear model for \(f_1\).

\(\lambda_{f_1,a}\)

Implementation Name: \(f_{1.a}\)
Units: mM s\(^{-1}\)
Initial value: 0.1848
Fitted linear dependence of \(f_1\) on logarithm of Cu\(_{A,ox}\).

\(\lambda_{f_1,p}\)

Implementation Name: \(f_{1.p}\)
Units: mM s\(^{-1}\) mV\(^{-1}\)
Initial value: 0.005270
Fitted linear dependence of \(f_1\) on \(\Delta p\).

\(\lambda_{f_1,u}\)

Implementation Name: \(f_{1.u}\)
Units: mM s\(^{-1}\)
Initial value: 0.1087
Fitted linear dependence of \(f_1\) on logarithm of demand.

\(\lambda_{f_2}\)

Implementation Name: \(f_{2.0}\)
Units: mM s\(^{-1}\)
Initial value: 5.432
Fitted intercept for the linear model for \(f_2\).

\(\lambda_{f_2,a}\)

Implementation Name: \(f_{2.a}\)
Units: mM s\(^{-1}\)
Initial value: 1.173
Fitted linear dependence of \(f_2\) on logarithm of Cu\(_{A,ox}\).

\(\lambda_{f_2,b}\)

Implementation Name: \(f_{2,b\text{red}}\)
Units: mM s\(^{-1}\)
Initial value: 0.08545
Fitted linear dependence of \(f_2\) on logarithm of \(a_{3,\text{red}}\).

\(\lambda_{f_2,p}\)

Implementation Name: \(f_{2.p}\)
Units: mM s\(^{-1}\) mV\(^{-1}\)
Initial value: −0.006935
Fitted linear dependence of \(f_2\) on \(\Delta p\).

\(\lambda_{f_3}\)

Implementation Name: \(f_{3.0}\)
Units: mM s\(^{-1}\)
Initial value: 11.69
Fitted intercept for the linear model for \(f_3\).

\(\lambda_{f_3,b}\)

Implementation Name: \(f_{3,b\text{red}}\)
Units: mM s\(^{-1}\)
Initial value: 0.3649
Fitted linear dependence of \(f_3\) on logarithm of \(a_{3,\text{red}}\).

\(\lambda_{f_3,p}\)

Implementation Name: \(f_{3.p}\)
Units: mM s\(^{-1}\) mV\(^{-1}\)
6.7 Parameters

Initial value: -0.04345
Fitted linear dependence of f_3 on Δp.

$\lambda_{f_3, O}$
Implementation Name: f3_02
Units: mM s$^{-1}$
Initial value: 0.3923
Fitted linear dependence of f_3 on logarithm of O_2.

G_n
Implementation Name: G_n
Units: mlblood mlblood^{-1} mmHg$^{-1}$ s$^{-1}$
Initial value: $\frac{P_{a,n} - P_{c,n}}{CBV_n}$
Normal blood vessel conductance.

h_0
Implementation Name: h_0
Units: cm
Initial value: 0.003
Thickness of the blood vessel walls at which radius is r_0.

H^+_n
Implementation Name: H_n
Units: mM
Initial value: 0.00003981
Normal mitochondrial proton concentration.

h_n
Implementation Name: h_n
Units: cm
Initial value: $\sqrt{(r_n r_n + 2r_0 h_0 + h_0 h_0) - r_n}$
Normal thickness of the blood vessel walls.

$J_{O_2,n}$
Implementation Name: J_O2n
Units: mM s$^{-1}$
Initial value: $CMRO_{O_2,n}$
Normal oxygen flux from blood to tissue.

k_{aut}
Implementation Name: k_aut
Units: dimensionless
Initial value: 1
Overall functioning of autoregulatory response.

K_G
Implementation Name: K_G
Units: mlblood mlbrain^{-1} mmHg$^{-1}$ s$^{-1}$ cm$^{-4}$
Initial value: $\frac{G_n}{\text{pow}(r_n, 4)}$
Proportionality constant in Poiseuille relation for conductance.

K_σ
Implementation Name: K_sigma
Units: dimensionless
Initial value: 10
Parameter controlling the sensitivity of σ_r to vessel radius.

k_{CV}
Implementation Name: k_{CV}
Units: mV
Initial value: 0.02047339
Factor relating the Complex V driving force to the membrane potential and demand.

\(\lambda_L \)
Implementation Name: L_0
Units: mM s\(^{-1}\)
Initial value: \(-15.339464\)
Fitted intercept for the linear model for \(L \).

\(\lambda_{L,p} \)
Implementation Name: L_dp
Units: mM s\(^{-1}\) mV\(^{-1}\)
Initial value: 0.097097
Fitted linear dependence of \(L \) on \(\Delta p \).

\(\lambda_{L,\theta} \)
Implementation Name: L_th
Units: mM s\(^{-1}\)
Initial value: 5.665904
Fitted linear dependence of \(L \) on \(\theta \).

\(\mu_{max} \)
Implementation Name: mu_max
Units: dimensionless
Initial value: 1
Upper bound for the transformed stimulus \(\mu \).

\(\mu_{min} \)
Implementation Name: mu_min
Units: dimensionless
Initial value: \(-1\)
Lower bound for the transformed stimulus \(\mu \).

\(\mu_n \)
Implementation Name: mu_n
Units: dimensionless
Initial value: 0
Normal value for the transformed stimulus \(\mu \).

\(n_h \)
Implementation Name: n_h
Units: dimensionless
Initial value: 2.5
Hill coefficient for oxygen dissociation from haemoglobin.

\(n_m \)
Implementation Name: n_m
Units: dimensionless
Initial value: 1.83
Exponent in the muscular tension relationship.

\(O_{2,n} \)
Implementation Name: O2_n
Units: mM
Initial value: 0.024
Normal mitochondrial oxygen concentration.

\(O_{2,c,n} \)
Implementation Name: O2c_n
Units: mM
6.7 Parameters

Initial value: \(\phi \text{pow} \left(\frac{S_c{\text{O}_2,n}}{1 - S_c{\text{O}_2,n}}, \frac{1}{n_h} \right) \)

Normal capillary oxygen concentration.

\(P_1 \)
- Implementation Name: \(p1 \)
- Units: dimensionless
- Initial value: 12
- Proton cost of the reaction reducing \(\text{Cu}_A \).

\(P_3 \)
- Implementation Name: \(p2 \)
- Units: dimensionless
- Initial value: 4
- Proton cost of the reaction reducing \(a_3 \).

\(P_3 \)
- Implementation Name: \(p3 \)
- Units: dimensionless
- Initial value: 4
- Proton cost of the reaction reducing \(\text{O}_2 \).

\[P_1 = \frac{P_a + P_v}{2} \]
- Implementation Name: \(P_1 \)
- Units: mm Hg
- Initial value: \(P_{1,n} \)
- Average pressure in the blood vessels.

\(P_{1,n} \)
- Implementation Name: \(P_{1,n} \)
- Units: mm Hg
- Initial value: \(\frac{P_{a,n} + P_{v,n}}{2} \)
- Normal value for the average pressure in the blood vessels.

\(P_a \)
- Implementation Name: \(P_a \)
- Units: mmHg
- Initial value: \(P_{a,n} \)
- Mean arterial blood pressure.

\(P_{a,n} \)
- Implementation Name: \(P_{a,n} \)
- Units: mmHg
- Initial value: 100
- Normal arterial blood pressure.

\(P_{ic} \)
- Implementation Name: \(P_{ic} \)
- Units: mm Hg
- Initial value: 9.5
- Intracranial pressure.

\(P_{icn} \)
- Implementation Name: \(P_{icn} \)
- Units: mm Hg
- Initial value: 9.5
- Normal intracranial pressure.

\(P_v \)
Implementation Name: \(P_{v} \)
Units: mmHg
Initial value: \(P_{v,n} \)
Venous blood pressure.

\(P_{v,n} \)
Implementation Name: \(P_{v,n} \)
Units: mmHg
Initial value: 4
Normal venous blood pressure.

\(P_{aCO_2} \)
Implementation Name: \(P_{a_CO2} \)
Units: mmHg
Initial value: \(P_{aCO_2,n} \)
Arterial partial pressure of carbon dioxide.

\(P_{aCO_2,n} \)
Implementation Name: \(P_{a_CO2,n} \)
Units: mmHg
Initial value: 40
Normal arterial partial pressure of carbon dioxide.

\(\phi \)
Implementation Name: \(\phi_1 \)
Units: mM
Initial value: 0.036
Oxygen concentration at half-maximal saturation.

\(r_0 \)
Implementation Name: \(r_0 \)
Units: cm
Initial value: 0.0126
Radius in the elastic tension relationship.

\(R_{CO_2} \)
Implementation Name: \(R_{aut_c} \)
Units: dimensionless
Initial value: 2.2
Autoregulatory reactivity to carbon dioxide.

\(R_{O_2} \)
Implementation Name: \(R_{auto} \)
Units: dimensionless
Initial value: 1.5
Autoregulatory reactivity to oxygen.

\(R_P \)
Implementation Name: \(R_{aut_p} \)
Units: dimensionless
Initial value: 4
Autoregulatory reactivity to blood pressure.

\(R_H \)
Implementation Name: \(R_{aut_u} \)
Units: dimensionless
Initial value: 0.5
Autoregulatory reactivity to demand.

\(R_{Hi,H} \)
Implementation Name: \(R_{Hi,H} \)
6.7 Parameters

Units: mM
Initial value: 9.565483
Proton buffering factor.

\(r_m \)
Implementation Name: \(r_m \)
Units: cm
Initial value: 0.027
Vessel radius at which muscular tension is maximal.

\(r_n \)
Implementation Name: \(r_n \)
Units: cm
Initial value: 0.0187
Normal blood vessel radius. Normal effective blood vessel radius.

\(r_t \)
Implementation Name: \(r_t \)
Units: cm
Initial value: 0.018
Radius in the muscular tension relationship.

\(S_{a,O_2,n} \)
Implementation Name: \(SaO2_n \)
Units: dimensionless
Initial value: 0.96
Normal arterial oxygen saturation.

\(S_{a,O_2} \)
Implementation Name: \(SaO2_{sup} \)
Units: dimensionless
Initial value: \(S_{a,O_2,n} \)
Arterial oxygen saturation.

\(S_{c,O_2,n} \)
Implementation Name: \(ScO2_n \)
Units: dimensionless
Initial value: \(S_{a,O_2,n} + S_{c,O_2,n} \)
Normal capillary oxygen saturation.

\(\sigma_{coll} \)
Implementation Name: \(sigma_{coll} \)
Units: mm Hg
Initial value: 62.79
Pressure at which blood vessels collapse.

\(\sigma_{e,0} \)
Implementation Name: \(sigma_{e0} \)
Units: mm Hg
Initial value: 0.1425
Parameter in the elastic tension relationship.

\(\sigma_{e,n} \)
Implementation Name: \(sigma_{en} \)
Units: mm Hg
Initial value: \(\sigma_{e,0} \left(\exp \left(\frac{K_e (r_n - r_0)}{r_0} \right) - 1 \right) - \sigma_{coll} \)
Normal elastic stress in blood vessel walls.

\(S_{c,O_2,n} \)
Implementation Name: SvO_2_{n}
Units: dimensionless
Initial value: $\frac{HbO_{2\text{n}}}{Hb_{\text{tot,n}}}$
Normal venous oxygen saturation.

t
Implementation Name: t
Units: s
Initial value: 0
Time over which the system evolves.

τ_{CO_2}
Implementation Name: $t_{c,c}$
Units: s
Initial value: 5
Filter time constant for stimulus effect of carbon dioxide.

$T_{e,n}$
Implementation Name: $T_{e,n}$
Units: mm Hg cm
Initial value: $c_{e,n} h_n$
Normal elastic tension in the blood vessel walls.

$T_{\text{max,0}}$
Implementation Name: $T_{\text{max,0}}$
Units: mm Hg cm
Initial value: $T_{\text{max,n}} \frac{1 + k_{\text{aut}} \mu_n}{1 + k_{\text{aut}} \mu_n}$
Maximal muscular tension under normal regulatory stimulus ($\mu = \mu_n$).

$T_{\text{max,n}}$
Implementation Name: $T_{\text{max,n}}$
Units: mm Hg cm
Initial value: $T_{\text{m,n}} \exp \left(-\text{pow} \left(\text{fabs} \left(\frac{r_n - r_m}{r_n - r_m}, n_m\right)\right)\right)$
Normal maximal muscular tension.

$T_{\text{m,n}}$
Implementation Name: $T_{\text{m,n}}$
Units: mm Hg cm
Initial value: $(P_{1,n} - P_{\text{icn}}) r_n - T_{r,n}$
Normal muscular tension in the blood vessel walls.

τ_{O_2}
Implementation Name: $t_{o,o}$
Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

τ_{P_a}
Implementation Name: $t_{p,p}$
Units: s
Initial value: 5
Filter time constant for stimulus effect of blood pressure.

τ_{u}
Implementation Name: $t_{u,u}$
Units: s
6.7 Parameters

Initial value: 0.5
Filter time constant for stimulus effect of demand.

\(u \)
Implementation Name: \(u \)
Units: dimensionless
Initial value: \(u_n \)
Parameter indicating metabolic demand.

\(u_n \)
Implementation Name: \(u_n \)
Units: dimensionless
Initial value: 1
Normal demand.

\(v_{CO_2,n} \)
Implementation Name: \(v_{CO_2,n} \)
Units: mmHg
Initial value: \(P_{aCO_2,n} \)
Normal filtered carbon dioxide partial pressure. Normal filtered carbon dioxide partial pressure.

\(v_{O_2,n} \)
Implementation Name: \(v_{O_2,n} \)
Units: mM
Initial value: \(O_{2,c,n} \)
Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

\(v_{P,a,n} \)
Implementation Name: \(v_{P,a,n} \)
Units: mmHg
Initial value: \(P_{a,n} \)
Normal filtered arterial blood pressure. Normal filtered blood pressure.

\(v_{u,n} \)
Implementation Name: \(v_{u,n} \)
Units: dimensionless
Initial value: \(u_n \)
Normal filtered demand. Normal filtered demand.

\(V_{Arat,a} \)
Implementation Name: \(V_{Arat,a} \)
Units: dimensionless
Initial value: 3
Normal volume ratio of veins to arteries in brain tissue.

\(V_{a,n} \)
Implementation Name: \(V_{a,n} \)
Units: dimensionless
Initial value: \(\frac{1}{1 + V_{Arat,a}} \)
Normal relative arterial blood volume.

\(Vol_{mit} \)
Implementation Name: \(Vol_{mit} \)
Units: dimensionless
Initial value: 0.067
Fraction of brain tissue volume that is mitochondria.

\(V_v \)
Implementation Name: Vol_ven
Units: dimensionless
Initial value: $\frac{V_{Arat}}{1 + V_{Arat}}$
Relative venous blood volume.

\[HbO_{2,a} = Hb_{tot} \cdot S_{a,O_2} \]
Implementation Name: X0a
Units: mM
Initial value: $HbO_{2,a,n}$
Arterial concentration of oxygen bound to haemoglobin.

\[HbO_{2,a,n} \]
Implementation Name: X0a_n
Units: mM
Initial value: $Hb_{tot,n} \cdot S_{a,O_2,n}$
Normal arterial concentration of oxygen bound to haemoglobin.

\[HbO_{2,v,n} \]
Implementation Name: X0v_n
Units: mM
Initial value: $\frac{CBF_n \cdot HbO_{2,a,n} - J_{O_2,n}}{CBF_n} $
Normal venous concentration of oxygen bound to haemoglobin.

\[Hb_{tot} \]
Implementation Name: Xtot
Units: mM
Initial value: 9.1
Total concentration of haemoglobin O₂ binding sites in blood (4 times haemoglobin concentration).

\[Hb_{tot,n} \]
Implementation Name: Xtot_n
Units: mM
Initial value: 9.1
Normal total concentration of haemoglobin O₂ binding sites in blood (4 times haemoglobin concentration).

\[Z \]
Implementation Name: Z
Units: mV
Initial value: 59.028
Proportionality constant in calculation of driving forces due to concentration differences. Defined as RT/F, where F is Faraday’s constant, R the ideal gas constant and T the absolute temperature.
7 BSM1

7.1 Overview

Simplified model in which the metabolic submodel is replaced with variant M1.

- 9 differential state variables
- 3 algebraic state variables
- 27 intermediate variables
- 91 parameters
- 4 declared inputs
- 33 default outputs

7.2 Differential Equations

\[
\frac{dC_{u_{A,e}}}{dt} = 4f_3 - 4f_1 \quad (7.1)
\]

\[
\frac{da_{3,r}}{dt} = 4f_3 - 4f_3 \quad (7.2)
\]

\[
\frac{d\psi}{dt} = \frac{p_3 f_3 + p_1 f_1 + p_3 f_3 - L}{C_{im}} \quad (7.3)
\]

\[
\frac{dH^+}{dt} = \frac{1}{R_{Hi}} L - \frac{p_3}{R_{Hi}} f_3 - \frac{p_1}{R_{Hi}} f_1 - \frac{p_3}{R_{Hi}} f_3 \quad (7.4)
\]

\[
\frac{dO_2}{dt} = \frac{1}{Vol_{mit}} J_{O_2} - f_3 \quad (7.5)
\]

\[
\frac{dv_{CO_2}}{dt} = \frac{1}{\tau_{CO_2}} (P_{aCO_2} - v_{CO_2}) \quad (7.6)
\]

\[
\frac{dv_{O_2}}{dt} = \frac{1}{\tau_{O_2}} (O_{2,c} - v_{O_2}) \quad (7.7)
\]

\[
\frac{dv_{pa}}{dt} = \frac{1}{\tau_{pa}} (P_a - v_{pa}) \quad (7.8)
\]
\[
\frac{dv_u}{dt} = \frac{1}{\tau_u} (u - v_u)
\] \hspace{1cm} (7.9)

7.3 Algebraic Equations

\[
\phi \left(\frac{S_{c,O_2}}{1 - S_{c,O_2}} \right)^\frac{1}{\pi} - O_{2,c} = 0
\] \hspace{1cm} (7.10)

\[
T_e + T_m - (P_1 - P_{ic}) r = 0
\] \hspace{1cm} (7.11)

\[
\text{CBF} \ (HbO_{2,a} - HbO_{2,v}) - J_{O_2} = 0
\] \hspace{1cm} (7.12)

7.4 Chemical Reactions

\[
\xrightarrow{L} \frac{1}{R_{Hi}} \ H^+
\] \hspace{1cm} (7.13)

\[
\xrightarrow{J_{O_2}} \frac{1}{Vol_{mit}} \ O_2
\] \hspace{1cm} (7.14)

\[
\frac{p_3}{R_{Hi}} \ H^+ \xrightarrow{f_3} 4 \ Cu_{A,o} + 4 \ a_{3,r}
\] \hspace{1cm} (7.15)

\[
4 \ Cu_{A,o} + \frac{p_1}{R_{Hi}} \ H^+ \xrightarrow{f_1} 4 \ Cu_{A,o}
\] \hspace{1cm} (7.16)

\[
O_2 + 4 \ a_{3,r} + \frac{p_3}{R_{Hi}} \ H^+ \xrightarrow{f_3} 4 \ a_{3,r}
\] \hspace{1cm} (7.17)

7.5 State Variables

\(Cu_{A,o}\)

- Implementation Name: \(a\)
- Units: mM
- Initial value: \(Cu_{A,o,n}\)
- Concentration of oxidised cytochrome c oxidase.

\(a_{3,r}\)

- Implementation Name: \(bred\)
- Units: mM
- Initial value: \(a_{3,r,n}\)
- Concentration of reduced cytochrome a3.
7.5 State Variables

\[\psi \]
Implementation Name: Dpsi
Units: mV
Initial value: \(\psi_n \)
Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

\[H^+ \]
Implementation Name: H
Units: mM
Initial value: \(H^+_n \)
Mitochondrial proton concentration.

\[O_2 \]
Implementation Name: O2
Units: mM
Initial value: \(O_{2,n} \)
Mitochondrial oxygen concentration.

\[O_{2,c} \]
Implementation Name: O2c
Units: mM
Initial value: \(O_{2,c,n} \)
Capillary oxygen concentration.

\[r \]
Implementation Name: r
Units: cm
Initial value: \(r_n \)
Typical blood vessel radius.

\[v_{CO_2} \]
Implementation Name: v_c
Units: mmHg
Initial value: \(v_{CO_2,n} \)
Filtered carbon dioxide partial pressure.

\[v_{O_2} \]
Implementation Name: v_o
Units: mM
Initial value: \(v_{O_2,n} \)
Filtered capillary oxygen concentration.

\[v_{Pa} \]
Implementation Name: v_p
Units: mmHg
Initial value: \(v_{Pa,n} \)
Filtered arterial blood pressure.

\[v_u \]
Implementation Name: v_u
Units: dimensionless
Initial value: \(v_{u,n} \)
Filtered demand.

\[HbO_{2,v} \]
Implementation Name: XOv
Units: mM
Initial value: \(HbO_{2,v,n} \)
Venous concentration of oxygen bound to haemoglobin.
7.6 Intermediate Variables

\[CBF = G (P_a - P_v) \]
Implementation Name: CBF
Units: ml_{blood} ml^{-1} brain s^{-1}
Initial value: CBF_{\text{init}}
Cerebral blood flow.

\[\Delta \text{oxCCO} = \Delta \text{oxCCO}_{\text{off}} + 1000 \text{Vol}_{\text{init}} \ (Cu_{A,o} - Cu_{A,o,n}) \]
Implementation Name: CCO
Units: uM
Initial value: 0
Cytochrome c oxidase signal measured by NIRS.

\[\text{CMRO}_2 = f_3 \text{Vol}_{\text{init}} \]
Implementation Name: CMRO2
Units: mM s^{-1}
Initial value: 0
Rate of cerebral oxygen metabolism.

\[\Delta p = \psi - Z \ (4 + \log 10 (H^+)) \]
Implementation Name: \(\Delta p \)
Units: mV
Initial value: 0
Proton motive force across the mitochondrial inner membrane.

\[\eta = R_p \left(\frac{V_{P_a}}{V_{P_a,n}} - 1 \right) + R_O_2 \left(\frac{V_{O_2}}{V_{O_2,n}} - 1 \right) + R_{CO_2} \left(1 - \frac{V_{CO_2}}{V_{CO_2,n}} \right) + R_u \left(1 - \frac{V_u}{V_{u,n}} \right) \]
Implementation Name: \(\eta \)
Units: dimensionless
Initial value: 0
Merged autoregulation stimulus.

\[f_1 = \lambda_{f_1} + \lambda_{f_1,u} \log (u) + \lambda_{f_1,o} \log (Cu_{A,o}) \]
Implementation Name: \(f_1 \)
Units: mM s^{-1}
Initial value: 0
Reaction rate for the reduction of Cu_{A}.

\[f_3 = \lambda_{f_3} + \lambda_{f_3,u} \log (a_{3,r}) \]
Implementation Name: \(f_3 \)
Units: mM s^{-1}
Initial value: 0
Reaction rate for the reduction of a_{3}.

\[f_5 = \lambda_{f_5} + \lambda_{f_5,o} \log (O_2) \]
Implementation Name: \(f_5 \)
Units: mM s^{-1}
Initial value: 0
Reaction rate for the reduction of O_{2}.

\[G = K_G r^4 \]
Implementation Name: \(G \)
Units: ml_{blood} ml^{-1} brain mmHg^{-1} s^{-1}
Initial value: 0
Effective conductance of the whole blood flow compartment.

\[h = \sqrt{r r + 2 r_0 h_0 + h_0 h_0} - r \]
Implementation Name: \(h \)
Units: cm
7.6 Intermediate Variables

Initial value: h_n
Thickness of the blood vessel walls.

\[HbO_2 = (V_a HbO_{2,a} + V_v HbO_{2,v}) \text{ blood}_{hb} \]
Implementation Name: $HbO2$
Units: uM
Initial value: 0
Oxygenated haemoglobin signal measured by NIRS.

\[HbT = (V_a + V_v) HbT_{tot} \text{ blood}_{hb} \]
Implementation Name: HbT
Units: uM
Initial value: 0
Total haemoglobin signal measured by NIRS.

\[HHb = HbT - HbO_2 \]
Implementation Name: HHb
Units: uM
Initial value: 0
Deoxygenated haemoglobin signal measured by NIRS.

\[JO_2 = \text{fmin} \left(D_{O_2} (O_2,c - O_2) \right. \left., CBF HbO_{2,a} \right) \]
Implementation Name: J_02
Units: mM s$^{-1}$
Initial value: 0
Oxygen flux from blood to tissue.

\[L = \lambda_L + \lambda_L \theta + \lambda_L \theta \Delta p \]
Implementation Name: L
Units: mM s$^{-1}$
Initial value: 0
Rate of proton return to the mitochondrial matrix.

\[\mu = \frac{\mu_{\text{min}} + \mu_{\text{max}} \exp(\eta)}{1 + \exp(\eta)} \]
Implementation Name: mu
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation response.

\[R_{Hi} = \frac{R_{Hi,H}}{H^+} \]
Implementation Name: R_{Hi}
Units: dimensionless
Initial value: 0
Relative mitochondrial volume for protons, taking into account buffering effect of pH.

\[S_{c,O2} = \frac{S_{a,O2} + S_{v,O2}}{2} \]
Implementation Name: $S_{c,O2}$
Units: dimensionless
Initial value: $S_{c,O2,n}$
Capillary oxygen saturation.

\[\sigma_e = \sigma_{e,0} \left(\exp \left(\frac{K_e (r - r_0)}{r_0} \right) - 1 \right) - \sigma_{\text{coll}} \]
Implementation Name: $sigma_e$
Units: mm Hg
Initial value: 0
Elastic stress in blood vessel walls.
$S_{v,O_2} = \frac{HbO_{2,v}}{Hb_{tot}}$

Implementation Name: SvO2
Units: dimensionless
Initial value: $S_{v,O_2,n}$
Venous oxygen saturation.

$T_e = \sigma_e h$
Implementation Name: Te
Units: mm Hg cm
Initial value: 0
Elastic tension in the blood vessel walls.

$T_m = T_{max} \exp \left(-\text{pow} \left(\text{fabs} \left(\frac{r - r_m}{r_l - r_m}\right), n_m\right)\right)$
Implementation Name: Tm
Units: mm Hg cm
Initial value: 0
Muscular tension in the blood vessel walls.

$T_{max} = T_{max,0} \left(1 + k_{aut} \mu\right)$
Implementation Name: Tmax
Units: mm Hg cm
Initial value: 0
Maximal muscular tension in the blood vessel walls.

$\theta = kCV \left(\Delta p + Z \log_{10} (u) - 90\right)$
Implementation Name: theta
Units: dimensionless
Initial value: 0
Driving force Complex V.

$TOI = \frac{100HbO_2}{HbT}$
Implementation Name: TOI
Units: dimensionless
Initial value: 0
Total oxygenation index.

$V_{mca} = CBF \cdot CBF_{scale}$
Implementation Name: Vmca
Units: cm s$^{-1}$
Initial value: 0
Blood velocity in the middle cerebral artery.

$V_a = V_{a,p} \left(\frac{r}{r_n}\right)^2$
Implementation Name: Vol_art
Units: dimensionless
Initial value: 0
Relative arterial blood volume.

7.7 Parameters

$Cu_{A,o,n}$
Implementation Name: a_n
Units: mM
7.7 Parameters

Initial value: 0.06567
Normal concentration of oxidised cytochrome c oxidase.

\(\text{blood} _{\text{hb}} \)
Implementation Name: blood_hb
Units: dimensionless
Initial value: 10.00
Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to µM, and number of binding sites.

\(a_{3,r,n} \)
Implementation Name: bred_n
Units: mM
Initial value: 0.001408
Normal concentration of reduced cytochrome a3.

\(C_{\text{im}} \)
Implementation Name: C_im
Units: mM mV\(^{-1}\)
Initial value: 0.00675
Capacitance of the mitochondrial inner membrane.

\(CBF_n \)
Implementation Name: CBFn
Units: ml\(_{\text{blood}}\) ml\(_{\text{brain}}\) s\(^{-1}\)
Initial value: 0.0125
Normal cerebral blood flow.

\(CBFscale \)
Implementation Name: CBFscale
Units: cm
Initial value: 5000
Scale constant relating blood flow to arterial velocity.

\(\Delta oxCCO_{\text{off}} \)
Implementation Name: CCO_offset
Units: uM
Initial value: 0
Signal offset for the NIRS CCO measurement.

\(CMRO_{2,n} \)
Implementation Name: CMRO2_n
Units: mM s\(^{-1}\)
Initial value: 0.034
Normal metabolic rate of oxygen consumption.

\(D_{\text{O}_2} \)
Implementation Name: D_02
Units: s\(^{-1}\)
Initial value: \(\frac{I_{\text{O}_2,n}}{O_{2,r,n} - O_{2,n}} \)
Diffusion rate for oxygen between capillaries and mitochondria.

\(\psi_n \)
Implementation Name: Dpsi_n
Units: mV
Initial value: 145
Normal mitochondrial inner membrane potential.

\(\lambda_{f_1} \)
Implementation Name: f1_0
Units: mM s$^{-1}$
Initial value: 1.490
Fitted intercept for the linear model for f_1.

$\lambda_{f_1,a}$
Implementation Name: $f_{1,a}$
Units: mM s$^{-1}$
Initial value: 0.3609
Fitted linear dependence of f_1 on logarithm of Cu$_{A,ox}$.

$\lambda_{f_1,u}$
Implementation Name: $f_{1,u}$
Units: mM s$^{-1}$
Initial value: 0.06985
Fitted linear dependence of f_1 on logarithm of demand.

λ_{f_2}
Implementation Name: $f_{2,0}$
Units: mM s$^{-1}$
Initial value: 0.1473
Fitted intercept for the linear model for f_2.

$\lambda_{f_2,b}$
Implementation Name: $f_{2,bred}$
Units: mM s$^{-1}$
Initial value: −0.05484
Fitted linear dependence of f_2 on logarithm of a$_{3,red}$.

λ_{f_3}
Implementation Name: $f_{3,0}$
Units: mM s$^{-1}$
Initial value: 0.6324
Fitted intercept for the linear model for f_3.

$\lambda_{f_3,O}$
Implementation Name: $f_{3,02}$
Units: mM s$^{-1}$
Initial value: 0.03352
Fitted linear dependence of f_3 on logarithm of O$_2$.

G_n
Implementation Name: G_n
Units: ml$_{blood}$ ml$^{-1}$ brain mmHg$^{-1}$ s$^{-1}$
Initial value: $\frac{P_{a,n} - P_{v,n}}{CBF_n}$
Normal blood vessel conductance.

h_0
Implementation Name: h_0
Units: cm
Initial value: 0.003
Thickness of the blood vessel walls at which radius is r_0.

H_n^+
Implementation Name: h_n
Units: mM
Initial value: 0.00003981
Normal mitochondrial proton concentration.

h_n
Implementation Name: h_n
7.7 Parameters

Units: cm
Initial value: \(\sqrt{r_n r_n + 2r_0 h_0 + h_0 h_0} - r_n\)
Normal thickness of the blood vessel walls.

\(J_{O_2,n}\)
Implementation Name: \(J_{O_2n}\)
Units: mM s\(^{-1}\)
Initial value: CMRO\(_2\)\(_n\)
Normal oxygen flux from blood to tissue.

\(k_{aut}\)
Implementation Name: \(k_{aut}\)
Units: dimensionless
Initial value: 1
Overall functioning of autoregulatory response.

\(K_G\)
Implementation Name: \(K_G\)
Units: \(\text{ml}_{\text{blood}} \text{ml}_{\text{brain}}^{-1} \text{mmHg}^{-1} \text{s}^{-1} \text{cm}^{-4}\)
Initial value: \(\frac{G_n}{\text{pow}(r_n, 4)}\)
Proportionality constant in Poiseuille relation for conductance.

\(K_\sigma\)
Implementation Name: \(K_\sigma\)
Units: dimensionless
Initial value: 10
Parameter controlling the sensitivity of \(\sigma_r\) to vessel radius.

\(kCV\)
Implementation Name: \(kCV\)
Units: mV\(^{-1}\)
Initial value: 0.02047339
Factor relating the Complex V driving force to the membrane potential and demand.

\(\lambda_L\)
Implementation Name: \(L_0\)
Units: mM s\(^{-1}\)
Initial value: \(-15.339464\)
Fitted intercept for the linear model for \(L\).

\(\lambda_{L,p}\)
Implementation Name: \(L_Dp\)
Units: mM s\(^{-1}\) mV\(^{-1}\)
Initial value: 0.097097
Fitted linear dependence of \(L\) on \(\Delta p\).

\(\lambda_{L,\theta}\)
Implementation Name: \(L_{th}\)
Units: mM s\(^{-1}\)
Initial value: 5.665904
Fitted linear dependence of \(L\) on \(\theta\).

\(\mu_{max}\)
Implementation Name: \(mu_{max}\)
Units: dimensionless
Initial value: 1
Upper bound for the transformed stimulus \(\mu\).

\(\mu_{min}\)
Implementation Name: \(mu_{min}\)
Units: dimensionless
Initial value: −1
Lower bound for the transformed stimulus μ.

μ_n
Implementation Name: μ_n
Units: dimensionless
Initial value: 0
Normal value for the transformed stimulus μ.

n_h
Implementation Name: n_h
Units: dimensionless
Initial value: 2.5
Hill coefficient for oxygen dissociation from haemoglobin.

n_m
Implementation Name: n_m
Units: dimensionless
Initial value: 1.83
Exponent in the muscular tension relationship.

$O_{2,n}$
Implementation Name: $O_{2,n}$
Units: mM
Initial value: 0.024
Normal mitochondrial oxygen concentration.

$O_{2,c,n}$
Implementation Name: $O_{2,c,n}$
Units: mM
Initial value: $\phi \ pow \left(\frac{S_{c,O_2,n}}{1 - S_{c,O_2,n}} \cdot \frac{1}{n_h} \right)$
Normal capillary oxygen concentration.

p_1
Implementation Name: p_1
Units: dimensionless
Initial value: 12
Proton cost of the reaction reducing Cu$_A$.

p_3
Implementation Name: p_3
Units: dimensionless
Initial value: 4
Proton cost of the reaction reducing a$_3$.

p_3
Implementation Name: p_3
Units: dimensionless
Initial value: 4
Proton cost of the reaction reducing O$_2$.

$P_1 = \frac{P_a + P_o}{2}$
Implementation Name: P_1
Units: mm Hg
Initial value: $P_{1,n}$
Average pressure in the blood vessels.

$P_{1,n}$
7.7 Parameters

Implementation Name: \(P_{a,n} \)
Units: mm Hg
Initial value: \(\frac{P_{a,n} + P_{v,n}}{2} \)
Normal value for the average pressure in the blood vessels.

\(P_a \)
Implementation Name: \(P_a \)
Units: mmHg
Initial value: \(P_{a,n} \)
Mean arterial blood pressure.

\(P_{a,n} \)
Implementation Name: \(P_{an} \)
Units: mm Hg
Initial value: 100
Normal arterial blood pressure.

\(P_sc \)
Implementation Name: \(P_{sc} \)
Units: mm Hg
Initial value: 9.5
Intracranial pressure.

\(P_{scn} \)
Implementation Name: \(P_{scn} \)
Units: mm Hg
Initial value: 9.5
Normal intracranial pressure.

\(P_v \)
Implementation Name: \(P_v \)
Units: mmHg
Initial value: \(P_{v,n} \)
Venous blood pressure.

\(P_{vn} \)
Implementation Name: \(P_{vn} \)
Units: mmHg
Initial value: 4
Normal venous blood pressure.

\(Pa_{CO_2} \)
Implementation Name: \(Pa_{CO2} \)
Units: mmHg
Initial value: \(Pa_{CO2,n} \)
Arterial partial pressure of carbon dioxide.

\(Pa_{CO_2,n} \)
Implementation Name: \(Pa_{CO2n} \)
Units: mmHg
Initial value: 40
Normal arterial partial pressure of carbon dioxide.

\(\phi \)
Implementation Name: \(\phi \)
Units: mM
Initial value: 0.036
Oxygen concentration at half-maximal saturation.

\(r_0 \)
Implementation Name: r_0
Units: cm
Initial value: 0.0126
Radius in the elastic tension relationship.

R_{CO_2}
Implementation Name: R_{autc}
Units: dimensionless
Initial value: 2.2
Autoregulatory reactivity to carbon dioxide.

R_{O_2}
Implementation Name: R_{auto}
Units: dimensionless
Initial value: 1.5
Autoregulatory reactivity to oxygen.

R_{Pa}
Implementation Name: R_{autp}
Units: dimensionless
Initial value: 4
Autoregulatory reactivity to blood pressure.

R_u
Implementation Name: R_{autu}
Units: dimensionless
Initial value: 0.5
Autoregulatory reactivity to demand.

$R_{Hi,H}$
Implementation Name: $R_{Hi,H}$
Units: mM
Initial value: 9.565483
Proton buffering factor.

r_m
Implementation Name: r_m
Units: cm
Initial value: 0.027
Vessel radius at which muscular tension is maximal.

r_n
Implementation Name: r_n
Units: cm
Initial value: 0.0187
Normal blood vessel radius. Normal effective blood vessel radius.

r_t
Implementation Name: r_t
Units: cm
Initial value: 0.018
Radius in the muscular tension relationship.

$S_{a,O_2,n}$
Implementation Name: $Sa02_n$
Units: dimensionless
Initial value: 0.96
Normal arterial oxygen saturation.

S_{a,O_2}
Implementation Name: $Sa02_{sup}$
Units: dimensionless
Initial value: $S_{n,O_2,n}$
Arterial oxygen saturation.

$S_{c,O_2,n}$
Implementation Name: Sc02_n
Units: dimensionless
Initial value: $\frac{S_{a,O_2,n} + S_{c,O_2,n}}{2}$
Normal capillary oxygen saturation.

σ_{coll}
Implementation Name: sigma_coll
Units: mm Hg
Initial value: 62.79
Pressure at which blood vessels collapse.

$\sigma_{e,0}$
Implementation Name: sigma_e0
Units: mm Hg
Initial value: 0.1425
Parameter in the elastic tension relationship.

$\sigma_{e,n}$
Implementation Name: sigma_en
Units: mm Hg
Initial value: $\sigma_{e,0} \left(\exp \left(\frac{K_e (r_n - r_0)}{r_0} \right) - 1 \right) - \sigma_{coll}$
Normal elastic stress in blood vessel walls.

$S_{v,O_2,n}$
Implementation Name: Sv02_n
Units: dimensionless
Initial value: $\frac{HbO_2,v,n}{Hb_{tot,n}}$
Normal venous oxygen saturation.

t
Implementation Name: t
Units: s
Initial value: 0
Time over which the system evolves.

τ_{CO_2}
Implementation Name: t_{c}
Units: s
Initial value: 5
Filter time constant for stimulus effect of carbon dioxide.

$T_{r,n}$
Implementation Name: T_{en}
Units: mm Hg cm
Initial value: $\sigma_{e,n} \cdot h_n$
Normal elastic tension in the blood vessel walls.

$T_{\text{max},0}$
Implementation Name: $T_{\text{max}0}$
Units: mm Hg cm
Initial value: $\frac{T_{\text{max},n}}{1 + k_{aut} \cdot \mu_n}$
Maximal muscular tension under normal regulatory stimulus ($\mu = \mu_n$).
$T_{\text{max},n}$
Implementation Name: $T_{\text{max}n}$
Units: mm Hg cm
Initial value: $T_{m,n} = \exp\left(-\text{pow}\left(\text{fabs}\left(\frac{r_n-r_m}{r_t-r_m} \right), m \right) \right)$
Normal maximal muscular tension.

$T_{m,n}$
Implementation Name: T_{mn}
Units: mm Hg cm
Initial value: $(P_{1,n} - P_{\text{icn}}) r_n - T_{e,n}$
Normal muscular tension in the blood vessel walls.

τ_{O_2}
Implementation Name: τ_{O_2}
Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

τ_{P_a}
Implementation Name: τ_{P_a}
Units: s
Initial value: 5
Filter time constant for stimulus effect of blood pressure.

τ_{u}
Implementation Name: τ_{u}
Units: s
Initial value: 0.5
Filter time constant for stimulus effect of demand.

u
Implementation Name: u
Units: dimensionless
Initial value: u_n
Parameter indicating metabolic demand.

u_n
Implementation Name: u_n
Units: dimensionless
Initial value: 1
Normal demand.

$\nu_{CO_2,n}$
Implementation Name: $\nu_{CO_2,n}$
Units: mmHg
Initial value: $P_{\text{icCO_2}}$
Normal filtered carbon dioxide partial pressure. Normal filtered carbon dioxide partial pressure.

$\nu_{O_2,n}$
Implementation Name: $\nu_{O_2,n}$
Units: mM
Initial value: $O_{2,c,n}$
Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

$\nu_{P_a,n}$
Implementation Name: $\nu_{P_a,n}$
Units: mmHg
7.7 Parameters

Initial value: $P_{a,n}$
Normal filtered arterial blood pressure. Normal filtered blood pressure.

$v_{u,n}$
- Implementation Name: v_{un}
- Units: dimensionless
- Initial value: u_n
Normal filtered demand. Normal filtered demand.

V_{Arat_n}
- Implementation Name: V_{Arat_n}
- Units: dimensionless
- Initial value: 3
Normal volume ratio of veins to arteries in brain tissue.

$V_{a,n}$
- Implementation Name: Vol_{artn}
- Units: dimensionless
- Initial value: $\frac{1}{1 + V_{Arat_n}}$
Normal relative arterial blood volume.

Vol_{mit}
- Implementation Name: Vol_{mit}
- Units: dimensionless
- Initial value: 0.067
Fraction of brain tissue volume that is mitochondria.

V_{v}
- Implementation Name: Vol_{ven}
- Units: dimensionless
- Initial value: $\frac{1}{1 + V_{Arat_n}}$
Relative venous blood volume.

$HbO_{2,a} = Hb_{tot} \times S_{a,O_2}$
- Implementation Name: $x0a$
- Units: mM
- Initial value: $HbO_{2,a,n}$
Arterial concentration of oxygen bound to haemoglobin.

$HbO_{2,a,n}$
- Implementation Name: $x0a_n$
- Units: mM
- Initial value: $Hb_{tot,n} \times S_{a,O_2,n}$
Normal arterial concentration of oxygen bound to haemoglobin.

$HbO_{2,v,n}$
- Implementation Name: $x0v_n$
- Units: mM
- Initial value: $\frac{CBF_n \times HbO_{2,a,n} - IO_{2,v}}{CBF_n}$
Normal venous concentration of oxygen bound to haemoglobin.

Hb_{tot}
- Implementation Name: x_{tot}
- Units: mM
- Initial value: 9.1
Total concentration of haemoglobin O_2 binding sites in blood (4 times haemoglobin concentration).
7 BSM1

\(H_{b_{tot,n}} \)
- Implementation Name: \(x_{tot,n} \)
- Units: mM
- Initial value: 9.1
 Normal total concentration of haemoglobin O\(_2\) binding sites in blood (4 times haemoglobin concentration).

\(Z \)
- Implementation Name: \(Z \)
- Units: mV
- Initial value: 59.028
 Proportionality constant in calculation of driving forces due to concentration differences.
 Defined as \(RT/F \), where \(F \) is Faraday’s constant, \(R \) the ideal gas constant and \(T \) the absolute temperature.
8 BSM2

8.1 Overview

Simplified model in which the metabolic submodel is replaced with variant M2.

- 9 differential state variables
- 3 algebraic state variables
- 27 intermediate variables
- 90 parameters
- 4 declared inputs
- 33 default outputs

8.2 Differential Equations

\[
\frac{dC_{\text{H}_A,\text{O}}}{dt} = 4f_3 - 4f_1 \tag{8.1}
\]

\[
\frac{da_{3,r}}{dt} = 4f_3 - 4f_3 \tag{8.2}
\]

\[
\frac{d\psi}{dt} = \frac{p_3 f_3 + p_1 f_1 + p_3 f_3 - L}{C_{\text{im}}} \tag{8.3}
\]

\[
\frac{dH^+}{dt} = \frac{1}{R_{\text{Hi}}} L - \frac{p_3}{R_{\text{Hi}}} f_3 - \frac{p_1}{R_{\text{Hi}}} f_1 - \frac{p_3}{R_{\text{Hi}}} f_3 \tag{8.4}
\]

\[
\frac{dO_2}{dt} = \frac{1}{Vol_{\text{mit}}} j_{\text{O}_2} - f_3 \tag{8.5}
\]

\[
\frac{dv_{\text{CO}_2}}{dt} = \frac{1}{\tau_{\text{CO}_2}} (P_a \text{CO}_2 - v_{\text{CO}_2}) \tag{8.6}
\]

\[
\frac{dv_{\text{O}_2}}{dt} = \frac{1}{\tau_{\text{O}_2}} (O_{2,c} - v_{\text{O}_2}) \tag{8.7}
\]

\[
\frac{dv_p}{dt} = \frac{1}{\tau_{p_a}} (P_a - v_{p_a}) \tag{8.8}
\]
\[
\frac{dv_u}{dr} = \frac{1}{\tau_u} (u - v_u)
\]

8.3 Algebraic Equations

\[
\phi \left(\frac{S_{c,O_2}}{1 - S_{c,O_2}} \right)^{\frac{1}{\pi}} - O_{2,c} = 0
\]

\[
T_c + T_m - (P_1 - P_{ic}) r = 0
\]

\[
CBF \left(HbO_{2,a} - HbO_{2,v} \right) - J_{O_2} = 0
\]

8.4 Chemical Reactions

\[
\frac{L}{R_{Hi}} \rightarrow 1 H^+
\]

\[
\frac{J_{O_2}}{Vol_{mit}} \rightarrow \frac{1}{O_2}
\]

\[
\frac{p_3}{R_{Hi}} \rightarrow H^+ \rightarrow 4 Cu_{A,o} + 4 a_{3,r}
\]

\[
4 Cu_{A,o} + \frac{P_1}{R_{Hi}} \rightarrow H^+ \rightarrow 4 Cu_{A,o} + 4 a_{3,r}
\]

8.5 State Variables

\[Cu_{A,o}\]
- Implementation Name: a
- Units: mM
- Initial value: \(Cu_{A,o,n} \)
- Concentration of oxidised cytochrome c oxidase.

\[a_{3,r}\]
- Implementation Name: bred
- Units: mM
- Initial value: \(a_{3,r,n} \)
- Concentration of reduced cytochrome \(a_3 \).
8.5 State Variables

\(\psi \)
Implementation Name: \(\delta \psi \)
Units: mV
Initial value: \(\psi_n \)
Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

\(H^+ \)
Implementation Name: \(H^+ \)
Units: mM
Initial value: \(H^+_{n} \)
Mitochondrial proton concentration.

\(O_2 \)
Implementation Name: \(O_2 \)
Units: mM
Initial value: \(O_{2,n} \)
Mitochondrial oxygen concentration.

\(O_{2,c} \)
Implementation Name: \(O_{2,c} \)
Units: mM
Initial value: \(O_{2,c,n} \)
Capillary oxygen concentration.

\(r \)
Implementation Name: \(r \)
Units: cm
Initial value: \(r_n \)
Typical blood vessel radius.

\(v_{CO_2} \)
Implementation Name: \(v_{CO_2} \)
Units: mmHg
Initial value: \(v_{CO_2,n} \)
Filtered carbon dioxide partial pressure.

\(v_{O_2} \)
Implementation Name: \(v_{O_2} \)
Units: mM
Initial value: \(v_{O_2,n} \)
Filtered capillary oxygen concentration.

\(v_{Pa} \)
Implementation Name: \(v_{Pa} \)
Units: mmHg
Initial value: \(v_{Pa,n} \)
Filtered arterial blood pressure.

\(v_u \)
Implementation Name: \(v_u \)
Units: dimensionless
Initial value: \(v_{u,n} \)
Filtered demand.

\(HbO_{2,v} \)
Implementation Name: \(X0v \)
Units: mM
Initial value: \(HbO_{2,v,n} \)
Venous concentration of oxygen bound to haemoglobin.
8.6 Intermediate Variables

\[CBF = G \left(P_a - P_v \right) \]
Implementation Name: CBF
Units: ml\(_{\text{blood}}\) ml\(_{\text{brain}}^{-1}\) s\(^{-1}\)
Initial value: CBF\(_{\text{n}}\)
Cerebral blood flow.

\[\Delta \text{oxCCO} = \Delta \text{oxCCO}_{\text{off}} + 1000 \text{Vol}_{\text{mit}} \left(C_{\text{UAo}} - C_{\text{UAo,n}} \right) \]
Implementation Name: CCO
Units: uM
Initial value: 0
Cytochrome c oxidase signal measured by NIRS.

\[\text{CMRO}_2 = f_3 \text{Vol}_{\text{mit}} \]
Implementation Name: CMRO2
Units: mM s\(^{-1}\)
Initial value: 0
Rate of cerebral oxygen metabolism.

\[\Delta p = \psi - Z \left(4 + \log_{10}(H^+) \right) \]
Implementation Name: \(\Delta p \)
Units: mV
Initial value: 0
Proton motive force across the mitochondrial inner membrane.

\[\eta = R_p \left(\frac{v_{p_a}}{v_{p_{a,n}}^x} - 1 \right) + R_{o_2} \left(\frac{v_{O_2}}{v_{O_2,n}^x} - 1 \right) + R_{CO_2} \left(1 - \frac{v_{CO_2}}{v_{CO_2,n}^x} \right) + R_u \left(1 - \frac{v_u}{v_{u,n}} \right) \]
Implementation Name: \(\eta \)
Units: dimensionless
Initial value: 0
Merged autoregulation stimulus.

\[f_1 = \lambda f_1 + \lambda f_{1,a} \log (C_{\text{UAo}}) \]
Implementation Name: \(f_1 \)
Units: mM s\(^{-1}\)
Initial value: 0
Reaction rate for the reduction of \(\text{Cu}_{\text{A}} \).

\[f_2 = \lambda f_2 + \lambda f_{2,a} \log (a_{3,r}) \]
Implementation Name: \(f_2 \)
Units: mM s\(^{-1}\)
Initial value: 0
Reaction rate for the reduction of \(a_3 \).

\[f_3 = \lambda f_3 + \lambda f_{3,o} \log (O_2) \]
Implementation Name: \(f_3 \)
Units: mM s\(^{-1}\)
Initial value: 0
Reaction rate for the reduction of \(O_2 \).

\[G = K_G r^A \]
Implementation Name: \(G \)
Units: ml\(_{\text{blood}}\) ml\(_{\text{brain}}^{-1}\) mmHg\(^{-1}\) s\(^{-1}\)
Initial value: 0
Effective conductance of the whole blood flow compartment.

\[h = \sqrt{r r + 2 r h_0 + h_0 h_0} - r \]
Implementation Name: \(h \)
Units: cm
Initial value: h_n
Thickness of the blood vessel walls.

$HbO_2 = (V_a HbO_2, a + V_v HbO_2, v) \text{ blood}_{hb}$
Implementation Name: HbO2
Units: uM
Initial value: 0
Oxygenated haemoglobin signal measured by NIRS.

$HbT = (V_a + V_v) HbO_2, \text{ blood}_{hb}$
Implementation Name: HbT
Units: uM
Initial value: 0
Total haemoglobin signal measured by NIRS.

$HHb = HbT - HbO_2$
Implementation Name: HHb
Units: uM
Initial value: 0
Deoxygenated haemoglobin signal measured by NIRS.

$J_{O_2} = f_{min} (D_{O_2} (O_2, c - O_2), CBF HbO_2, a)$
Implementation Name: J_O2
Units: mM s$^{-1}$
Initial value: 0
Oxygen flux from blood to tissue.

$L = \lambda_L + \lambda_{l,\theta} \theta + \lambda_{l,\rho} \Delta \rho$
Implementation Name: L
Units: mM s$^{-1}$
Initial value: 0
Rate of proton return to the mitochondrial matrix.

$\mu = \mu_{min} + \mu_{max} \exp (\eta) \over 1 + \exp (\eta)$
Implementation Name: mu
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation response.

$R_{Hi} = \frac{R_{Hi,H}}{H}$
Implementation Name: R_HI
Units: dimensionless
Initial value: 0
Relative mitochondrial volume for protons, taking into account buffering effect of pH.

$S_{c,O_2} = S_{a,O_2} + S_v,O_2,$
Implementation Name: ScO2
Units: dimensionless
Initial value: $S_{c,O_2, n}$
Capillary oxygen saturation.

$\sigma_e = \sigma_{e,0} \left(\exp \left(\frac{K_e (r - r_0)}{r_0} \right) - 1 \right) - \sigma_{coll}$
Implementation Name: sigma_e
Units: mm Hg
Initial value: 0
Elastic stress in blood vessel walls.
\[S_{v,O_2} = \frac{HbO_2,v}{Hb_{tot}} \]
Implementation Name: SvO2
Units: dimensionless
Initial value: \(S_{v,O_2,n} \)
Venous oxygen saturation.

\[T_e = \sigma_e h \]
Implementation Name: \(T_e \)
Units: mm Hg cm
Initial value: 0
Elastic tension in the blood vessel walls.

\[T_m = T_{max} \exp \left(-\text{pow} \left(\left| \frac{r - r_m}{r_1 - r_m} \right|, n_m \right) \right) \]
Implementation Name: \(T_m \)
Units: mm Hg cm
Initial value: 0
Muscular tension in the blood vessel walls.

\[T_{max} = T_{max,0} (1 + k_{aut} \mu) \]
Implementation Name: \(T_{max} \)
Units: mm Hg cm
Initial value: 0
Maximal muscular tension in the blood vessel walls.

\[\theta = kCV (\Delta p + Z \log_{10} (u) - 90) \]
Implementation Name: \(\theta \)
Units: dimensionless
Initial value: 0
Driving force Complex V.

\[TOI = \frac{100HbO_2}{HbT} \]
Implementation Name: \(TOI \)
Units: dimensionless
Initial value: 0
Total oxygenation index.

\[V_{mca} = CBF \cdot CBF_{scale} \]
Implementation Name: \(V_{mca} \)
Units: cm s\(^{-1}\)
Initial value: 0
Blood velocity in the middle cerebral artery.

\[V_a = V_{a,n} \left(\frac{r}{r_n} \right)^2 \]
Implementation Name: \(Vol_{art} \)
Units: dimensionless
Initial value: 0
Relative arterial blood volume.

8.7 Parameters

\[C_{H_A,n} \]
Implementation Name: \(a_n \)
Units: mM
8.7 Parameters

Initial value: 0.06567
Normal concentration of oxidised cytochrome c oxidase.

\(\text{blood_{hb}}\)
Implementation Name: blood hb
Units: dimensionless
Initial value: 10.00
Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to \(\mu\)M, and number of binding sites.

\(a_{3\tau,n}\)
Implementation Name: bred_n
Units: mM
Initial value: 0.001408
Normal concentration of reduced cytochrome a3.

\(C_{im}\)
Implementation Name: C.im
Units: mM mV\(^{-1}\)
Initial value: 0.00675
Capacitance of the mitochondrial inner membrane.

\(\text{CBF}_n\)
Implementation Name: CBFn
Units: ml
\text{blood} ml\text{brain} s\(^{-1}\)
Initial value: 0.0125
Normal cerebral blood flow.

\(\text{CBFscale}\)
Implementation Name: CBFscale
Units: cm
Initial value: 5000
Scale constant relating blood flow to arterial velocity.

\(\Delta_{oxCCO_{off}}\)
Implementation Name: CCO_offset
Units: uM
Initial value: 0
Signal offset for the NIRS CCO measurement.

\(\text{CMRO}_{2,n}\)
Implementation Name: CMRO2_n
Units: mM s\(^{-1}\)
Initial value: 0.034
Normal metabolic rate of oxygen consumption.

\(D_{O_2}\)
Implementation Name: d_02
Units: s\(^{-1}\)
Initial value: \(\frac{J_{O_2,n}}{O_{2,e,n} - O_{2,n}}\)
Diffusion rate for oxygen between capillaries and mitochondria.

\(\psi_n\)
Implementation Name: dpsi_n
Units: mV
Initial value: 145
Normal mitochondrial inner membrane potential.

\(\lambda_{f_1}\)
Implementation Name: f1_0
Units: mM s$^{-1}$
Initial value: 1.504
Fitted intercept for the linear model for f_1.

$\lambda_{f_1,a}$
Implementation Name: $f_{1,a}$
Units: mM s$^{-1}$
Initial value: 0.3658
Fitted linear dependence of f_1 on logarithm of Cu$_{A,ox}$.

λ_{f_2}
Implementation Name: $f_{2,0}$
Units: mM s$^{-1}$
Initial value: 0.1473
Fitted intercept for the linear model for f_2.

$\lambda_{f_2,b}$
Implementation Name: $f_{2,bred}$
Units: mM s$^{-1}$
Initial value: -0.05484
Fitted linear dependence of f_2 on logarithm of $a_{3,red}$.

λ_{f_3}
Implementation Name: $f_{3,0}$
Units: mM s$^{-1}$
Initial value: 0.6324
Fitted intercept for the linear model for f_3.

$\lambda_{f_3,O}$
Implementation Name: $f_{3,02}$
Units: mM s$^{-1}$
Initial value: 0.03352
Fitted linear dependence of f_3 on logarithm of O$_2$.

G_n
Implementation Name: G_n
Units: ml$_{blood}$ ml$_{brain}^{-1}$ mmHg$^{-1}$ s$^{-1}$
Initial value: CBF_n
Normal blood vessel conductance.

h_0
Implementation Name: h_{0}
Units: cm
Initial value: 0.003
Thickness of the blood vessel walls at which radius is r_0.

H_n^+
Implementation Name: $H_{n,n}$
Units: mM
Initial value: 0.00003981
Normal mitochondrial proton concentration.

h_n
Implementation Name: h_{n}
Units: cm
Initial value: $\sqrt{(r_n r_n + 2r_0 h_0 + h_0 h_0) - r_n}$
Normal thickness of the blood vessel walls.

$J_{O_2,n}$
Implementation Name: $J_{02,n}$
8.7 Parameters

Units: mM s\(^{-1}\)
Initial value: \(\text{CMRO}_{2,n}\)
Normal oxygen flux from blood to tissue.

\(k_{\text{aut}}\)
Implementation Name: \(k_{\text{aut}}\)
Units: dimensionless
Initial value: 1
Overall functioning of autoregulatory response.

\(K_G\)
Implementation Name: \(K_G\)
Units: \(\text{ml}_{\text{blood}} \text{ ml}_{\text{brain}}^{-1} \text{ mmHg}^{-1} \text{ s}^{-1} \text{ cm}^{-4}\)
Initial value: \(\frac{G_n}{\text{pow} (r_n, 4)}\)
Proportionality constant in Poiseuille relation for conductance.

\(K_\sigma\)
Implementation Name: \(K_\sigma\)
Units: dimensionless
Initial value: 10
Parameter controlling the sensitivity of \(\sigma_e\) to vessel radius.

\(kCV\)
Implementation Name: \(kCV\)
Units: mV\(^{-1}\)
Initial value: 0.02047339
Factor relating the Complex V driving force to the membrane potential and demand.

\(\lambda_L\)
Implementation Name: \(L_0\)
Units: mM s\(^{-1}\)
Initial value: \(-15.339464\)
Fitted intercept for the linear model for \(L\).

\(\lambda_{L,p}\)
Implementation Name: \(L_{\Delta p}\)
Units: mM s\(^{-1}\) mV\(^{-1}\)
Initial value: 0.097097
Fitted linear dependence of \(L\) on \(\Delta p\).

\(\lambda_{L,\theta}\)
Implementation Name: \(L_{\theta}\)
Units: mM s\(^{-1}\)
Initial value: 5.665904
Fitted linear dependence of \(L\) on \(\theta\).

\(\mu_{\text{max}}\)
Implementation Name: \(\mu_{\text{max}}\)
Units: dimensionless
Initial value: 1
Upper bound for the transformed stimulus \(\mu\).

\(\mu_{\text{min}}\)
Implementation Name: \(\mu_{\text{min}}\)
Units: dimensionless
Initial value: \(-1\)
Lower bound for the transformed stimulus \(\mu\).

\(\mu_n\)
Implementation Name: \(\mu_n\)
Units: dimensionless
Initial value: 0
Normal value for the transformed stimulus μ.

h_{ni}
Implementation Name: n_{hi}
Units: dimensionless
Initial value: 2.5
Hill coefficient for oxygen dissociation from haemoglobin.

h_{ni}
Implementation Name: n_{mi}
Units: dimensionless
Initial value: 1.83
Exponent in the muscular tension relationship.

$O_{2,ni}$
Implementation Name: $O_{2,ni}$
Units: mM
Initial value: 0.024
Normal mitochondrial oxygen concentration.

$O_{2,c,ni}$
Implementation Name: $O_{2,c,ni}$
Units: mM
Initial value: $\phi \text{ pow} \left(\frac{S_c O_{2,ni}}{1-S_c O_{2,ni}}, \frac{1}{h_{ni}} \right)$
Normal capillary oxygen concentration.

p_{1i}
Implementation Name: p_{1i}
Units: dimensionless
Initial value: 12
Proton cost of the reaction reducing Cu$_A$.

p_{3i}
Implementation Name: p_{3i}
Units: dimensionless
Initial value: 4
Proton cost of the reaction reducing a$_3$.

p_{3i}
Implementation Name: p_{3i}
Units: dimensionless
Initial value: 4
Proton cost of the reaction reducing O$_2$.

$P_{1i} = \frac{P_a + P_o}{2}$
Implementation Name: P_{1i}
Units: mm Hg
Initial value: $P_{1,ni}$
Average pressure in the blood vessels.

$P_{1,ni}$
Implementation Name: $P_{1,ni}$
Units: mm Hg
Initial value: $\frac{P_{a,ni} + P_{o,ni}}{2}$
Normal value for the average pressure in the blood vessels.
8.7 Parameters

\(P_a \)
Implementation Name: \(P_{a,n} \)
Units: mmHg
Initial value: \(P_{a,n} \)
Mean arterial blood pressure.

\(P_{a,n} \)
Implementation Name: \(P_{a,n} \)
Units: mmHg
Initial value: 100
Normal arterial blood pressure.

\(P_{ic} \)
Implementation Name: \(P_{i,c} \)
Units: mm Hg
Initial value: 9.5
Intracranial pressure.

\(P_{icn} \)
Implementation Name: \(P_{i,cn} \)
Units: mm Hg
Initial value: 9.5
Normal intracranial pressure.

\(P_v \)
Implementation Name: \(P_{v,n} \)
Units: mmHg
Initial value: \(P_{v,n} \)
Venous blood pressure.

\(P_{v,n} \)
Implementation Name: \(P_{v,n} \)
Units: mmHg
Initial value: 4
Normal venous blood pressure.

\(P_{a\text{CO}_2} \)
Implementation Name: \(P_{a,C02} \)
Units: mmHg
Initial value: \(P_{a,C02,n} \)
Arterial partial pressure of carbon dioxide.

\(P_{a\text{CO}_2,n} \)
Implementation Name: \(P_{a,C02,n} \)
Units: mmHg
Initial value: 40
Normal arterial partial pressure of carbon dioxide.

\(\phi \)
Implementation Name: \(\phi \)
Units: mM
Initial value: 0.036
Oxygen concentration at half-maximal saturation.

\(r_0 \)
Implementation Name: \(r_0 \)
Units: cm
Initial value: 0.0126
Radius in the elastic tension relationship.
\(R_{CO_2} \)
- Implementation Name: \(R_{autc} \)
- Units: dimensionless
- Initial value: 2.2
 Autoregulatory reactivity to carbon dioxide.

\(R_{O_2} \)
- Implementation Name: \(R_{auto} \)
- Units: dimensionless
- Initial value: 1.5
 Autoregulatory reactivity to oxygen.

\(R_{P_a} \)
- Implementation Name: \(R_{autop} \)
- Units: dimensionless
- Initial value: 4
 Autoregulatory reactivity to blood pressure.

\(R_H \)
- Implementation Name: \(R_{autu} \)
- Units: dimensionless
- Initial value: 0.5
 Autoregulatory reactivity to demand.

\(R_{Hi,H} \)
- Implementation Name: \(R_{Hi,H} \)
- Units: mM
- Initial value: 9.565483
 Proton buffering factor.

\(r_m \)
- Implementation Name: \(r_m \)
- Units: cm
- Initial value: 0.027
 Vessel radius at which muscular tension is maximal.

\(r_n \)
- Implementation Name: \(r_n \)
- Units: cm
- Initial value: 0.0187
 Normal blood vessel radius. Normal effective blood vessel radius.

\(r_t \)
- Implementation Name: \(r_t \)
- Units: cm
- Initial value: 0.018
 Radius in the muscular tension relationship.

\(S_{a,O_2,n} \)
- Implementation Name: \(Sa02_n \)
- Units: dimensionless
- Initial value: 0.96
 Normal arterial oxygen saturation.

\(S_{a,O_2} \)
- Implementation Name: \(Sa02sup \)
- Units: dimensionless
- Initial value: \(S_{a,O_2,n} \)
 Arterial oxygen saturation.
8.7 Parameters

\(S_{c,O_2,n} \)
- Implementation Name: \(ScO2_n \)
- Units: dimensionless
- Initial value: \(\frac{S_{c,O_2,n} + S_{v,O_2,n}}{2} \)
- Normal capillary oxygen saturation.

\(\sigma_{coll} \)
- Implementation Name: \(sigma_coll \)
- Units: mm Hg
- Initial value: 62.79
- Pressure at which blood vessels collapse.

\(\sigma_{e,0} \)
- Implementation Name: \(sigma_e0 \)
- Units: mm Hg
- Initial value: 0.1425
- Parameter in the elastic tension relationship.

\(\sigma_{e,n} \)
- Implementation Name: \(sigma_en \)
- Units: mm Hg
- Initial value: \(\sigma_{e,0} \left(\exp \left(\frac{K_{e} \left(r_n - r_0 \right)}{r_0} \right) - 1 \right) - \sigma_{coll} \)
- Normal elastic stress in blood vessel walls.

\(S_{v,O_2,n} \)
- Implementation Name: \(SvO2_n \)
- Units: dimensionless
- Initial value: \(\frac{HbO_2,v,n}{Hb_{tot,n}} \)
- Normal venous oxygen saturation.

\(t \)
- Implementation Name: \(t \)
- Units: s
- Initial value: 0
- Time over which the system evolves.

\(\tau_{CO_2} \)
- Implementation Name: \(t_{-c} \)
- Units: s
- Initial value: 5
- Filter time constant for stimulus effect of carbon dioxide.

\(T_{e,n} \)
- Implementation Name: \(T_{een} \)
- Units: mm Hg cm
- Initial value: \(\sigma_{e,n} h_n \)
- Normal elastic tension in the blood vessel walls.

\(T_{max,0} \)
- Implementation Name: \(T_{max0} \)
- Units: mm Hg cm
- Initial value: \(\frac{T_{max,n}}{1 + k_{aut} h_n} \)
- Maximal muscular tension under normal regulatory stimulus (\(\mu = \mu_n \)).

\(T_{max,n} \)
- Implementation Name: \(T_{maxn} \)
- Units: mm Hg cm
Initial value: \(T_{m,n} = \exp \left(-\text{pow} \left(\text{fabs} \left(\frac{r_n - r_m}{r_t - r_m} \right) , n \right) \right) \)

Normal maximal muscular tension.

\(T_{m,n} \)
Implementation Name: \(T_{\text{mn}} \)
Units: mm Hg cm
Initial value: \((P_{1,n} - P_{\text{icn}}) r_n - T_{\tau,n} \)
Normal muscular tension in the blood vessel walls.

\(\tau_{O_2} \)
Implementation Name: \(\tau_{\text{o}} \)
Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

\(\tau_{P_a} \)
Implementation Name: \(\tau_{\text{p}} \)
Units: s
Initial value: 5
Filter time constant for stimulus effect of blood pressure.

\(\tau_{u} \)
Implementation Name: \(\tau_{\text{u}} \)
Units: s
Initial value: 0.5
Filter time constant for stimulus effect of demand.

\(u \)
Implementation Name: \(u \)
Units: dimensionless
Initial value: \(u_n \)
Parameter indicating metabolic demand.

\(u_n \)
Implementation Name: \(u_{\text{n}} \)
Units: dimensionless
Initial value: 1
Normal demand.

\(v_{CO_2,n} \)
Implementation Name: \(v_{\text{cn}} \)
Units: mmHg
Initial value: \(P_{aCO_2,n} \)
Normal filtered carbon dioxide partial pressure. Normal filtered carbon dioxide partial pressure.

\(v_{O_2,n} \)
Implementation Name: \(v_{\text{on}} \)
Units: mM
Initial value: \(O_{2,c,n} \)
Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

\(v_{P_a,n} \)
Implementation Name: \(v_{\text{pn}} \)
Units: mmHg
Initial value: \(P_{a,n} \)
Normal filtered arterial blood pressure. Normal filtered blood pressure.
8.7 Parameters

\(v_{u,n} \)
Implementation Name: \(v_{un} \)
Units: dimensionless
Initial value: \(u_n \)
Normal filtered demand. Normal filtered demand.

\(VArat_n \)
Implementation Name: \(VArat_n \)
Units: dimensionless
Initial value: 3
Normal volume ratio of veins to arteries in brain tissue.

\(V_{a,n} \)
Implementation Name: \(Vol_{artn} \)
Units: dimensionless
Initial value: \(\frac{1}{1 + VArat_n} \)
Normal relative arterial blood volume.

\(Vol_{mit} \)
Implementation Name: \(Vol_{mit} \)
Units: dimensionless
Initial value: 0.067
Fraction of brain tissue volume that is mitochondria.

\(V_v \)
Implementation Name: \(Vol_{ven} \)
Units: dimensionless
Initial value: \(\frac{1}{1 + VArat_n} \)
Relative venous blood volume.

\(HbO_{2,a} = Hb_{tot} S_a, O_2 \)
Implementation Name: \(XOa \)
Units: mM
Initial value: \(HbO_{2,a,n} \)
Arterial concentration of oxygen bound to haemoglobin.

\(HbO_{2,a,n} \)
Implementation Name: \(XOa_n \)
Units: mM
Initial value: \(Hb_{tot,n} S_a, O_2, n \)
Normal arterial concentration of oxygen bound to haemoglobin.

\(HbO_{2,v,n} \)
Implementation Name: \(XOv_n \)
Units: mM
Initial value: \(\frac{CBF_n HbO_{2,a,n} - J_{O_2,n}}{CBF_n} \)
Normal venous concentration of oxygen bound to haemoglobin.

\(Hb_{tot} \)
Implementation Name: \(Xtot \)
Units: mM
Initial value: 9.1
Total concentration of haemoglobin \(O_2 \) binding sites in blood (4 times haemoglobin concentration).

\(Hb_{tot,n} \)
Implementation Name: \(Xtot_n \)
Units: mM
Initial value: 9.1
Normal total concentration of haemoglobin O₂ binding sites in blood (4 times haemoglobin concentration).

\(Z \)

Implementation Name: \(Z \)
Units: mV
Initial value: 59.028
Proportionality constant in calculation of driving forces due to concentration differences. Defined as \(RT/F \), where \(F \) is Faraday’s constant, \(R \) the ideal gas constant and \(T \) the absolute temperature.
9 BSM3

9.1 Overview

Simplified model in which the metabolic submodel is replaced with variant M3.

- 9 differential state variables
- 3 algebraic state variables
- 25 intermediate variables
- 88 parameters
- 4 declared inputs
- 31 default outputs

9.2 Differential Equations

\[
\frac{dC_{u,A,0}}{dt} = 4f^* - 4f^* \tag{9.1}
\]

\[
\frac{da_{3,r}}{dt} = 4f^* - 4f^* \tag{9.2}
\]

\[
\frac{d\psi}{dt} = \frac{p_3 f^* + p_1 f^* + p_3 f^* - L}{C_{im}} \tag{9.3}
\]

\[
\frac{dH^+}{dt} = \frac{1}{R_{Hi}} L - \frac{p_3}{R_{Hi}} f^* - \frac{p_1}{R_{Hi}} f^* - \frac{p_3}{R_{Hi}} f^* \tag{9.4}
\]

\[
\frac{dO_2}{dt} = \frac{1}{Vol_{mit}} J_{O_2} - f^* \tag{9.5}
\]

\[
\frac{dv_{CO_2}}{dt} = \frac{1}{t_{CO_2}} (p_a_{CO_2} - v_{CO_2}) \tag{9.6}
\]

\[
\frac{dv_{O_2}}{dt} = \frac{1}{t_{O_2}} (O_{2,c} - v_{O_2}) \tag{9.7}
\]

\[
\frac{dv_{P_a}}{dt} = \frac{1}{t_{P_a}} (P_a - v_{P_a}) \tag{9.8}
\]
\[
\frac{dv_u}{dt} = \frac{1}{\tau_u} (u - v_u) \quad (9.9)
\]

9.3 Algebraic Equations

\[
\phi \left(\frac{S_{o2}}{1 - S_{c,O2}} \right) \frac{1}{\tau_s} - O_{2,c} = 0 \quad (9.10)
\]

\[
T_e + T_m - (P_1 - P_{\alpha}) = r = 0 \quad (9.11)
\]

\[
CBF (HbO_{2,a} - HbO_{2,v}) - J_{O_2} = 0 \quad (9.12)
\]

9.4 Chemical Reactions

\[
\overset{L \rightarrow}{R_{Hi}} \frac{1}{R_{Hi}} H^+ \quad (9.13)
\]

\[
\overset{J_{O_2}}{Vol_{mit}} \frac{1}{Vol_{mit}} O_2 \quad (9.14)
\]

\[
\overset{p_3}{R_{Hi}} H^+ \overset{f^*}{\rightarrow} 4 Cu_{A,0} + 4 a_{3,r} \quad (9.15)
\]

\[
4 Cu_{A,0} + \overset{p_1}{R_{Hi}} H^+ \overset{f^*}{\rightarrow} \quad (9.16)
\]

\[
O_2 + 4 a_{3,r} + \overset{p_3}{R_{Hi}} H^+ \overset{f^*}{\rightarrow} \quad (9.17)
\]

9.5 State Variables

- **\(Cu_{A,0} \)**
 - Implementation Name: \(\text{a} \)
 - Units: mM
 - Initial value: \(Cu_{A,0,n} \)
 - Concentration of oxidised cytochrome c oxidase.

- **\(a_{3,r} \)**
 - Implementation Name: \(\text{brzd} \)
 - Units: mM
 - Initial value: \(a_{3,r,n} \)
 - Concentration of reduced cytochrome \(a_3 \).
9.5 State Variables

ψ
Implementation Name: Dpsi
Units: mV
Initial value: ψ_n
Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

H^+
Implementation Name: H
Units: mM
Initial value: H^+_n
Mitochondrial proton concentration.

O_2
Implementation Name: O2
Units: mM
Initial value: $O_{2,n}$
Mitochondrial oxygen concentration.

$O_{2,c}$
Implementation Name: O2c
Units: mM
Initial value: $O_{2,c,n}$
Capillary oxygen concentration.

r
Implementation Name: r
Units: cm
Initial value: r_n
Typical blood vessel radius.

v_{CO_2}
Implementation Name: v_c
Units: mmHg
Initial value: $v_{CO_2,n}$
Filtered carbon dioxide partial pressure.

v_{O_2}
Implementation Name: v_o
Units: mM
Initial value: $v_{O_2,n}$
Filtered capillary oxygen concentration.

v_{Pa}
Implementation Name: v_p
Units: mmHg
Initial value: $v_{Pa,n}$
Filtered arterial blood pressure.

v_u
Implementation Name: v_u
Units: dimensionless
Initial value: $v_{u,n}$
Filtered demand.

$HbO_{2,c}$
Implementation Name: X0v
Units: mM
Initial value: $HbO_{2,c,n}$
Venous concentration of oxygen bound to haemoglobin.
9.6 Intermediate Variables

\[CBF = G (P_a - P_v) \]
Implementation Name: CBF
Units: \(\text{ml}_{\text{blood}} \text{ml}_{\text{brain}}^{-1} \text{s}^{-1} \)
Initial value: \(CBF_0 \)
Cerebral blood flow.

\[\Delta \text{oxCCO} = \Delta \text{oxCCO}_{\text{off}} + 1000 \text{Vol}_{\text{mit}} (\text{Cu}_{A,o} - \text{Cu}_{A,o,n}) \]
Implementation Name: CCO
Units: uM
Initial value: 0
Cytochrome c oxidase signal measured by NIRS.

\[\text{CMRO}_2 = f^* \text{Vol}_{\text{mit}} \]
Implementation Name: CMRO2
Units: mM s\(^{-1}\)
Initial value: 0
Rate of cerebral oxygen metabolism.

\[\Delta p = \psi - Z \left(4 + \log_{10}(H^+)\right) \]
Implementation Name: \(\Delta p \)
Units: mV
Initial value: 0
Proton motive force across the mitochondrial inner membrane.

\[\eta = R_p \left(\frac{V_a}{V_{pa,n}} - 1\right) + R_{O_2} \left(\frac{V_{O_2,n}}{V_{O_2,n}} - 1\right) + R_{\text{CO}_2} \left(1 - \frac{V_{\text{CO}_2,n}}{V_{\text{CO}_2,n}}\right) + R_\eta \left(1 - \frac{V_u}{V_{u,n}}\right) \]
Implementation Name: \(\eta \)
Units: dimensionless
Initial value: 0
Merged autoregulation stimulus.

\[f^* = \lambda_{f^*} + \lambda_{f^*,p} \Delta p + \lambda_{f^*,G} \log(O_2) + \lambda_{f^*,A} \log(Cu_{A,o}) \]
Implementation Name: \(f^* \)
Units: mM s\(^{-1}\)
Initial value: 0
Shared reaction rate for all three electron transport reactions.

\[G = K_G r^4 \]
Implementation Name: \(G \)
Units: \(\text{ml}_{\text{blood}} \text{ml}_{\text{brain}}^{-1} \text{mmHg}^{-1} \text{s}^{-1} \)
Initial value: 0
Effective conductance of the whole blood flow compartment.

\[h = \sqrt{r + 2r_0 h_0 + h_0 - a} \]
Implementation Name: \(h \)
Units: cm
Initial value: \(h_0 \)
Thickness of the blood vessel walls.

\[\text{HbO}_2 = (V_a \text{HbO}_2,a + V_v \text{HbO}_2,v) \text{blood}_{\text{hb}} \]
Implementation Name: \(\text{HbO}_2 \)
Units: uM
Initial value: 0
Oxygenated haemoglobin signal measured by NIRS.

\[\text{HbT} = (V_a + V_v) \text{Hb}_\text{tot} \text{blood}_{\text{hb}} \]
Implementation Name: \(\text{HbT} \)
Units: uM
9.6 Intermediate Variables

Initial value: 0
Total haemoglobin signal measured by NIRS.

\[HHb = HbT - HbO_2 \]
Implementation Name: HHb
Units: uM
Initial value: 0
Deoxygenated haemoglobin signal measured by NIRS.

\[J_{O_2} = f_{\min} \left(D_{O_2} (O_2, c - O_2) \right), CBF HbO_2, a \]
Implementation Name: J_{O2}
Units: mM s^{-1}
Initial value: 0
Oxygen flux from blood to tissue.

\[L = \lambda_L + \lambda_{L, \theta} \theta + \lambda_{L, \Delta p} \Delta p \]
Implementation Name: L
Units: mM s^{-1}
Initial value: 0
Rate of proton return to the mitochondrial matrix.

\[\mu = \frac{\mu_{\min} + \mu_{\max} \exp (\eta)}{1 + \exp (\eta)} \]
Implementation Name: mu
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation response.

\[R_{Hi} = \frac{R_{Hi,H}}{H} \]
Implementation Name: R_{Hi}
Units: dimensionless
Initial value: 0
Relative mitochondrial volume for protons, taking into account buffering effect of pH.

\[S_{c,O_2} = \frac{S_{c,O_2}}{2} \]
Implementation Name: ScO2
Units: dimensionless
Initial value: 0
Capillary oxygen saturation.

\[\sigma_e = \sigma_{e,0} \left(\frac{K_e \left(r - r_0 \right)}{r_0} \right) - 1 - \sigma_{coll} \]
Implementation Name: sigma_e
Units: mm Hg
Initial value: 0
Elastic stress in blood vessel walls.

\[S_{v,O_2} = \frac{HbO_2}{Hb_{tot}} \]
Implementation Name: SvO2
Units: dimensionless
Initial value: 0
Venous oxygen saturation.

\[T_e = \sigma_{e, h} \]
Implementation Name: T_e
Units: mm Hg cm
Initial value: 0
Elastic tension in the blood vessel walls.
\[T_m = T_{\text{max}} \exp \left(-\text{pow} \left(\text{fabs} \left(\frac{r - r_m}{r_1 - r_m} \right), n_m \right) \right) \]

Implementation Name: \(T_m \)
Units: mm Hg cm
Initial value: 0
Muscular tension in the blood vessel walls.

\[T_{\text{max}} = T_{\text{max},0} \left(1 + k_{\text{aut}} \mu \right) \]

Implementation Name: \(T_{\text{max}} \)
Units: mm Hg cm
Initial value: 0
Maximal muscular tension in the blood vessel walls.

\[\theta = kCV (\Delta p + Z \log_{10}(u) - 90) \]

Implementation Name: \(\theta \)
Units: dimensionless
Initial value: 0
Driving force Complex V.

\[TOI = \frac{100\text{HbO}_2}{\text{HbT}} \]

Implementation Name: \(TOI \)
Units: dimensionless
Initial value: 0
Total oxygenation index.

\[V_{\text{mca}} = CBF \ CBF_{\text{scale}} \]

Implementation Name: \(V_{\text{mca}} \)
Units: cm s\(^{-1}\)
Initial value: 0
Blood velocity in the middle cerebral artery.

\[V_a = V_{a,n} \left(\frac{r}{r_n} \right)^2 \]

Implementation Name: \(V_{\text{vol}_\text{art}} \)
Units: dimensionless
Initial value: 0
Relative arterial blood volume.

9.7 Parameters

\(C_{u_{A,o,n}} \)
Implementation Name: \(a_n \)
Units: mM
Initial value: 0.06567
Normal concentration of oxidised cytochrome c oxidase.

\(\text{blood}_{\text{hb}} \)
Implementation Name: \(\text{blood}_{\text{hb}} \)
Units: dimensionless
Initial value: 10.00
Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to \(\mu M \), and number of binding sites.

\(a_{3,r,n} \)
Implementation Name: \(b_{\text{red}_n} \)
Units: mM
Parameters

\text{Initial value: 0.001408}
Normal concentration of reduced cytochrome a₃.

\text{C_{im}}
Implementation Name: C_{im}
Units: mM mV⁻¹
Initial value: 0.00675
Capacitance of the mitochondrial inner membrane.

\text{CBFₙ}
Implementation Name: CBFₙ
Units: ml_{blood} ml_{brain}⁻¹ s⁻¹
Initial value: 0.0125
Normal cerebral blood flow.

\text{CBFscale}
Implementation Name: CBFscale
Units: cm
Initial value: 5000
Scale constant relating blood flow to arterial velocity.

\Delta \text{oxCCO} \text{off}
Implementation Name: CCO_{offset}
Units: uM
Initial value: 0
Signal offset for the NIRS CCO measurement.

\text{CMRO}₂\text{a,}
Implementation Name: CMRO₂\text{a,}
Units: mM s⁻¹
Initial value: 0.034
Normal metabolic rate of oxygen consumption.

\text{D}_{O₂}
Implementation Name: D_{O₂}
Units: s⁻¹
Initial value: \frac{J_{O₂}}{O_{2,c,n} - O_{2,n}}
Diffusion rate for oxygen between capillaries and mitochondria.

\psi_n
Implementation Name: Dpsi_n
Units: mV
Initial value: 145
Normal mitochondrial inner membrane potential.

\lambda_f\star
Implementation Name: f₃_0
Units: mM s⁻¹
Initial value: 13.34
Fitted intercept for the linear model for \(f \star \).

\lambda_{f\star,a}
Implementation Name: f₃_a
Units: mM s⁻¹
Initial value: 1.308
Fitted linear dependence of \(f \star \) on logarithm of CuA,ox.

\lambda_{f\star,O}
Implementation Name: f₃_02
Units: mM s⁻¹
Initial value: 0.08064
Fitted linear dependence of f^* on logarithm of O_2.

$\lambda_{f^*,p}$
Implementation Name: f3_p
Units: mM s$^{-1}$
Initial value: 0.05317
Fitted linear dependence of f^* on Δp.

G_n
Implementation Name: G_n
Units: ml$^{-1}$ ml$^{-1}$ mmHg$^{-1}$ s$^{-1}$
Initial value: \(\frac{P_{p,n} - P_{v,n}}{CBF_n} \)
Normal blood vessel conductance.

h_0
Implementation Name: h_0
Units: cm
Initial value: 0.003
Thickness of the blood vessel walls at which radius is r_0.

H^+_n
Implementation Name: H_n
Units: mM
Initial value: 0.00003981
Normal mitochondrial proton concentration.

h_n
Implementation Name: h_n
Units: cm
Initial value: $\sqrt{(r_n r_n + 2r_0 h_0 h_0) - r_n}$
Normal thickness of the blood vessel walls.

$I_{O_2,n}$
Implementation Name: I_O2n
Units: mM s$^{-1}$
Initial value: $CMRO_{2,n}$
Normal oxygen flux from blood to tissue.

k_{aut}
Implementation Name: k_aut
Units: dimensionless
Initial value: 1
Overall functioning of autoregulatory response.

K_G
Implementation Name: K_G
Units: ml$^{-1}$ ml$^{-1}$ mmHg$^{-1}$ s$^{-1}$ cm$^{-4}$
Initial value: \(\frac{CBF_n}{G_n} \)
Proportionality constant in Poiseuille relation for conductance.

K_σ
Implementation Name: K_sigma
Units: dimensionless
Initial value: 10
Parameter controlling the sensitivity of σ_τ to vessel radius.

kCV
Implementation Name: kCV
9.7 Parameters

Units: mV$^{-1}$
Initial value: 0.02047339
Factor relating the Complex V driving force to the membrane potential and demand.

λ_L
Implementation Name: L_0
Units: mM s$^{-1}$
Initial value: −15.339464
Fitted intercept for the linear model for L.

$\lambda_{L,p}$
Implementation Name: L_Dp
Units: mM s$^{-1}$ mV$^{-1}$
Initial value: 0.097097
Fitted linear dependence of L on Δp.

$\lambda_{L,\theta}$
Implementation Name: L_th
Units: mM s$^{-1}$
Initial value: 5.665904
Fitted linear dependence of L on θ.

μ_{max}
Implementation Name: mu_max
Units: dimensionless
Initial value: 1
Upper bound for the transformed stimulus μ.

μ_{min}
Implementation Name: mu_min
Units: dimensionless
Initial value: −1
Lower bound for the transformed stimulus μ.

μ_n
Implementation Name: mu_n
Units: dimensionless
Initial value: 0
Normal value for the transformed stimulus μ.

n_h
Implementation Name: n_h
Units: dimensionless
Initial value: 2.5
Hill coefficient for oxygen dissociation from haemoglobin.

n_m
Implementation Name: n_m
Units: dimensionless
Initial value: 1.83
Exponent in the muscular tension relationship.

$O_{2,n}$
Implementation Name: 02_n
Units: mM
Initial value: 0.024
Normal mitochondrial oxygen concentration.

$O_{2,c,n}$
Implementation Name: 02c_n
Units: mM
Initial value: \(\phi \text{ pow} \left(\frac{S_c O_2, n}{1 - S_c O_2, n} \frac{1}{n_R} \right) \)

Normal capillary oxygen concentration.

\(p_1 \)
- Implementation Name: \(p_1 \)
- Units: dimensionless
- Initial value: 12
- Proton cost of the reaction reducing Cu.

\(p_3 \)
- Implementation Name: \(p_2 \)
- Units: dimensionless
- Initial value: 4
- Proton cost of the reaction reducing a.

\(p_3 \)
- Implementation Name: \(p_3 \)
- Units: dimensionless
- Initial value: 4
- Proton cost of the reaction reducing O.

\[P_1 = \frac{P_a + P_v}{2} \]
- Implementation Name: \(P_{1_n} \)
- Units: mm Hg
- Initial value: \(P_{1,n} \)
- Average pressure in the blood vessels.

\(P_{1,n} \)
- Implementation Name: \(P_{1,n} \)
- Units: mm Hg
- Initial value: \(P_{a,n} + P_{v,n} \)
- Normal value for the average pressure in the blood vessels.

\(P_a \)
- Implementation Name: \(P_{a_n} \)
- Units: mm Hg
- Initial value: \(P_{a,n} \)
- Mean arterial blood pressure.

\(P_{a,n} \)
- Implementation Name: \(P_{a,n} \)
- Units: mm Hg
- Initial value: 100
- Normal arterial blood pressure.

\(P_{ic} \)
- Implementation Name: \(P_{ic} \)
- Units: mm Hg
- Initial value: 9.5
- Intracranial pressure.

\(P_{icn} \)
- Implementation Name: \(P_{icn} \)
- Units: mm Hg
- Initial value: 9.5
- Normal intracranial pressure.

\(P_v \)
9.7 Parameters

Implementation Name: P_v
Units: mmHg
Initial value: $P_{v,n}$
Venous blood pressure.

$P_{v,n}$
Implementation Name: P_{vn}
Units: mmHg
Initial value: 4
Normal venous blood pressure.

Pa_{CO_2}
Implementation Name: Pa_{CO2}
Units: mmHg
Initial value: $Pa_{CO2,n}$
Arterial partial pressure of carbon dioxide.

$Pa_{CO2,n}$
Implementation Name: Pa_{CO2n}
Units: mmHg
Initial value: 40
Normal arterial partial pressure of carbon dioxide.

ϕ
Implementation Name: ϕ_1
Units: mM
Initial value: 0.036
Oxygen concentration at half-maximal saturation.

r_0
Implementation Name: r_0
Units: cm
Initial value: 0.0126
Radius in the elastic tension relationship.

R_{CO_2}
Implementation Name: R_{autc}
Units: dimensionless
Initial value: 2.2
Autoregulatory reactivity to carbon dioxide.

R_{O_2}
Implementation Name: R_{auto}
Units: dimensionless
Initial value: 1.5
Autoregulatory reactivity to oxygen.

R_P
Implementation Name: R_{autp}
Units: dimensionless
Initial value: 4
Autoregulatory reactivity to blood pressure.

R_H
Implementation Name: R_{autu}
Units: dimensionless
Initial value: 0.5
Autoregulatory reactivity to demand.

$R_{HI,H}$
Implementation Name: $R_{HI,H}$
9 BSM3

Units: mM
Initial value: 9.565483
Proton buffering factor.

\(r_m \)
Implementation Name: \(r_m \)
Units: cm
Initial value: 0.027
Vessel radius at which muscular tension is maximal.

\(r_n \)
Implementation Name: \(r_n \)
Units: cm
Initial value: 0.0187
Normal blood vessel radius. Normal effective blood vessel radius.

\(r_t \)
Implementation Name: \(r_t \)
Units: cm
Initial value: 0.018
Radius in the muscular tension relationship.

\(S_{a,O_2,n} \)
Implementation Name: \(SaO2_n \)
Units: dimensionless
Initial value: 0.96
Normal arterial oxygen saturation.

\(S_{a,O_2} \)
Implementation Name: \(SaO2up \)
Units: dimensionless
Initial value: \(S_{a,O_2,n} \)
Arterial oxygen saturation.

\(S_{c,O_2,n} \)
Implementation Name: \(ScO2_n \)
Units: dimensionless
Initial value: \(\frac{S_{a,O_2,n} + S_{c,O_2,n}}{2} \)
Normal capillary oxygen saturation.

\(\sigma_{coll} \)
Implementation Name: \(sigma_coll \)
Units: mm Hg
Initial value: 62.79
Pressure at which blood vessels collapse.

\(\sigma_{e,0} \)
Implementation Name: \(sigma_e0 \)
Units: mm Hg
Initial value: 0.1425
Parameter in the elastic tension relationship.

\(\sigma_{e,n} \)
Implementation Name: \(sigma_en \)
Units: mm Hg
Initial value: \(\sigma_{e,0} \left(\exp \left(\frac{K_e (r_n - r_0)}{r_0} \right) - 1 \right) - \sigma_{coll} \)
Normal elastic stress in blood vessel walls.

\(S_{c,O_2,n} \)
9.7 Parameters

Implementation Name: SvO_2_n
Units: dimensionless
Initial value: $\frac{HBO_{2,0,n}}{Hb_{tot,n}}$
Normal venous oxygen saturation.

t
Implementation Name: t
Units: s
Initial value: 0
Time over which the system evolves.

τ_{CO_2}
Implementation Name: $\tau_{c,c}$
Units: s
Initial value: 5
Filter time constant for stimulus effect of carbon dioxide.

$T_{\varepsilon,n}$
Implementation Name: $T_{\varepsilon,n}$
Units: mm Hg cm
Initial value: $\sigma_{\varepsilon,n} h_n$
Normal elastic tension in the blood vessel walls.

$T_{\text{max,0}}$
Implementation Name: $T_{\text{max,0}}$
Units: mm Hg cm
Initial value: $\frac{T_{\text{max,n}}}{1 + k_{\text{aut}} \mu_n}$
Maximal muscular tension under normal regulatory stimulus ($\mu = \mu_n$).

$T_{\text{max,n}}$
Implementation Name: $T_{\text{max,n}}$
Units: mm Hg cm
Initial value: $T_{\varepsilon,n} \exp \left(-\text{pow} \left(\text{fabs} \left(\frac{r_n - r_m}{r_n - r_m} \right), n_m \right) \right)$
Normal maximal muscular tension.

$T_{m,n}$
Implementation Name: $T_{m,n}$
Units: mm Hg cm
Initial value: $(P_{1,n} - P_{icn}) r_n - T_{\varepsilon,n}$
Normal muscular tension in the blood vessel walls.

τ_{O_2}
Implementation Name: $\tau_{o,0}$
Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

τ_{p_a}
Implementation Name: τ_{p_a}
Units: s
Initial value: 5
Filter time constant for stimulus effect of blood pressure.

τ_{u}
Implementation Name: τ_{u}
Units: s
Initial value: 0.5
Filter time constant for stimulus effect of demand.

\(u \)
- Implementation Name: \(u \)
- Units: dimensionless
- Initial value: \(u_n \)
- Parameter indicating metabolic demand.

\(u_n \)
- Implementation Name: \(u_n \)
- Units: dimensionless
- Initial value: 1
- Normal demand.

\(v_{CO_2,n} \)
- Implementation Name: \(v_{CO_2,n} \)
- Units: mmHg
- Initial value: \(P_{\text{atm}} \)

\(v_{O_2,n} \)
- Implementation Name: \(v_{O_2,n} \)
- Units: mM
- Initial value: \(O_{2,c,n} \)
- Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

\(v_{\text{Pa,n}} \)
- Implementation Name: \(v_{\text{Pa,n}} \)
- Units: mmHg
- Initial value: \(P_{\text{atm}} \)
- Normal filtered arterial blood pressure. Normal filtered blood pressure.

\(v_{\text{un,n}} \)
- Implementation Name: \(v_{\text{un,n}} \)
- Units: dimensionless
- Initial value: \(u_n \)
- Normal filtered demand. Normal filtered demand.

\(V\text{Arat}_n \)
- Implementation Name: \(V\text{Arat}_n \)
- Units: dimensionless
- Initial value: 3
- Normal volume ratio of veins to arteries in brain tissue.

\(V_{\text{art,n}} \)
- Implementation Name: \(V_{\text{art,n}} \)
- Units: dimensionless
- Initial value: \(1 + V\text{Arat}_n \)
- Normal relative arterial blood volume.

\(V\text{mit} \)
- Implementation Name: \(V\text{mit} \)
- Units: dimensionless
- Initial value: 0.067
- Fraction of brain tissue volume that is mitochondria.

\(V_p \)
9.7 Parameters

Implementation Name: Vol_ven
Units: dimensionless
Initial value: \(\frac{V_{Arat,n}}{1 + V_{Arat,n}}\)
Relative venous blood volume.

\[HbO_{2,a} = Hb_{tot} S_{a,O_2}\]
Implementation Name: X0a
Units: mM
Initial value: \(HbO_{2,a,n}\)
Arterial concentration of oxygen bound to haemoglobin.

\[HbO_{2,a,n}\]
Implementation Name: X0a_n
Units: mM
Initial value: \(Hb_{tot,n} S_{a,O_2,n}\)
Normal arterial concentration of oxygen bound to haemoglobin.

\[HbO_{2,v,n}\]
Implementation Name: X0v_n
Units: mM
Initial value: \(\frac{CBF_n HbO_{2,a,n} - J_{O_2,n}}{CBF_n}\)
Normal venous concentration of oxygen bound to haemoglobin.

\[Hb_{tot}\]
Implementation Name: Xtot
Units: mM
Initial value: 9.1
Total concentration of haemoglobin O\(_2\) binding sites in blood (4 times haemoglobin concentration).

\[Hb_{tot,n}\]
Implementation Name: Xtot_n
Units: mM
Initial value: 9.1
Normal total concentration of haemoglobin O\(_2\) binding sites in blood (4 times haemoglobin concentration).

\[Z\]
Implementation Name: Z
Units: mV
Initial value: 59.028
Proportionality constant in calculation of driving forces due to concentration differences. Defined as \(RT/F\), where \(F\) is Faraday’s constant, \(R\) the ideal gas constant and \(T\) the absolute temperature.
10 B1M1

10.1 Overview

Simplified model combining blood flow variant B1 and metabolic variant M1.

- 9 differential state variables
- 3 algebraic state variables
- 22 intermediate variables
- 74 parameters
- 4 declared inputs
- 33 default outputs

10.2 Differential Equations

\[\frac{dC_{u,A,o}}{dt} = 4f_3 - 4f_1 \]
(10.1)

\[\frac{da_{3,r}}{dt} = 4f_3 - 4f_3 \]
(10.2)

\[\frac{d\psi}{dt} = \frac{p_3 f_3 + p_1 f_1 + p_3 f_3 - L}{C_{im}} \]
(10.3)

\[\frac{dH^+}{dt} = \frac{1}{R_{Hi}} L - \frac{p_3}{R_{Hi}} f_3 - \frac{p_1}{R_{Hi}} f_1 - \frac{p_3}{R_{Hi}} f_3 \]
(10.4)

\[\frac{dO_2}{dt} = \frac{1}{Vol_{mit}} I_{O_2} - f_3 \]
(10.5)

\[\frac{dv_{CO_2}}{dt} = \frac{1}{\tau_{CO_2}} (P_{aCO_2} - v_{CO_2}) \]
(10.6)

\[\frac{dv_{O_2}}{dt} = \frac{1}{\tau_{O_2}} (O_{2,c} - v_{O_2}) \]
(10.7)

\[\frac{dv_{Pa}}{dt} = \frac{1}{\tau_{Pa}} (P_a - v_{Pa}) \]
(10.8)
\[
\frac{dv_u}{dt} = \frac{1}{\tau_u} (u - v_u)
\]
(10.9)

10.3 Algebraic Equations

\[
\frac{\phi}{S_{c,O_2}} \left(\frac{1}{1 - S_{c, O_2}}\right) = O_{2,c} = 0
\]
(10.10)

\[
\lambda_0 + \frac{\lambda_{p_a}}{P_a} + \lambda_p \mu + \frac{\lambda_{P_a, \mu}}{P_a} - r = 0
\]
(10.11)

\[
CBF (HbO_{2,a} - HbO_{2,r}) - I_0 = 0
\]
(10.12)

10.4 Chemical Reactions

\[
\overset{L}{\longrightarrow} \ \frac{1}{R_{Hi}} H^+
\]
(10.13)

\[
\overset{I_{O_2}}{\longrightarrow} \ \frac{1}{Vol_{mit}} O_2
\]
(10.14)

\[
\frac{p_3}{R_{Hi}} H^+ \xrightarrow{f_3} 4 Cu_{A,o} + 4 a_{3,r}
\]
(10.15)

\[
4 Cu_{A,o} + \frac{p_1}{R_{Hi}} H^+ \xrightarrow{f_1}
\]
(10.16)

\[
O_2 + 4 a_{3,r} + \frac{p_3}{R_{Hi}} H^+ \xrightarrow{f_3}
\]
(10.17)

10.5 State Variables

- **\(Cu_{A,o}\)**
 - Implementation Name: \(a\)
 - Units: mM
 - Initial value: \(Cu_{A,o,n}\)
 - Concentration of oxidised cytochrome c oxidase.

- **\(a_{3,r}\)**
 - Implementation Name: \(bred\)
 - Units: mM
 - Initial value: \(a_{3,r,n}\)
 - Concentration of reduced cytochrome \(a_3\).
10.5 State Variables

\(\psi \)
Implementation Name: Dpsi
Units: mV
Initial value: \(\psi_n \)
Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

\(H^+ \)
Implementation Name: H
Units: mM
Initial value: \(H^+_n \)
Mitochondrial proton concentration.

\(O_2 \)
Implementation Name: 02
Units: mM
Initial value: \(O_{2,n} \)
Mitochondrial oxygen concentration.

\(O_2,c \)
Implementation Name: 02c
Units: mM
Initial value: \(O_{2,c,n} \)
Capillary oxygen concentration.

\(r \)
Implementation Name: r
Units: cm
Initial value: \(r_n \)
Typical blood vessel radius.

\(v_{CO_2} \)
Implementation Name: v_c
Units: mmHg
Initial value: \(v_{CO_2,n} \)
Filtered carbon dioxide partial pressure.

\(v_{O_2} \)
Implementation Name: v_o
Units: mM
Initial value: \(v_{O_2,n} \)
Filtered capillary oxygen concentration.

\(v_{Pa} \)
Implementation Name: v_p
Units: mmHg
Initial value: \(v_{Pa,n} \)
Filtered arterial blood pressure.

\(v_u \)
Implementation Name: v_u
Units: dimensionless
Initial value: \(v_{u,n} \)
Filtered demand.

\(HbO_2,v \)
Implementation Name: XOv
Units: mM
Initial value: \(HbO_{2,v,n} \)
Venous concentration of oxygen bound to haemoglobin.
10.6 Intermediate Variables

\[CBF = G \left(P_a - P_v \right) \]
Implementation Name: \(CBF \)
Units: \(\text{ml}_{\text{blood}} \text{ml}^{-1} \text{brain} \text{s}^{-1} \)
Initial value: \(\text{CBF}_n \)
Cerebral blood flow.

\[\Delta \text{oxCCO} = \Delta \text{oxCCO}_{\text{off}} + 1000 \text{Vol}_{\text{mit}} (\text{Cu}_{A,o} - \text{Cu}_{A,o,n}) \]
Implementation Name: \(\text{CCO} \)
Units: \(\text{uM} \)
Initial value: 0
Cytochrome c oxidase signal measured by NIRS.

\[\text{CMRO}_2 = f_3 \text{Vol}_{\text{mit}} \]
Implementation Name: \(\text{CMRO}_2 \)
Units: \(\text{mM s}^{-1} \)
Initial value: 0
Rate of cerebral oxygen metabolism.

\[\Delta p = \psi - Z \left(4 + \log_{10} (H^+) \right) \]
Implementation Name: \(\text{dp} \)
Units: \(\text{mV} \)
Initial value: 0
Proton motive force across the mitochondrial inner membrane.

\[\eta = R_{P_e} \left(\frac{v_{P_e}}{v_{P_e,n}} - 1 \right) + R_{O_2} \left(\frac{v_{O_2}}{v_{O_2,n}} - 1 \right) + R_{CO_2} \left(1 - \frac{v_{CO_2}}{v_{CO_2,n}} \right) + R_u \left(1 - \frac{v}{v_{u,n}} \right) \]
Implementation Name: \(\eta \)
Units: dimensionless
Initial value: 0
Merged autoregulation stimulus.

\[f_1 = \lambda_{f_1} + \lambda_{f_{1,a}} \log (u) + \lambda_{f_{1,a}} \log (\text{Cu}_{A,o}) \]
Implementation Name: \(f_1 \)
Units: \(\text{mM s}^{-1} \)
Initial value: 0
Reaction rate for the reduction of \(\text{Cu}_A \).

\[f_3 = \lambda_{f_3} + \lambda_{f_{3,b}} \log (a_{3,f}) \]
Implementation Name: \(f_2 \)
Units: \(\text{mM s}^{-1} \)
Initial value: 0
Reaction rate for the reduction of \(a_3 \).

\[f_3 = \lambda_{f_3} + \lambda_{f_{3,O}} \log (O_2) \]
Implementation Name: \(f_3 \)
Units: \(\text{mM s}^{-1} \)
Initial value: 0
Reaction rate for the reduction of \(O_2 \).

\[G = K_G r^A \]
Implementation Name: \(G \)
Units: \(\text{ml}_{\text{blood}} \text{ml}^{-1} \text{brain} \text{mmHg}^{-1} \text{s}^{-1} \)
Initial value: 0
Effective conductance of the whole blood flow compartment.

\[HbO_2 = (V_a HbO_{2,a} + V_i HbO_{2,i}) \text{ blood}_{hb} \]
Implementation Name: \(\text{Hb02} \)
Units: \(\text{uM} \)
10.6 Intermediate Variables

Initial value: 0
Oxygenated haemoglobin signal measured by NIRS.

\[HbT = (V_a + V_v) Hb_{tot, blood} \]
Implementation Name: HbT
Units: uM
Initial value: 0
Total haemoglobin signal measured by NIRS.

\[HHb = HbT - HbO_2 \]
Implementation Name: HHb
Units: uM
Initial value: 0
Deoxygenated haemoglobin signal measured by NIRS.

\[J_{O_2} = \text{fmin} \left(D_{O_2} (O_2, c - O_2), CBF HbO_2, a \right) \]
Implementation Name: J_{O2}
Units: mM s^{-1}
Initial value: 0
Oxygen flux from blood to tissue.

\[L = \lambda_L + \lambda_{L, \theta} \theta + \lambda_{L, p} \Delta p \]
Implementation Name: L
Units: mM s^{-1}
Initial value: 0
Rate of proton return to the mitochondrial matrix.

\[\mu = \frac{k_{aut} (\exp(\eta) - 1)}{\exp(\eta) + 1} \]
Implementation Name: mu
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation response.

\[R_{Hi} = \frac{R_{Hi, H}}{H^+} \]
Implementation Name: R_{Hi}
Units: dimensionless
Initial value: 0
Relative mitochondrial volume for protons, taking into account buffering effect of pH.

\[S_{c,O_2} = \frac{S_{a,O_2} + S_{v,O_2}}{2} \]
Implementation Name: ScO2
Units: dimensionless
Initial value: \(S_{c,O_2,n} \)
Capillary oxygen saturation.

\[S_{v,O_2} = \frac{HbO_2,v}{Hb_{tot}} \]
Implementation Name: SvO2
Units: dimensionless
Initial value: \(S_{v,O_2,n} \)
Venous oxygen saturation.

\[\theta = kCV (\Delta p + Z \log_{10} (\mu) - 90) \]
Implementation Name: theta
Units: dimensionless
Initial value: 0
Driving force Complex V.
\[\text{TOI} = \frac{100HbO_2}{HbT} \]

Implementation Name: TOI
Units: dimensionless
Initial value: 0
Total oxygenation index.

\[V_{mca} = CBF \cdot CBFscale \]
Implementation Name: \(V_{mca} \)
Units: cm \(s^{-1} \)
Initial value: 0
Blood velocity in the middle cerebral artery.

\[V_a = V_{a,n} \left(\frac{r}{r_n} \right)^2 \]
Implementation Name: \(V_{a,n} \)
Units: dimensionless
Initial value: 0
Relative arterial blood volume.

10.7 Parameters

\(C_{u_{a,n}} \)
Implementation Name: \(a_{,n} \)
Units: mM
Initial value: 0.06567
Normal concentration of oxidised cytochrome c oxidase.

\(blood_{hb} \)
Implementation Name: \(blood_{,hb} \)
Units: dimensionless
Initial value: 10.00
Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to \(\mu \)M, and number of binding sites.

\(a_{3,r,n} \)
Implementation Name: \(bred_{,n} \)
Units: mM
Initial value: 0.001408
Normal concentration of reduced cytochrome a3.

\(C_{im} \)
Implementation Name: \(c_{,im} \)
Units: mM mV\(^{-1}\)
Initial value: 0.00675
Capacitance of the mitochondrial inner membrane.

\(CBF_n \)
Implementation Name: \(CBFn \)
Units: ml\(^{-1}\) brain\(^{-1}\) ml\(^{-1}\) s\(^{-1}\)
Initial value: 0.0125
Normal cerebral blood flow.

\(CBFscale \)
Implementation Name: \(CBFscale \)
Units: cm
Initial value: 5000
Scale constant relating blood flow to arterial velocity.
10.7 Parameters

\(\Delta_{\text{oxCCO}_\text{off}} \)

Implementation Name: \(\text{CCO_offset} \)
Units: uM
Initial value: 0
Signal offset for the NIRS CCO measurement.

\(\text{CMRO}_{2,n} \)

Implementation Name: \(\text{CMRO2_n} \)
Units: mM s\(^{-1}\)
Initial value: 0.034
Normal metabolic rate of oxygen consumption.

\(D_{O_2} \)

Implementation Name: \(D_{0.02} \)
Units: s\(^{-1}\)
Initial value: \(\frac{I_{O_2,a}}{O_{2,r,n} - O_{2,n}} \)
Diffusion rate for oxygen between capillaries and mitochondria.

\(\psi_n \)

Implementation Name: \(\text{Dpsi_n} \)
Units: mV
Initial value: 145
Normal mitochondrial inner membrane potential.

\(\lambda_{f_1} \)

Implementation Name: \(f1_0 \)
Units: mM s\(^{-1}\)
Initial value: 1.490
Fitted intercept for the linear model for \(f_1 \).

\(\lambda_{f_{1,a}} \)

Implementation Name: \(f1_a \)
Units: mM s\(^{-1}\)
Initial value: 0.3609
Fitted linear dependence of \(f_1 \) on logarithm of \(\text{Cu}_{A,rx} \).

\(\lambda_{f_{1,u}} \)

Implementation Name: \(f1_u \)
Units: mM s\(^{-1}\)
Initial value: 0.06985
Fitted linear dependence of \(f_1 \) on logarithm of demand.

\(\lambda_{f_2} \)

Implementation Name: \(f2_0 \)
Units: mM s\(^{-1}\)
Initial value: 0.1473
Fitted intercept for the linear model for \(f_2 \).

\(\lambda_{f_{2,b}} \)

Implementation Name: \(f2_bred \)
Units: mM s\(^{-1}\)
Initial value: -0.05484
Fitted linear dependence of \(f_2 \) on logarithm of \(a_{3,red} \).

\(\lambda_{f_3} \)

Implementation Name: \(f3_0 \)
Units: mM s\(^{-1}\)
Initial value: 0.6324
Fitted intercept for the linear model for \(f_3 \).
\(\lambda_{f_3,O} \)
Implementation Name: \(f_3,O \)
Units: mM s\(^{-1}\)
Initial value: 0.03352
Fitted linear dependence of \(f_3 \) on logarithm of \(O_2 \).

\(G_n \)
Implementation Name: \(G_n \)
Units: ml\(_{\text{blood}}\) m\(^{-1}\)l\(_{\text{brain}}\) mmHg\(^{-1}\) s\(^{-1}\)
Initial value: \(\frac{P_{o,n} - P_{v,n}}{C_B_{\text{T}_n}} \)
Normal blood vessel conductance.

\(H_n^+ \)
Implementation Name: \(H_n \)
Units: mM
Initial value: 0.00003981
Normal mitochondrial proton concentration.

\(J_{O_2,n} \)
Implementation Name: \(J_{O_2,n} \)
Units: mM s\(^{-1}\)
Initial value: \(\text{CMRO}_2,n \)
Normal oxygen flux from blood to tissue.

\(k_{\text{aut}} \)
Implementation Name: \(k_{\text{aut}} \)
Units: dimensionless
Initial value: 1
Overall functioning of autoregulatory response.

\(K_G \)
Implementation Name: \(K_G \)
Units: ml\(_{\text{blood}}\) m\(^{-1}\)l\(_{\text{brain}}\) mmHg\(^{-1}\) s\(^{-1}\) cm\(^{-4}\)
Initial value: \(\frac{G_n}{\text{pow} (r_n, 4)} \)
Proportionality constant in Poiseuille relation for conductance.

\(k_{\text{CV}} \)
Implementation Name: \(k_{\text{CV}} \)
Units: mV\(^{-1}\)
Initial value: 0.02047339
Factor relating the Complex V driving force to the membrane potential and demand.

\(\lambda_L \)
Implementation Name: \(L_0 \)
Units: mM s\(^{-1}\)
Initial value: \(-15.339464\)
Fitted intercept for the linear model for \(L \).

\(\lambda_{L,p} \)
Implementation Name: \(L_{\Delta p} \)
Units: mM s\(^{-1}\) mV\(^{-1}\)
Initial value: 0.097097
Fitted linear dependence of \(L \) on \(\Delta p \).

\(\lambda_{L,\theta} \)
Implementation Name: \(L_{\theta} \)
Units: mM s\(^{-1}\)
10.7 Parameters

Initial value: 5.665904
Fitted linear dependence of L on θ.

λ_0
- Implementation Name: lam0
- Units: cm
- Initial value: 0.02507
- Intercept of the fitted linear model for blood vessel radius.

λ_μ
- Implementation Name: lam_mu
- Units: cm
- Initial value: −0.0004422
- Fitted linear dependence of blood vessel radius on autoregulatory stimuli.

$\lambda_{P,a}$
- Implementation Name: lam_p
- Units: cm mmHg
- Initial value: −0.6327
- Fitted linear dependence of blood vessel radius on reciprocal of blood pressure.

$\lambda_{P,a,\mu}$
- Implementation Name: lam_p_mu
- Units: cm mmHg
- Initial value: −0.5286
- Fitted joint dependence of blood vessel radius on autoregulatory stimuli and reciprocal of blood pressure.

n_h
- Implementation Name: n_h
- Units: dimensionless
- Initial value: 2.5
- Hill coefficient for oxygen dissociation from haemoglobin.

$O_{2,n}$
- Implementation Name: O2_n
- Units: mM
- Initial value: 0.024
- Normal mitochondrial oxygen concentration.

$O_{2,c,n}$
- Implementation Name: O2c_n
- Units: mM
- Initial value: ϕ pow $\left(\frac{S_cO_2,n}{1 - S_cO_2,n} \cdot \frac{1}{n_h} \right)$
- Normal capillary oxygen concentration.

p_1
- Implementation Name: p1
- Units: dimensionless
- Initial value: 12
- Proton cost of the reaction reducing Cu_A.

p_3
- Implementation Name: p2
- Units: dimensionless
- Initial value: 4
- Proton cost of the reaction reducing a_3.

p_3
- Implementation Name: p3
Units: dimensionless
Initial value: 4
Proton cost of the reaction reducing O_2.

P_a
Implementation Name: P_a
Units: mmHg
Initial value: $P_{a,n}$
Mean arterial blood pressure.

$P_{a,n}$
Implementation Name: P_{an}
Units: mmHg
Initial value: 100
Normal arterial blood pressure.

P_v
Implementation Name: P_v
Units: mmHg
Initial value: $P_{v,n}$
Venous blood pressure.

$P_{v,n}$
Implementation Name: P_{vn}
Units: mmHg
Initial value: 4
Normal venous blood pressure.

P_{aCO_2}
Implementation Name: P_{aCO2}
Units: mmHg
Initial value: $P_{aCO2,n}$
Arterial partial pressure of carbon dioxide.

$P_{aCO_2,n}$
Implementation Name: P_{aCO2n}
Units: mmHg
Initial value: 40
Normal arterial partial pressure of carbon dioxide.

ϕ
Implementation Name: ϕ
Units: mM
Initial value: 0.036
Oxygen concentration at half-maximal saturation.

R_{CO_2}
Implementation Name: R_{autc}
Units: dimensionless
Initial value: 2.2
Autoregulatory reactivity to carbon dioxide.

R_{O_2}
Implementation Name: R_{auto}
Units: dimensionless
Initial value: 1.5
Autoregulatory reactivity to oxygen.

R_{Pa}
Implementation Name: R_{autop}
Units: dimensionless
10.7 Parameters

Initial value: 4
Autoregulatory reactivity to blood pressure.

\(R_u \)
- Implementation Name: \(R_{\text{autu}} \)
- Units: dimensionless
- Initial value: 0.5
- Autoregulatory reactivity to demand.

\(R_{\text{Hi, H}} \)
- Implementation Name: \(R_{\text{Hi, H}} \)
- Units: mM
- Initial value: 9.565483
- Proton buffering factor.

\(r_n \)
- Implementation Name: \(r_n \)
- Units: cm
- Initial value: 0.0187
- Normal blood vessel radius. Normal effective blood vessel radius.

\(S_{a, O_2, n} \)
- Implementation Name: \(S_{a02, n} \)
- Units: dimensionless
- Initial value: 0.96
- Normal arterial oxygen saturation.

\(S_{a, O_2} \)
- Implementation Name: \(S_{a02\text{sup}} \)
- Units: dimensionless
- Initial value: \(S_{a, O_2, n} \)
- Arterial oxygen saturation.

\(S_{c, O_2, n} \)
- Implementation Name: \(S_{c02, n} \)
- Units: dimensionless
- Initial value: \(\frac{S_{a, O_2, n} + S_{v, O_2, n}}{2} \)
- Normal capillary oxygen saturation.

\(S_{v, O_2, n} \)
- Implementation Name: \(S_{v02, n} \)
- Units: dimensionless
- Initial value: \(\frac{HbO_2, v, n}{Hb_{tot, n}} \)
- Normal venous oxygen saturation.

\(t \)
- Implementation Name: \(t \)
- Units: s
- Initial value: 0
- Time over which the system evolves.

\(\tau_{\text{CO}_2} \)
- Implementation Name: \(\tau_{\text{c}} \)
- Units: s
- Initial value: 5
- Filter time constant for stimulus effect of carbon dioxide.

\(\tau_{O_2} \)
- Implementation Name: \(\tau_{o} \)
- Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

\(\tau_{P_a} \)
Implementation Name: \(t_{P} \)
Units: s
Initial value: 5
Filter time constant for stimulus effect of blood pressure.

\(\tau_u \)
Implementation Name: \(t_u \)
Units: s
Initial value: 0.5
Filter time constant for stimulus effect of demand.

\(u \)
Implementation Name: \(u \)
Units: dimensionless
Initial value: \(u_n \)
Parameter indicating metabolic demand.

\(u_n \)
Implementation Name: \(u_n \)
Units: dimensionless
Initial value: 1
Normal demand.

\(v_{CO_2,n} \)
Implementation Name: \(v_{CO_2,n} \)
Units: mmHg
Initial value: \(P_{aCO_2,n} \)
Normal filtered carbon dioxide partial pressure. Normal filtered carbon dioxide partial pressure.

\(v_{O_2,n} \)
Implementation Name: \(v_{O_2,n} \)
Units: mM
Initial value: \(O_{2,c,n} \)
Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

\(v_{Pa,n} \)
Implementation Name: \(v_{Pa,n} \)
Units: mmHg
Initial value: \(P_{a,n} \)
Normal filtered arterial blood pressure. Normal filtered blood pressure.

\(v_{u,n} \)
Implementation Name: \(v_{u,n} \)
Units: dimensionless
Initial value: \(u_n \)
Normal filtered demand. Normal filtered demand.

\(VArat_n \)
Implementation Name: \(VArat_n \)
Units: dimensionless
Initial value: 3
Normal volume ratio of veins to arteries in brain tissue.

\(V_{o,n} \)
Implementation Name: \(Vol_{artn} \)
10.7 Parameters

Units: dimensionless
Initial value: \frac{1}{1 + VArat_n}
Normal relative arterial blood volume.

\text{Vol}_{mit}
Implementation Name: Vol_{mit}
Units: dimensionless
Initial value: 0.067
Fraction of brain tissue volume that is mitochondria.

\text{V}_v
Implementation Name: Vol_{ven}
Units: dimensionless
Initial value: \frac{VArat_n}{1 + VArat_n}
Relative venous blood volume.

HbO_{2,a,n} = Hb_{tot} S_{a,O_2}
Implementation Name: X0a
Units: mM
Initial value: HbO_{2,a,n}
Arterial concentration of oxygen bound to haemoglobin.

HbO_{2,a,n}
Implementation Name: X0a_n
Units: mM
Initial value: Hb_{tot,n} S_{a,O_2,n}
Normal arterial concentration of oxygen bound to haemoglobin.

HbO_{2,v,n} = \frac{CBF_n HbO_{2,a,n} - J_{O_2,v}}{CBF_n}
Implementation Name: X0v_n
Units: mM
Initial value: \frac{CBF_n HbO_{2,a,n} - J_{O_2,v}}{CBF_n}
Normal venous concentration of oxygen bound to haemoglobin.

Hb_{tot}
Implementation Name: Xtot
Units: mM
Initial value: 9.1
Total concentration of haemoglobin O_2 binding sites in blood (4 times haemoglobin concentration).

Hb_{tot,n}
Implementation Name: Xtot_n
Units: mM
Initial value: 9.1
Normal total concentration of haemoglobin O_2 binding sites in blood (4 times haemoglobin concentration).

Z
Implementation Name: Z
Units: mV
Initial value: 59.028
Proportionality constant in calculation of driving forces due to concentration differences. Defined as RT/F, where F is Faraday’s constant, R the ideal gas constant and T the absolute temperature.
11 B1M2

11.1 Overview

Simplified model combining blood flow variant B1 and metabolic variant M2.

- 9 differential state variables
- 3 algebraic state variables
- 22 intermediate variables
- 73 parameters
- 4 declared inputs
- 33 default outputs

11.2 Differential Equations

\[
\frac{dC_{u, A, o}}{dt} = 4f_3 - 4f_1
\]
(11.1)

\[
\frac{da_{3,r}}{dt} = 4f_3 - 4f_3
\]
(11.2)

\[
\frac{d\psi}{dt} = \frac{p_3 f_3 + p_1 f_1 + p_3 f_3 - L}{C_{im}}
\]
(11.3)

\[
\frac{dH^+}{dt} = \frac{1}{R_{Hi}} L - \frac{p_3}{R_{Hi}} f_3 - \frac{p_1}{R_{Hi}} f_1 - \frac{p_3}{R_{Hi}} f_3
\]
(11.4)

\[
\frac{dO_2}{dt} = \frac{1}{\text{Vol}_{mit}} j_{O_2} - f_3
\]
(11.5)

\[
\frac{dv_{CO_2}}{dt} = \frac{1}{\tau_{CO_2}} (p_{aCO_2} - v_{CO_2})
\]
(11.6)

\[
\frac{dv_{O_2}}{dt} = \frac{1}{\tau_{O_2}} (O_{2,c} - v_{O_2})
\]
(11.7)

\[
\frac{dv_{P_a}}{dt} = \frac{1}{\tau_{P_a}} (P_a - v_{P_a})
\]
(11.8)
\[
\frac{dv_u}{dt} = \frac{1}{\tau_u} (u - v_u)
\]

(11.9)

11.3 Algebraic Equations

\[
\phi \left(\frac{S_{c,\text{O}_2}}{1 - S_{c,\text{O}_2}} \right) \frac{1}{\beta} - \text{O}_2 = 0
\]

(11.10)

\[
\lambda_0 + \frac{\lambda_p}{P_a} + \lambda_p \mu + \left(\frac{\lambda_{p_a}}{P_a} \right) - r = 0
\]

(11.11)

\[
\text{CBF} (\text{HbO}_2,\text{a} - \text{HbO}_2,\text{v}) - J_{\text{O}_2} = 0
\]

(11.12)

11.4 Chemical Reactions

\[
\xrightarrow{L} \frac{1}{R_{\text{Hi}}} \text{H}^+
\]

(11.13)

\[
\xrightarrow{J_{\text{O}_2}} \frac{1}{V_{\text{Volmit}}} \text{O}_2
\]

(11.14)

\[
\frac{p_3}{R_{\text{Hi}}} \text{H}^+ \xrightarrow{f_3} 4 \text{Cu}_{\text{A},\text{o}} + 4 \text{a}_{3,\text{r}}
\]

(11.15)

\[
4 \text{Cu}_{\text{A},\text{o}} + \frac{p_1}{R_{\text{Hi}}} \text{H}^+ \xrightarrow{f_1}
\]

(11.16)

\[
\text{O}_2 + 4 \text{a}_{3,\text{r}} + \frac{p_3}{R_{\text{Hi}}} \text{H}^+ \xrightarrow{f_3}
\]

(11.17)

11.5 State Variables

\(\text{Cu}_{\text{A},\text{o}} \)
- Implementation Name: \(\text{a} \)
- Units: mM
- Initial value: \(\text{Cu}_{\text{A},\text{a},\text{n}} \)
- Concentration of oxidised cytochrome c oxidase.

\(\text{a}_{3,\text{r}} \)
- Implementation Name: \(\text{b} \)
- Units: mM
- Initial value: \(\text{a}_{3,\text{r},\text{n}} \)
- Concentration of reduced cytochrome \(\text{a}_3 \).
11.5 State Variables

\(\psi \)
- Implementation Name: Dpsi
- Units: mV
- Initial value: \(\psi_n \)
- Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

\(H^+ \)
- Implementation Name: H
- Units: mM
- Initial value: \(H^+_n \)
- Mitochondrial proton concentration.

\(O_2 \)
- Implementation Name: O2
- Units: mM
- Initial value: \(O_{2,n} \)
- Mitochondrial oxygen concentration.

\(O_{2,c} \)
- Implementation Name: O2c
- Units: mM
- Initial value: \(O_{2,c,n} \)
- Capillary oxygen concentration.

\(r \)
- Implementation Name: r
- Units: cm
- Initial value: \(r_n \)
- Typical blood vessel radius.

\(v_{CO_2} \)
- Implementation Name: v_c
- Units: mmHg
- Initial value: \(v_{CO_2,n} \)
- Filtered carbon dioxide partial pressure.

\(v_{O_2} \)
- Implementation Name: v_o
- Units: mM
- Initial value: \(v_{O_2,n} \)
- Filtered capillary oxygen concentration.

\(v_{Pa} \)
- Implementation Name: v_p
- Units: mmHg
- Initial value: \(v_{Pa,n} \)
- Filtered arterial blood pressure.

\(v_u \)
- Implementation Name: v_u
- Units: dimensionless
- Initial value: \(v_{u,n} \)
- Filtered demand.

\(HbO_{2,v} \)
- Implementation Name: X0v
- Units: mM
- Initial value: \(HbO_{2,v,n} \)
- Venous concentration of oxygen bound to haemoglobin.
11.6 Intermediate Variables

\[CBF = G \left(P_a - P_v \right) \]
Implementation Name: CBF
Units: \(\text{ml}_{\text{blood}} \text{ml}_{\text{brain}}^{-1} \text{s}^{-1} \)
Initial value: \(CBF_n \)
Cerebral blood flow.

\[\Delta \text{oxCCO} = \Delta \text{oxCCO}_{\text{off}} + 1000 \text{Vol}_{\text{mit}} \left(\text{Cu}_{A,o} - \text{Cu}_{A,n} \right) \]
Implementation Name: CCO
Units: uM
Initial value: 0
Cytochrome c oxidase signal measured by NIRS.

\[\text{CMRO}_2 = f_3 \text{Vol}_{\text{mit}} \]
Implementation Name: CMRO2
Units: mM s\(^{-1}\)
Initial value: 0
Rate of cerebral oxygen metabolism.

\[\Delta p = \psi - Z \left(4 + \log_{10} \left(H^+ \right) \right) \]
Implementation Name: \(\Delta p \)
Units: mV
Initial value: 0
Proton motive force across the mitochondrial inner membrane.

\[\eta = R_p \left(\frac{v_{p_a}}{v_{p,n}} - 1 \right) + R_{O_2} \left(\frac{v_{O_2}}{v_{O_2,n}} - 1 \right) + R_{CO_2} \left(1 - \frac{v_{CO_2}}{v_{CO_2,n}} \right) + R_{u} \left(1 - \frac{v_{u}}{v_{u,n}} \right) \]
Implementation Name: \(\eta \)
Units: dimensionless
Initial value: 0
Merged autoregulation stimulus.

\[f_1 = \lambda f_1 + \lambda f_{1,a} \log \left(\text{Cu}_{A,o} \right) \]
Implementation Name: \(f_1 \)
Units: mM s\(^{-1}\)
Initial value: 0
Reaction rate for the reduction of \(\text{Cu}_A \).

\[f_2 = \lambda f_2 + \lambda f_{2,b} \log \left(a_{3,r} \right) \]
Implementation Name: \(f_2 \)
Units: mM s\(^{-1}\)
Initial value: 0
Reaction rate for the reduction of \(a_3 \).

\[f_3 = \lambda f_3 + \lambda f_{3,O} \log \left(O_2 \right) \]
Implementation Name: \(f_3 \)
Units: mM s\(^{-1}\)
Initial value: 0
Reaction rate for the reduction of \(O_2 \).

\[G = K_G r^A \]
Implementation Name: \(G \)
Units: \(\text{ml}_{\text{blood}} \text{ml}_{\text{brain}}^{-1} \text{mmHg}^{-1} \text{s}^{-1} \)
Initial value: 0
Effective conductance of the whole blood flow compartment.

\[HbO_2 = (V_a \text{HbO}_2,a + V_v \text{HbO}_2,v) \text{blood}_{hb} \]
Implementation Name: \(\text{HbO}_2 \)
Units: uM
11.6 Intermediate Variables

Initial value: 0
Oxygenated haemoglobin signal measured by NIRS.

\[HbT = (V_a + V_v) \text{ Hb}_{tot} \text{blood}_{hb} \]
Implementation Name: \text{HbT}
Units: uM
Initial value: 0
Total haemoglobin signal measured by NIRS.

\[HHb = HbT - HbO_2 \]
Implementation Name: \text{HHb}
Units: uM
Initial value: 0
Deoxygenated haemoglobin signal measured by NIRS.

\[J_{O2} = \text{fmin} \left(D_{O2} \left(O_{2c} - O_2 \right) , CBF \text{ HbO}_2 \right) \]
Implementation Name: \text{J}_{02}
Units: mM s\(^{-1}\)
Initial value: 0
Oxygen flux from blood to tissue.

\[L = \lambda_L + \lambda_L \theta + \lambda_L p \Delta p \]
Implementation Name: \text{L}
Units: mM s\(^{-1}\)
Initial value: 0
Rate of proton return to the mitochondrial matrix.

\[\mu = \frac{k_{aut} \left(\exp (\eta) - 1 \right)}{\exp (\eta) + 1} \]
Implementation Name: \text{mu}
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation response.

\[R_{Hi} = \frac{R_{HIH}}{H^+} \]
Implementation Name: \text{R}_{HI}
Units: dimensionless
Initial value: 0
Relative mitochondrial volume for protons, taking into account buffering effect of pH.

\[S_{c,O2} = \frac{S_{a,O2} + S_{v,O2}}{2} \]
Implementation Name: \text{ScO2}
Units: dimensionless
Initial value: \text{S}_{c,O2,0}
Capillary oxygen saturation.

\[S_{v,O2} = \frac{HbO_{2,v}}{Hb_{tot}} \]
Implementation Name: \text{SvO2}
Units: dimensionless
Initial value: \text{SvO2,0}
Venous oxygen saturation.

\[\theta = kCV \left(\Delta p + Z \log10 (\mu) - 90 \right) \]
Implementation Name: \text{theta}
Units: dimensionless
Initial value: 0
Driving force Complex V.
$$T0I = \frac{100HbO_2}{HbT}$$
Implementation Name: T0I
Units: dimensionless
Initial value: 0
Total oxygenation index.

$$V_mca = CBF \times CBFscale$$
Implementation Name: Vmca
Units: cm s$^{-1}$
Initial value: 0
Blood velocity in the middle cerebral artery.

$$V_a = V_{a,n} \left(\frac{r}{r_n} \right)^2$$
Implementation Name: Vol_art
Units: dimensionless
Initial value: 0
Relative arterial blood volume.

11.7 Parameters

$C_{u_{A,o,n}}$
Implementation Name: a_n
Units: mM
Initial value: 0.06567
Normal concentration of oxidised cytochrome c oxidase.

blood_hb
Implementation Name: blood_hb
Units: dimensionless
Initial value: 10.00
Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to µM, and number of binding sites.

$a_{3,r,n}$
Implementation Name: bred_n
Units: mM
Initial value: 0.001408
Normal concentration of reduced cytochrome a3.

C_{im}
Implementation Name: c_im
Units: mM mV$^{-1}$
Initial value: 0.00675
Capacitance of the mitochondrial inner membrane.

CBF_n
Implementation Name: CBFn
Units: mlblood ml$^{-1}brain$ s$^{-1}$
Initial value: 0.0125
Normal cerebral blood flow.

$CBFscale$
Implementation Name: CBFscale
Units: cm
Initial value: 5000
Scale constant relating blood flow to arterial velocity.
11.7 Parameters

\(\Delta \text{oxCCO}_{\text{off}} \)
- Implementation Name: \texttt{CCO_offset}
- Units: \(\mu \text{M} \)
- Initial value: 0
- Signal offset for the NIRS CCO measurement.

\(\text{CMRO}_2 \)
- Implementation Name: \texttt{CMRO2}_n
- Units: \(\text{mM s}^{-1} \)
- Initial value: 0.034
- Normal metabolic rate of oxygen consumption.

\(D_{O_2} \)
- Implementation Name: \texttt{D_O2}
- Units: \(s^{-1} \)
- Initial value: \(\frac{J_{O_2,n}}{O_{2,r,n} - O_{2,n}} \)
- Diffusion rate for oxygen between capillaries and mitochondria.

\(\psi_n \)
- Implementation Name: \texttt{Dpsi}_n
- Units: mV
- Initial value: 145
- Normal mitochondrial inner membrane potential.

\(\lambda f_1 \)
- Implementation Name: \texttt{f1_0}
- Units: \(\text{mM s}^{-1} \)
- Initial value: 1.504
- Fitted intercept for the linear model for \(f_1 \).

\(\lambda f_{1,a} \)
- Implementation Name: \texttt{f1_a}
- Units: \(\text{mM s}^{-1} \)
- Initial value: 0.3658
- Fitted linear dependence of \(f_1 \) on logarithm of \(\text{Cu}_{A,\text{ox}} \).

\(\lambda f_2 \)
- Implementation Name: \texttt{f2_0}
- Units: \(\text{mM s}^{-1} \)
- Initial value: 0.1473
- Fitted intercept for the linear model for \(f_2 \).

\(\lambda f_{2,b} \)
- Implementation Name: \texttt{f2_bred}
- Units: \(\text{mM s}^{-1} \)
- Initial value: \(-0.05484\)
- Fitted linear dependence of \(f_2 \) on logarithm of \(\text{a}_{3,\text{red}} \).

\(\lambda f_3 \)
- Implementation Name: \texttt{f3_0}
- Units: \(\text{mM s}^{-1} \)
- Initial value: 0.6324
- Fitted intercept for the linear model for \(f_3 \).

\(\lambda f_{3,0} \)
- Implementation Name: \texttt{f3_02}
- Units: \(\text{mM s}^{-1} \)
- Initial value: 0.03352
- Fitted linear dependence of \(f_3 \) on logarithm of \(O_2 \).
11 BIM2

\(G_n \)
- Implementation Name: \(G_n \)
- Units: \(\text{ml}_{\text{blood}} \text{ ml}_{\text{brain}}^{-1} \text{ mmHg}^{-1} \text{ s}^{-1} \)
- Initial value: \(\frac{C_{BF_n}}{P_{a,n} - P_{e,n}} \)
- Normal blood vessel conductance.

\(H_{n}^+ \)
- Implementation Name: \(H_{n} \)
- Units: mM
- Initial value: 0.00003981
- Normal mitochondrial proton concentration.

\(J_{O_2,n} \)
- Implementation Name: \(J_{O_2,n} \)
- Units: \(\text{mM s}^{-1} \)
- Initial value: \(\text{CMRO}_{2,n} \)
- Normal oxygen flux from blood to tissue.

\(k_{\text{aut}} \)
- Implementation Name: \(k_{\text{aut}} \)
- Units: dimensionless
- Initial value: 1
- Overall functioning of autoregulatory response.

\(K_G \)
- Implementation Name: \(K_G \)
- Units: \(\text{ml}_{\text{blood}} \text{ ml}_{\text{brain}}^{-1} \text{ mmHg}^{-1} \text{ s}^{-1} \text{ cm}^{-4} \)
- Initial value: \(\text{pow}(r_n, 4) \)
- Proportionality constant in Poiseuille relation for conductance.

\(kCV \)
- Implementation Name: \(kCV \)
- Units: \(\text{mV}^{-1} \)
- Initial value: 0.02047339
- Factor relating the Complex V driving force to the membrane potential and demand.

\(\lambda_L \)
- Implementation Name: \(L_0 \)
- Units: \(\text{mM s}^{-1} \)
- Initial value: -15.339464
- Fitted intercept for the linear model for \(L \).

\(\lambda_{L,p} \)
- Implementation Name: \(L_{dp} \)
- Units: \(\text{mM s}^{-1} \text{ mV}^{-1} \)
- Initial value: 0.097097
- Fitted linear dependence of \(L \) on \(\Delta p \).

\(\lambda_{L,\theta} \)
- Implementation Name: \(L_{d\theta} \)
- Units: \(\text{mM s}^{-1} \)
- Initial value: 5.665904
- Fitted linear dependence of \(L \) on \(\theta \).

\(\lambda_0 \)
- Implementation Name: \(10_{a_0} \)
- Units: cm
11.7 Parameters

Initial value: 0.02507
Intercept of the fitted linear model for blood vessel radius.

\(\lambda_\mu \)
- Implementation Name: lam_mu
- Units: cm
- Initial value: −0.0004422
Fitted linear dependence of blood vessel radius on autoregulatory stimuli.

\(\lambda_{P_a} \)
- Implementation Name: lam_p_mu
- Units: cm mmHg
- Initial value: −0.6327
Fitted linear dependence of blood vessel radius on reciprocal of blood pressure.

\(\lambda_{P_a,\mu} \)
- Implementation Name: lam_p_mu
- Units: cm mmHg
- Initial value: −0.5286
Fitted joint dependence of blood vessel radius on autoregulatory stimuli and reciprocal of blood pressure.

\(n_h \)
- Implementation Name: n_h
- Units: dimensionless
- Initial value: 2.5
Hill coefficient for oxygen dissociation from haemoglobin.

\(O_{2,n} \)
- Implementation Name: O2_n
- Units: mM
- Initial value: 0.024
Normal mitochondrial oxygen concentration.

\(O_{2,c,n} \)
- Implementation Name: O2c_n
- Units: mM
- Initial value: \(\phi \, \text{pow} \left(\frac{S_c \cdot O_{2,n}}{1 - S_c \cdot O_{2,n}}, \frac{1}{n_h} \right) \)
Normal capillary oxygen concentration.

\(p_1 \)
- Implementation Name: p1
- Units: dimensionless
- Initial value: 12
Proton cost of the reaction reducing Cu_A.

\(p_3 \)
- Implementation Name: p2
- Units: dimensionless
- Initial value: 4
Proton cost of the reaction reducing a3.

\(p_3 \)
- Implementation Name: p3
- Units: dimensionless
- Initial value: 4
Proton cost of the reaction reducing O_2.

\(P_a \)
- Implementation Name: P_a
Units: mmHg
Initial value: $P_{a,n}$
Mean arterial blood pressure.

$P_{a,n}$
Implementation Name: P_{an}
Units: mmHg
Initial value: 100
Normal arterial blood pressure.

P_v
Implementation Name: P_{vn}
Units: mmHg
Initial value: $P_{v,n}$
Venous blood pressure.

$P_{v,n}$
Implementation Name: P_{vn}
Units: mmHg
Initial value: 4
Normal venous blood pressure.

$P_{a\text{CO}_2}$
Implementation Name: Pa_{CO_2}
Units: mmHg
Initial value: $Pa_{\text{CO}_2,n}$
Arterial partial pressure of carbon dioxide.

$P_{a\text{CO}_2,n}$
Implementation Name: $Pa_{\text{CO}_2,n}$
Units: mmHg
Initial value: 40
Normal arterial partial pressure of carbon dioxide.

ϕ
Implementation Name: ϕ_i
Units: mM
Initial value: 0.036
Oxygen concentration at half-maximal saturation.

R_{CO_2}
Implementation Name: $R_{aut\text{c}}$
Units: dimensionless
Initial value: 2.2
Autoregulatory reactivity to carbon dioxide.

R_{O_2}
Implementation Name: R_{auto}
Units: dimensionless
Initial value: 1.5
Autoregulatory reactivity to oxygen.

R_{Pa}
Implementation Name: $R_{aut\text{p}}$
Units: dimensionless
Initial value: 4
Autoregulatory reactivity to blood pressure.

R_u
Implementation Name: $R_{aut\text{u}}$
Units: dimensionless
11.7 Parameters

Initial value: 0.5
Autoregulatory reactivity to demand.

\(R_{H_iH} \)
Implementation Name: \(R_{H_iH} \)
Units: mM
Initial value: 9.565483
Proton buffering factor.

\(r_n \)
Implementation Name: \(r_n \)
Units: cm
Initial value: 0.0187
Normal blood vessel radius. Normal effective blood vessel radius.

\(S_{aO_2,n} \)
Implementation Name: \(S_{aO_2,n} \)
Units: dimensionless
Initial value: 0.96
Normal arterial oxygen saturation.

\(S_{aO_2} \)
Implementation Name: \(S_{aO_2} \)
Units: dimensionless
Initial value: \(S_{aO_2,n} \)
Arterial oxygen saturation.

\(S_{cO_2,n} \)
Implementation Name: \(S_{cO_2,n} \)
Units: dimensionless
Initial value: \(\frac{S_{aO_2,n} + S_{vO_2,n}}{2} \)
Normal capillary oxygen saturation.

\(S_{vO_2,n} \)
Implementation Name: \(S_{vO_2,n} \)
Units: dimensionless
Initial value: \(\frac{HbO_{2,v,n}}{Hb_{tot,n}} \)
Normal venous oxygen saturation.

\(t \)
Implementation Name: \(t \)
Units: s
Initial value: 0
Time over which the system evolves.

\(\tau_{CO_2} \)
Implementation Name: \(\tau_{CO_2} \)
Units: s
Initial value: 5
Filter time constant for stimulus effect of carbon dioxide.

\(\tau_{O_2} \)
Implementation Name: \(\tau_{O_2} \)
Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

\(\tau_{Pa} \)
Implementation Name: \(\tau_{Pa} \)
Units: s
11 BIM2

Initial value: 5
Filter time constant for stimulus effect of blood pressure.

\(\tau_u \)
- Implementation Name: \(t_u \)
- Units: s
- Initial value: 0.5
Filter time constant for stimulus effect of demand.

\(u \)
- Implementation Name: \(u \)
- Units: dimensionless
- Initial value: \(u_n \)
Parameter indicating metabolic demand.

\(u_n \)
- Implementation Name: \(u_n \)
- Units: dimensionless
- Initial value: 1
Normal demand.

\(v_{CO_2,n} \)
- Implementation Name: \(v_{cn} \)
- Units: mmHg
- Initial value: \(P_{aCO_2,n} \)
Normal filtered carbon dioxide partial pressure. Normal filtered carbon dioxide partial pressure.

\(v_{O_2,n} \)
- Implementation Name: \(v_{on} \)
- Units: mM
- Initial value: \(O_{2,c,n} \)
Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

\(v_{Pa,n} \)
- Implementation Name: \(v_{pn} \)
- Units: mmHg
- Initial value: \(P_{a,n} \)
Normal filtered arterial blood pressure. Normal filtered blood pressure.

\(v_{un} \)
- Implementation Name: \(v_{un} \)
- Units: dimensionless
- Initial value: \(u_n \)
Normal filtered demand. Normal filtered demand.

\(VArat_n \)
- Implementation Name: \(VArat_n \)
- Units: dimensionless
- Initial value: 3
Normal volume ratio of veins to arteries in brain tissue.

\(V_{a,n} \)
- Implementation Name: \(V_{a,n} \)
- Units: dimensionless
- Initial value: \(\frac{1}{1 + VArat_n} \)
Normal relative arterial blood volume.

\(Volmit \)
11.7 Parameters

Implementation Name: Vol.mit
Units: dimensionless
Initial value: 0.067
Fraction of brain tissue volume that is mitochondria.

Implementation Name: Vol.ven
Units: dimensionless
Initial value: \(\frac{V A r a t_n}{1 + V A r a t_n} \)
Relative venous blood volume.

HbO\(_2\)a = \(Hb_{tot} S_{a,O_2} \)
Implementation Name: XOa
Units: mM
Initial value: \(HbO_2,a,n \)
Arterial concentration of oxygen bound to haemoglobin.

HbO\(_2\)a,n
Implementation Name: XOa,n
Units: mM
Initial value: \(Hb_{tot,n} S_{a,O_2,n} \)
Normal arterial concentration of oxygen bound to haemoglobin.

HbO\(_2\)v,n
Implementation Name: XOv,n
Units: mM
Initial value: \(\frac{CBF_n HbO_2,a,n - I_{O_2,v}}{CBF_n} \)
Normal venous concentration of oxygen bound to haemoglobin.

Hb\(_{tot}\)
Implementation Name: Xtot
Units: mM
Initial value: 9.1
Total concentration of haemoglobin O\(_2\) binding sites in blood (4 times haemoglobin concentration).

Hb\(_{tot,n}\)
Implementation Name: Xtot,n
Units: mM
Initial value: 9.1
Normal total concentration of haemoglobin O\(_2\) binding sites in blood (4 times haemoglobin concentration).

Z
Implementation Name: Z
Units: mV
Initial value: 59.028
Proportionality constant in calculation of driving forces due to concentration differences. Defined as \(RT / F \), where \(F \) is Faraday’s constant, \(R \) the ideal gas constant and \(T \) the absolute temperature.
12 B2M1

12.1 Overview

Simplified model combining blood flow variant B2 and metabolic variant M1.

- 9 differential state variables
- 3 algebraic state variables
- 22 intermediate variables
- 73 parameters
- 4 declared inputs
- 33 default outputs

12.2 Differential Equations

\[
\frac{dC_{u,v}}{dt} = 4f_3 - 4f_1
\] \hspace{1cm} (12.1)

\[
\frac{da_{3,r}}{dt} = 4f_3 - 4f_3
\] \hspace{1cm} (12.2)

\[
\frac{d\psi}{dt} = \frac{p_3 f_3 + p_1 f_1 + p_3 f_3 - L}{C_{im}}
\] \hspace{1cm} (12.3)

\[
\frac{dH^+}{dt} = \frac{1}{R_{Hi}} L - \frac{p_3}{R_{Hi}} f_3 - \frac{p_1}{R_{Hi}} f_1 - \frac{p_3}{R_{Hi}} f_3
\] \hspace{1cm} (12.4)

\[
\frac{dO_2}{dt} = \frac{1}{Vol_{mit}} J_{O_2} - f_3
\] \hspace{1cm} (12.5)

\[
\frac{dv_{CO_2}}{dt} = \frac{1}{\tau_{CO_2}} (p_a^{CO_2} - v_{CO_2})
\] \hspace{1cm} (12.6)

\[
\frac{dv_{O_2}}{dt} = \frac{1}{\tau_{O_2}} (O_{2,c} - v_{O_2})
\] \hspace{1cm} (12.7)

\[
\frac{dv_p}{dt} = \frac{1}{\tau_{p_v}} (P_a - v_p)
\] \hspace{1cm} (12.8)
\[
\frac{dv_u}{dt} = \frac{1}{\tau_u} (u - v_u)
\]
\(12.9\)

12.3 Algebraic Equations

\[
\phi \left(\frac{S_{c,O_2}}{1 - S_{c,O_2}} \right) \frac{J_{O_2}}{V_{m,mit}} - O_{2,c} = 0
\]
\(12.10\)

\[
\lambda_0 + \frac{\lambda_{P_a}}{P_a} + \lambda_{\mu} \mu - r = 0
\]
\(12.11\)

\[
\text{CBF} \left(HbO_{2,a} - HbO_{2,o} \right) - J_{O_2} = 0
\]
\(12.12\)

12.4 Chemical Reactions

\[
\xrightarrow{L} \frac{1}{R_{Hi}} \text{H}^+
\]
\(12.13\)

\[
\xrightarrow{J_{O_2}} \frac{1}{V_{m,mit}} \text{O}_2
\]
\(12.14\)

\[
\frac{p_3}{R_{Hi}} \text{H}^+ \xrightarrow{f_3} 4 \text{Cu}_{A,o} + 4 a_{3,r}
\]
\(12.15\)

\[
4 \text{Cu}_{A,o} + \frac{p_1}{R_{Hi}} \text{H}^+ \xrightarrow{f_1}
\]
\(12.16\)

\[
\text{O}_2 + 4 a_{3,r} + \frac{p_3}{R_{Hi}} \text{H}^+ \xrightarrow{f_3}
\]
\(12.17\)

12.5 State Variables

- **\(Cu_{A,o}\):**
 - Implementation Name: \text{a}
 - Units: mM
 - Initial value: \(Cu_{A,o,n}\)
 - Concentration of oxidised cytochrome c oxidase.

- **\(a_{3,r}\):**
 - Implementation Name: br\text{ed}
 - Units: mM
 - Initial value: \(a_{3,r,n}\)
 - Concentration of reduced cytochrome a3.
12.5 State Variables

ψ
Implementation Name: Dpsi
Units: mV
Initial value: \(\psi_n \)
Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

\(H^+ \)
Implementation Name: H
Units: mM
Initial value: \(H^+_n \)
Mitochondrial proton concentration.

\(O_2 \)
Implementation Name: 02
Units: mM
Initial value: \(O_{2,n} \)
Mitochondrial oxygen concentration.

\(O_{2,c} \)
Implementation Name: 02c
Units: mM
Initial value: \(O_{2,c,n} \)
Capillary oxygen concentration.

\(r \)
Implementation Name: r
Units: cm
Initial value: \(r_n \)
Typical blood vessel radius.

\(v_{CO_2} \)
Implementation Name: v_c
Units: mmHg
Initial value: \(v_{CO_2,n} \)
Filtered carbon dioxide partial pressure.

\(v_{O_2} \)
Implementation Name: v_o
Units: mM
Initial value: \(v_{O_2,n} \)
Filtered capillary oxygen concentration.

\(v_{Pa} \)
Implementation Name: v_p
Units: mmHg
Initial value: \(v_{Pa,n} \)
Filtered arterial blood pressure.

\(v_{ul} \)
Implementation Name: v_u
Units: dimensionless
Initial value: \(v_{ul,n} \)
Filtered demand.

\(HbO_{2,v} \)
Implementation Name: x0v
Units: mM
Initial value: \(HbO_{2,v,n} \)
Venous concentration of oxygen bound to haemoglobin.
12.6 Intermediate Variables

\(CBF = G \ (P_a - P_v) \)
- Implementation Name: CBF
- Units: \(\text{ml}_{\text{blood}} \text{ ml}^{-1} \text{ s}^{-1} \)
- Initial value: \(\text{CBF}_n \)
- Cerebral blood flow.

\(\Delta \text{oxCCO} = \Delta \text{oxCCO}_{\text{off}} + 1000 \text{Vol}_{\text{mit}} \ (\text{Cu}_{A,o} - \text{Cu}_{A,n}) \)
- Implementation Name: CCO
- Units: uM
- Initial value: 0
- Cytochrome c oxidase signal measured by NIRS.

\(\text{CMRO}_2 = f_3 \text{Vol}_{\text{mit}} \)
- Implementation Name: CMRO2
- Units: mM s\(^{-1}\)
- Initial value: 0
- Rate of cerebral oxygen metabolism.

\(\Delta p = \psi - Z \ (4 + \log_{10} (H^+)) \)
- Implementation Name: \(\Delta p \)
- Units: mV
- Initial value: 0
- Proton motive force across the mitochondrial inner membrane.

\(\eta = R_p \ \left(\frac{v_{P_a}}{v_{P_v,n}} - 1 \right) + R_{O_2} \ \left(\frac{v_{O_2}}{v_{O_2,n}} - 1 \right) + R_{CO_2} \ \left(1 - \frac{v_{CO_2}}{v_{CO_2,n}} \right) + R_n \ \left(1 - \frac{v_u}{v_{u,n}} \right) \)
- Implementation Name: \(\eta \)
- Units: dimensionless
- Initial value: 0
- Merged autoregulation stimulus.

\(f_1 = \lambda f_1 + \lambda f_{1,n} \log (u) + \lambda f_{1,\text{a}} \log (\text{Cu}_{A,a}) \)
- Implementation Name: \(f_1 \)
- Units: mM s\(^{-1}\)
- Initial value: 0
- Reaction rate for the reduction of \(\text{Cu}_A \).

\(f_3 = \lambda f_3 + \lambda f_{3,n} \log (a_3) \)
- Implementation Name: \(f_3 \)
- Units: mM s\(^{-1}\)
- Initial value: 0
- Reaction rate for the reduction of \(a_3 \).

\(f_5 = \lambda f_5 + \lambda f_{5,n} \log (O_2) \)
- Implementation Name: \(f_5 \)
- Units: mM s\(^{-1}\)
- Initial value: 0
- Reaction rate for the reduction of \(O_2 \).

\(G = K_G \ r^A \)
- Implementation Name: \(G \)
- Units: \(\text{ml}_{\text{blood}} \text{ ml}^{-1} \text{ brain mmHg}^{-1} \text{ s}^{-1} \)
- Initial value: 0
- Effective conductance of the whole blood flow compartment.

\(\text{HbO}_2 = (V_a \text{HbO}_2,a + V_v \text{HbO}_2,v) \text{ blood}_{\text{hb}} \)
- Implementation Name: \(\text{HbO}_2 \)
- Units: uM
12.6 Intermediate Variables

Initial value: 0
Oxygenated haemoglobin signal measured by NIRS.

\[HbT = (V_a + V_v) \, Hb_{tot} \, blood_{hb} \]
Implementation Name: HbT
Units: uM
Initial value: 0
Total haemoglobin signal measured by NIRS.

\[HHb = HbT - HbO_2 \]
Implementation Name: HHb
Units: uM
Initial value: 0
Deoxygenated haemoglobin signal measured by NIRS.

\[JO_2 = f_{\min} \left(D_{O_2} \left(O_2, c - O_2 \right), CBF \ HbO_2,a \right) \]
Implementation Name: J_02
Units: mM s\(^{-1}\)
Initial value: 0
Oxygen flux from blood to tissue.

\[L = \lambda_L + \lambda_L,\theta \theta + \lambda_L,\theta \Delta p \]
Implementation Name: L
Units: mM s\(^{-1}\)
Initial value: 0
Rate of proton return to the mitochondrial matrix.

\[\mu = \frac{k_{aut} \left(\exp(\eta) - 1 \right)}{\exp(\eta) + 1} \]
Implementation Name: mu
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation response.

\[RHi = \frac{R_{Hi}}{H^+} \]
Implementation Name: R_Hi
Units: dimensionless
Initial value: 0
Relative mitochondrial volume for protons, taking into account buffering effect of pH.

\[S_{c,O_2} = \frac{S_{a,O_2} + S_{v,O_2}}{2} \]
Implementation Name: Sc02
Units: dimensionless
Initial value: \(S_{c,O_2,n} \)
Capillary oxygen saturation.

\[S_{v,O_2} = \frac{HbO_2,v}{Hb_{tot}} \]
Implementation Name: Sv02
Units: dimensionless
Initial value: \(S_{v,O_2,n} \)
Venous oxygen saturation.

\[\theta = kCV \left(\Delta p + Z \log_{10}(u) - 90 \right) \]
Implementation Name: theta
Units: dimensionless
Initial value: 0
Driving force Complex V.
10 \ 0

TOI = \frac{100HbO_2}{HbT}

- Implementation Name: TOI
- Units: dimensionless
- Initial value: 0
- Total oxygenation index.

\text{Vmca} = CBF \ CBFscale

- Implementation Name: \text{Vmca}
- Units: cm s\(^{-1}\)
- Initial value: 0
- Blood velocity in the middle cerebral artery.

\text{V}_a = V_{a,n} \left(\frac{r}{r_n} \right)^2

- Implementation Name: \text{Vol_art}
- Units: dimensionless
- Initial value: 0
- Relative arterial blood volume.

12.7 Parameters

- **\text{Cu}_{A,o,n}**
 - Implementation Name: \text{a_n}
 - Units: mM
 - Initial value: 0.06567
 - Normal concentration of oxidised cytochrome c oxidase.

- **\text{blood}_{\text{hb}}**
 - Implementation Name: \text{blood_hb}
 - Units: dimensionless
 - Initial value: 10.00
 - Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to \(\mu\)M, and number of binding sites.

- **\text{a}_{3,r,n}**
 - Implementation Name: \text{bred_n}
 - Units: mM
 - Initial value: 0.001408
 - Normal concentration of reduced cytochrome a3.

- **\text{C}_{im}**
 - Implementation Name: \text{c_im}
 - Units: mM mV\(^{-1}\)
 - Initial value: 0.00675
 - Capacitance of the mitochondrial inner membrane.

- **\text{CBF}_n**
 - Implementation Name: \text{CBFn}
 - Units: ml\(_{\text{blood}}\) ml\(_{\text{brain}}\) s\(^{-1}\)
 - Initial value: 0.0125
 - Normal cerebral blood flow.

- **\text{CBFscale}**
 - Implementation Name: \text{CBFscale}
 - Units: cm
 - Initial value: 5000
 - Scale constant relating blood flow to arterial velocity.
12.7 Parameters

ΔoxCCO
- Implementation Name: `CCO_offset`
- Units: uM
- Initial value: 0
- Signal offset for the NIRS CCO measurement.

CMRO_{2,n}
- Implementation Name: `CMRO2_n`
- Units: mM s\(^{-1}\)
- Initial value: 0.034
- Normal metabolic rate of oxygen consumption.

D_{O2}
- Implementation Name: `D02`
- Units: s\(^{-1}\)
- Initial value: \(\frac{J_{O2,n}}{O_{2,r,n} - O_{2,n}}\)
- Diffusion rate for oxygen between capillaries and mitochondria.

ψ
- Implementation Name: `Dpsi_n`
- Units: mV
- Initial value: 145
- Normal mitochondrial inner membrane potential.

λ_{f1}
- Implementation Name: `f1_0`
- Units: mM s\(^{-1}\)
- Initial value: 1.490
- Fitted intercept for the linear model for \(f_1\).

λ_{f1,a}
- Implementation Name: `f1_a`
- Units: mM s\(^{-1}\)
- Initial value: 0.3609
- Fitted linear dependence of \(f_1\) on logarithm of \(Cu_{A,ox}\).

λ_{f1,u}
- Implementation Name: `f1_u`
- Units: mM s\(^{-1}\)
- Initial value: 0.06985
- Fitted linear dependence of \(f_1\) on logarithm of demand.

λ_{f2}
- Implementation Name: `f2_0`
- Units: mM s\(^{-1}\)
- Initial value: 0.1473
- Fitted intercept for the linear model for \(f_2\).

λ_{f2,b}
- Implementation Name: `f2_bred`
- Units: mM s\(^{-1}\)
- Initial value: \(-0.05484\)
- Fitted linear dependence of \(f_2\) on logarithm of \(a_{3,red}\).

λ_{f3}
- Implementation Name: `f3_0`
- Units: mM s\(^{-1}\)
- Initial value: 0.6324
- Fitted intercept for the linear model for \(f_3\).
\(\lambda_{f_3,O} \)
Implementation Name: \(f_3,O \)
Units: mM s\(^{-1}\)
Initial value: 0.03352
Fitted linear dependence of \(f_3 \) on logarithm of \(O_2 \).

\(G_n \)
Implementation Name: \(G_n \)
Units: ml\(_{\text{blood}}\) ml\(_{\text{brain}}\) mmHg\(^{-1}\) s\(^{-1}\)
Initial value: \(\frac{P_{\text{a},n} - P_{\text{v},n}}{G_n} \)
Normal blood vessel conductance.

\(H_n^+ \)
Implementation Name: \(H_n \)
Units: mM
Initial value: 0.00003981
Normal mitochondrial proton concentration.

\(J_{O_2,n} \)
Implementation Name: \(J_{O_2,n} \)
Units: mM s\(^{-1}\)
Initial value: \(\text{CMRO}_{2,n} \)
Normal oxygen flux from blood to tissue.

\(k_{\text{aut}} \)
Implementation Name: \(k_{\text{aut}} \)
Units: dimensionless
Initial value: 1
Overall functioning of autoregulatory response.

\(K_G \)
Implementation Name: \(K_G \)
Units: ml\(_{\text{blood}}\) ml\(_{\text{brain}}\) mmHg\(^{-1}\) s\(^{-1}\) cm\(^{-4}\)
Initial value: \(\frac{G_n}{\text{pow}(r_n, 4)} \)
Proportionality constant in Poiseuille relation for conductance.

\(k_{\text{CV}} \)
Implementation Name: \(k_{\text{CV}} \)
Units: mV\(^{-1}\)
Initial value: 0.02047339
Factor relating the Complex V driving force to the membrane potential and demand.

\(\lambda_{L} \)
Implementation Name: \(L_0 \)
Units: mM s\(^{-1}\)
Initial value: \(-15.339464\)
Fitted intercept for the linear model for \(L \).

\(\lambda_{L,p} \)
Implementation Name: \(L_{p} \)
Units: mM s\(^{-1}\) mV\(^{-1}\)
Initial value: 0.097097
Fitted linear dependence of \(L \) on \(\Delta p \).

\(\lambda_{L,\theta} \)
Implementation Name: \(L_{\theta} \)
Units: mM s\(^{-1}\)

208
12.7 Parameters

Initial value: 5.665904
Fitted linear dependence of L on θ.

λ_0
Implementation Name: lam_0
Units: cm
Initial value: 0.02327
Intercept of the fitted linear model for blood vessel radius.

λ_μ
Implementation Name: lam_mu
Units: cm
Initial value: −0.006375
Fitted linear dependence of blood vessel radius on autoregulatory stimuli.

λ_{P_a}
Implementation Name: lam_pa
Units: cm mmHg
Initial value: −0.4697
Fitted linear dependence of blood vessel radius on reciprocal of blood pressure.

n_h
Implementation Name: n_h
Units: dimensionless
Initial value: 2.5
Hill coefficient for oxygen dissociation from haemoglobin.

$O_{2,n}$
Implementation Name: O2_n
Units: mM
Initial value: 0.024
Normal mitochondrial oxygen concentration.

$O_{2,c,n}$
Implementation Name: O2c_n
Units: mM
Initial value: $\phi \text{ pow} \left(\frac{S_c,O_{2,n}}{1 - S_c,O_{2,n}} \frac{1}{n_h} \right)$
Normal capillary oxygen concentration.

p_1
Implementation Name: p1
Units: dimensionless
Initial value: 12
Proton cost of the reaction reducing Cu_A.

p_3
Implementation Name: p2
Units: dimensionless
Initial value: 4
Proton cost of the reaction reducing a3.

p_3
Implementation Name: p3
Units: dimensionless
Initial value: 4
Proton cost of the reaction reducing O2.

P_a
Implementation Name: P_a
Units: mmHg
Initial value: $P_{a,n}$
Mean arterial blood pressure.

$P_{a,n}$
Implementation Name: $P_{a,n}$
Units: mmHg
Initial value: 100
Normal arterial blood pressure.

P_{v}
Implementation Name: P_{v}
Units: mmHg
Initial value: $P_{v,n}$
Venous blood pressure.

$P_{v,n}$
Implementation Name: $P_{v,n}$
Units: mmHg
Initial value: 4
Normal venous blood pressure.

Pa_{CO_2}
Implementation Name: Pa_{CO_2}
Units: mmHg
Initial value: $Pa_{CO_2,n}$
Arterial partial pressure of carbon dioxide.

$Pa_{CO_2,n}$
Implementation Name: $Pa_{CO_2,n}$
Units: mmHg
Initial value: 40
Normal arterial partial pressure of carbon dioxide.

ϕ
Implementation Name: phi
Units: mM
Initial value: 0.036
Oxygen concentration at half-maximal saturation.

R_{CO_2}
Implementation Name: R_{autc}
Units: dimensionless
Initial value: 2.2
Autoregulatory reactivity to carbon dioxide.

R_{O_2}
Implementation Name: R_{auto}
Units: dimensionless
Initial value: 1.5
Autoregulatory reactivity to oxygen.

R_{Pa}
Implementation Name: R_{autp}
Units: dimensionless
Initial value: 4
Autoregulatory reactivity to blood pressure.

R_{u}
Implementation Name: R_{autu}
Units: dimensionless
12.7 Parameters

Initial value: 0.5
Autoregulatory reactivity to demand.

\(R_{Hi,H} \)
Implementation Name: \(R_{Hi,H} \)
Units: mM
Initial value: 9.565483
Proton buffering factor.

\(r_n \)
Implementation Name: \(r_n \)
Units: cm
Initial value: 0.0187
Normal blood vessel radius. Normal effective blood vessel radius.

\(S_{a,O_2,n} \)
Implementation Name: \(S_{a,O_2,n} \)
Units: dimensionless
Initial value: 0.96
Normal arterial oxygen saturation.

\(S_{a,O_2} \)
Implementation Name: \(S_{a,O_2}^{sup} \)
Units: dimensionless
Initial value: \(S_{a,O_2,n} \)
Arterial oxygen saturation.

\(S_{c,O_2,n} \)
Implementation Name: \(S_{c,O_2,n} \)
Units: dimensionless
Initial value: \(\frac{2}{2 S_{a,O_2,n} + S_{c,O_2,n}} \)
Normal capillary oxygen saturation.

\(S_{v,O_2,n} \)
Implementation Name: \(S_{v,O_2,n} \)
Units: dimensionless
Initial value: \(\frac{HbO_{2,v,n}}{Hb_{tot,n}} \)
Normal venous oxygen saturation.

\(t \)
Implementation Name: \(t \)
Units: s
Initial value: 0
Time over which the system evolves.

\(\tau_{\text{CO}_2} \)
Implementation Name: \(\tau_{\text{CO}_2} \)
Units: s
Initial value: 5
Filter time constant for stimulus effect of carbon dioxide.

\(\tau_{O_2} \)
Implementation Name: \(\tau_{O_2} \)
Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

\(\tau_{pa} \)
Implementation Name: \(\tau_{pa} \)
Units: s
\(\tau_u \)

Implementation Name: \(t_u \)
Units: s
Initial value: 0.5
Filter time constant for stimulus effect of demand.

\(u \)

Implementation Name: \(u \)
Units: dimensionless
Initial value: \(u_n \)
Parameter indicating metabolic demand.

\(u_n \)

Implementation Name: \(u_n \)
Units: dimensionless
Initial value: 1
Normal demand.

\(v_{CO_2,n} \)

Implementation Name: \(v_{cn} \)
Units: mmHg
Initial value: \(P_{aCO_2,n} \)
Normal filtered carbon dioxide partial pressure. Normal filtered carbon dioxide partial pressure.

\(v_{O_2,n} \)

Implementation Name: \(v_{on} \)
Units: mM
Initial value: \(O_{2,c,n} \)
Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

\(v_{P_a,n} \)

Implementation Name: \(v_{pn} \)
Units: mmHg
Initial value: \(P_{a,n} \)
Normal filtered arterial blood pressure. Normal filtered blood pressure.

\(v_{u,n} \)

Implementation Name: \(v_{un} \)
Units: dimensionless
Initial value: \(u_n \)
Normal filtered demand. Normal filtered demand.

\(VArat_n \)

Implementation Name: \(VArat_n \)
Units: dimensionless
Initial value: 3
Normal volume ratio of veins to arteries in brain tissue.

\(V_{a,n} \)

Implementation Name: \(Vol_{artn} \)
Units: dimensionless
Initial value: \(\frac{1}{1 + VArat_n} \)
Normal relative arterial blood volume.

\(Vol_{mit} \)
12.7 Parameters

Implementation Name: \textit{Vol.mit}
Units: dimensionless
Initial value: 0.067
Fraction of brain tissue volume that is mitochondria.

\(V_v \)
Implementation Name: \textit{Vol.ven}
Units: dimensionless
Initial value: \(1 + V_{Arat_n} \)
Relative venous blood volume.

\(HbO_{2,a,n} = Hb_{tot} S_{a,O_2} \)
Implementation Name: \textit{X0a}
Units: mM
Initial value: HbO\(_{2,a,n}\)
Arterial concentration of oxygen bound to haemoglobin.

\(HbO_{2,v,n} \)
Implementation Name: \textit{X0v_n}
Units: mM
Initial value: \(\frac{\text{CBF}_n HbO_{2,a,n} - I_{O_2,n}}{\text{CBF}_n} \)
Normal venous concentration of oxygen bound to haemoglobin.

\(Hb_{tot} \)
Implementation Name: \textit{Xtot}
Units: mM
Initial value: 9.1
Total concentration of haemoglobin \(O_2 \) binding sites in blood (4 times haemoglobin concentration).

\(Hb_{tot,n} \)
Implementation Name: \textit{Xtot_n}
Units: mM
Initial value: 9.1
Normal total concentration of haemoglobin \(O_2 \) binding sites in blood (4 times haemoglobin concentration).

\(Z \)
Implementation Name: \textit{Z}
Units: mV
Initial value: 59.028
Proportionality constant in calculation of driving forces due to concentration differences. Defined as \(RT / F \), where \(F \) is Faraday's constant, \(R \) the ideal gas constant and \(T \) the absolute temperature.
13 B2M2

13.1 Overview

Simplified model combining blood flow variant B2 and metabolic variant M2.

- 9 differential state variables
- 3 algebraic state variables
- 22 intermediate variables
- 72 parameters
- 4 declared inputs
- 33 default outputs

13.2 Differential Equations

\[
\frac{dC_{u,0}}{dt} = 4f_3 - 4f_1 \quad (13.1)
\]

\[
\frac{da_{3,r}}{dt} = 4f_3 - 4f_3 \quad (13.2)
\]

\[
\frac{d\psi}{dt} = \frac{p_3 f_3 + p_1 f_1 + p_3 f_3 - L}{C_{im}} \quad (13.3)
\]

\[
\frac{dH^+}{dt} = \frac{1}{R_{Hi}} L - \frac{p_3}{R_{Hi}} f_3 - \frac{p_1}{R_{Hi}} f_1 - \frac{p_3}{R_{Hi}} f_3 \quad (13.4)
\]

\[
\frac{dO_2}{dt} = \frac{1}{Vol_{mit}} f_{O_2} - f_3 \quad (13.5)
\]

\[
\frac{dv_{CO_2}}{dt} = \frac{1}{\tau_{CO_2}} (p_{aCO_2} - v_{CO_2}) \quad (13.6)
\]

\[
\frac{dv_{O_2}}{dt} = \frac{1}{\tau_{O_2}} (O_{2,c} - v_{O_2}) \quad (13.7)
\]

\[
\frac{dv_{P_a}}{dt} = \frac{1}{\tau_{P_a}} (P_a - v_{P_a}) \quad (13.8)
\]
\[
\frac{dv_u}{dt} = \frac{1}{\tau_u} (u - v_u)
\]

(13.9)

13.3 Algebraic Equations

\[
\phi \left(\frac{S_{c,O_2}}{1 - S_{c,O_2}} \right) \frac{1}{h} - O_{2,c} = 0
\]

(13.10)

\[
\lambda_0 + \frac{\lambda_{p_c}}{P_a} + \lambda_\mu \mu - r = 0
\]

(13.11)

\[
CBF (HbO_{2,a} - HbO_{2,v}) - J_{O_2} = 0
\]

(13.12)

13.4 Chemical Reactions

\[
\xrightarrow{L} \frac{1}{R_{Hi}} H^+
\]

(13.13)

\[
\xrightarrow{J_{O_2}} \frac{1}{Vol_{mit}} O_2
\]

(13.14)

\[
\xrightarrow{P_3} \frac{H^+}{R_{Hi}} \xrightarrow{f_3} 4 Cu_{A,o} + 4 a_{3,r}
\]

(13.15)

\[
4 Cu_{A,o} + \xrightarrow{P_1} \frac{H^+}{R_{Hi}} \xrightarrow{f_1}
\]

(13.16)

\[
O_2 + 4 a_{3,r} + \xrightarrow{P_3} \frac{H^+}{R_{Hi}} \xrightarrow{f_3}
\]

(13.17)

13.5 State Variables

\[Cu_{A,o}\]
- Implementation Name: a
- Units: mM
- Initial value: \[Cu_{A,o,n}\]
- Concentration of oxidised cytochrome c oxidase.

\[a_{3,r}\]
- Implementation Name: bred
- Units: mM
- Initial value: \[a_{3,r,n}\]
- Concentration of reduced cytochrome a3.
13.5 State Variables

\(\psi \)
- Implementation Name: Dpsi
- Units: mV
- Initial value: \(\psi_n\)
- Mitochondrial inner membrane potential. Varies as charge (in the form of protons) is transferred across the membrane capacitance.

\(H^+ \)
- Implementation Name: H
- Units: mM
- Initial value: \(H^+_n\)
- Mitochondrial proton concentration.

\(O_2 \)
- Implementation Name: 02
- Units: mM
- Initial value: \(O_{2,n}\)
- Mitochondrial oxygen concentration.

\(O_{2,c} \)
- Implementation Name: 02c
- Units: mM
- Initial value: \(O_{2,c,n}\)
- Capillary oxygen concentration.

\(r \)
- Implementation Name: r
- Units: cm
- Initial value: \(r_n\)
- Typical blood vessel radius.

\(v_{CO_2} \)
- Implementation Name: v_c
- Units: mmHg
- Initial value: \(v_{CO_2,n}\)
- Filtered carbon dioxide partial pressure.

\(v_{O_2} \)
- Implementation Name: v_o
- Units: mM
- Initial value: \(v_{O_2,n}\)
- Filtered capillary oxygen concentration.

\(v_{Pa} \)
- Implementation Name: v_p
- Units: mmHg
- Initial value: \(v_{Pa,n}\)
- Filtered arterial blood pressure.

\(v_u \)
- Implementation Name: v_u
- Units: dimensionless
- Initial value: \(v_{u,n}\)
- Filtered demand.

\(HbO_{2,v} \)
- Implementation Name: X0v
- Units: mM
- Initial value: \(HbO_{2,v,n}\)
- Venous concentration of oxygen bound to haemoglobin.
13.6 Intermediate Variables

\[CBF = G \left(P_a - P_v \right) \]
- Implementation Name: CBF
- Units: \(\text{ml}_{\text{blood}} \text{ ml}^{-1} \text{ brain s}^{-1} \)
- Initial value: \(CBF_n \)
- Cerebral blood flow.

\[\Delta \text{oxCCO} = \Delta \text{oxCCO}_{\text{off}} + 1000 \text{Vol}_{\text{mit}} \left(\text{Cu}_{A,o} - \text{Cu}_{A,n} \right) \]
- Implementation Name: CCO
- Units: uM
- Initial value: 0
- Cytochrome c oxidase signal measured by NIRS.

\[\text{CMRO}_2 = f_3 \text{Vol}_{\text{mit}} \]
- Implementation Name: CMR02
- Units: mM s\(^{-1}\)
- Initial value: 0
- Rate of cerebral oxygen metabolism.

\[\Delta p = \psi - Z \left(4 + \log_{10} \left(H^+ \right) \right) \]
- Implementation Name: \(\Delta p \)
- Units: mV
- Initial value: 0
- Proton motive force across the mitochondrial inner membrane.

\[\eta = R_P \left(\frac{v_{Pa}}{v_{Pa,n}} - 1 \right) + R_{O_2} \left(\frac{v_{O_2}}{v_{O_2,n}} - 1 \right) + R_{CO_2} \left(1 - \frac{v_{CO_2}}{v_{CO_2,n}} \right) + R_{u} \left(1 - \frac{v_{u}}{v_{u,n}} \right) \]
- Implementation Name: \(\eta \)
- Units: dimensionless
- Initial value: 0
- Merged autoregulation stimulus.

\[f_1 = \lambda f_1 + \lambda f_{1,a} \log \left(\text{Cu}_{A,o} \right) \]
- Implementation Name: \(f_1 \)
- Units: mM s\(^{-1}\)
- Initial value: 0
- Reaction rate for the reduction of \(\text{Cu}_{A} \).

\[f_3 = \lambda f_3 + \lambda f_{3,b} \log \left(a_{3,r} \right) \]
- Implementation Name: \(f_3 \)
- Units: mM s\(^{-1}\)
- Initial value: 0
- Reaction rate for the reduction of \(a_3 \).

\[G = K_G r^A \]
- Implementation Name: \(G \)
- Units: \(\text{ml}_{\text{blood}} \text{ ml}^{-1} \text{ brain mmHg}^{-1} \text{ s}^{-1} \)
- Initial value: 0
- Effective conductance of the whole blood flow compartment.

\[\text{HbO}_2 = (V_a \text{HbO}_2,a + V_v \text{HbO}_2,v) \text{blood}_{\text{hb}} \]
- Implementation Name: \(\text{Hb02} \)
- Units: uM
13.6 Intermediate Variables

Initial value: 0
Oxygenated haemoglobin signal measured by NIRS.

\[HbT = (V_a + V_v) Hb_{\text{tot}} \]
Implementation Name: HbT
Units: uM
Initial value: 0
Total haemoglobin signal measured by NIRS.

\[HHb = HbT - HbO_2 \]
Implementation Name: HHb
Units: uM
Initial value: 0
Deoxygenated haemoglobin signal measured by NIRS.

\[J_{O_2} = \min \left(D_{O_2} (O_2,c - O_2), CBF HbO_2,a \right) \]
Implementation Name: J_O2
Units: mM s\(^{-1}\)
Initial value: 0
Oxygen flux from blood to tissue.

\[L = \lambda_L + \lambda_L \theta + \lambda_L \Delta p \]
Implementation Name: L
Units: mM s\(^{-1}\)
Initial value: 0
Rate of proton return to the mitochondrial matrix.

\[\mu = \frac{k_{\text{aut}} \exp(\eta) - 1}{\exp(\eta) + 1} \]
Implementation Name:\ mu
Units: dimensionless
Initial value: 0
Effective strength of the autoregulation response.

\[R_{Hi} = \frac{R_{Hi,H}}{H^+} \]
Implementation Name: R_Hi
Units: dimensionless
Initial value: 0
Relative mitochondrial volume for protons, taking into account buffering effect of pH.

\[S_{c,O_2} = \frac{S_a,O_2 + S_v,O_2}{2} \]
Implementation Name: Sc02
Units: dimensionless
Initial value: \(S_{c,O_2,n} \)
Capillary oxygen saturation.

\[S_{v,O_2} = \frac{HbO_2,v}{Hb_{\text{tot}}} \]
Implementation Name: Sv02
Units: dimensionless
Initial value: \(S_{v,O_2,n} \)
Venous oxygen saturation.

\[\theta = kCV (\Delta p + Z \log_{10}(u) - 90) \]
Implementation Name: \theta
Units: dimensionless
Initial value: 0
Driving force Complex V.
\[\text{TOI} = \frac{100 \text{HbO}_2}{\text{HbT}} \]

Implementation Name: TOI
Units: dimensionless
Initial value: 0
Total oxygenation index.

\[V_{\text{mca}} = CBF \cdot CBF_{\text{scale}} \]

Implementation Name: \(V_{\text{mca}} \)
Units: cm s\(^{-1}\)
Initial value: 0
Blood velocity in the middle cerebral artery.

\[V_a = V_{a,n} \left(\frac{r}{r_n} \right)^2 \]

Implementation Name: \(V_{a,\text{art}} \)
Units: dimensionless
Initial value: 0
Relative arterial blood volume.

13.7 Parameters

\(C_{u_{A,o,n}} \)
Implementation Name: \(a_{n} \)
Units: mM
Initial value: 0.06567
Normal concentration of oxidised cytochrome c oxidase.

\(\text{blood}_{hb} \)
Implementation Name: \(\text{blood}_{hb} \)
Units: dimensionless
Initial value: 10.00
Factor to convert model haemoglobin concentration to instrumental units. Scales for blood fraction of brain volume, mM to \(\mu \text{M} \), and number of binding sites.

\(a_{3,r,n} \)
Implementation Name: \(\text{bred}_{n} \)
Units: mM
Initial value: 0.001408
Normal concentration of reduced cytochrome a3.

\(C_{im} \)
Implementation Name: \(C_{im} \)
Units: mM mV\(^{-1}\)
Initial value: 0.00675
Capacitance of the mitochondrial inner membrane.

\(CBF_n \)
Implementation Name: \(CBF_n \)
Units: ml\(_{\text{blood}}\) ml\(_{\text{brain}}\) s\(^{-1}\)
Initial value: 0.0125
Normal cerebral blood flow.

\(CBF_{\text{scale}} \)
Implementation Name: \(CBF_{\text{scale}} \)
Units: cm
Initial value: 5000
Scale constant relating blood flow to arterial velocity.
13.7 Parameters

$\Delta oxCCO_{off}$
- Implementation Name: CCO_offset
- Units: μM
- Initial value: 0
- Signal offset for the NIRS CCO measurement.

CMRO_2,n
- Implementation Name: CMRO2_n
- Units: mM s$^{-1}$
- Initial value: 0.034
- Normal metabolic rate of oxygen consumption.

D_{O_2}
- Implementation Name: D_{O_2}
- Units: s$^{-1}$
- Initial value: $\frac{J_{O_2,n}}{O_{2,c,n} - O_{2,n}}$
- Diffusion rate for oxygen between capillaries and mitochondria.

ψ_n
- Implementation Name: Dpsi_n
- Units: mV
- Initial value: 145
- Normal mitochondrial inner membrane potential.

λ_{f_1}
- Implementation Name: f_{1_0}
- Units: mM s$^{-1}$
- Initial value: 1.504
- Fitted intercept for the linear model for f_1.

$\lambda_{f_1,a}$
- Implementation Name: f_{1_a}
- Units: mM s$^{-1}$
- Initial value: 0.3658
- Fitted linear dependence of f_1 on logarithm of $\text{Cu}_{A,\text{ox}}$.

λ_{f_2}
- Implementation Name: f_{2_0}
- Units: mM s$^{-1}$
- Initial value: 0.1473
- Fitted intercept for the linear model for f_2.

$\lambda_{f_2,b}$
- Implementation Name: $f_{2_b\text{red}}$
- Units: mM s$^{-1}$
- Initial value: -0.05484
- Fitted linear dependence of f_2 on logarithm of $a_{3,\text{red}}$.

λ_{f_3}
- Implementation Name: f_{3_0}
- Units: mM s$^{-1}$
- Initial value: 0.6324
- Fitted intercept for the linear model for f_3.

$\lambda_{f_3,O}$
- Implementation Name: f_{3_O2}
- Units: mM s$^{-1}$
- Initial value: 0.03352
- Fitted linear dependence of f_3 on logarithm of O_2.

G_n

Implementation Name: G_n
Units: $ml_{blood} ml_{brain}^{-1} mmHg^{-1} s^{-1}$
Initial value: $\frac{P_{o,n} - P_{v,n}}{G_n}$
Normal blood vessel conductance.

H_n^+

Implementation Name: H_n
Units: mM
Initial value: 0.00003981
Normal mitochondrial proton concentration.

$J_{O_2,n}$

Implementation Name: $J_{O_2,n}$
Units: mM s$^{-1}$
Initial value: $CMRO_{2,n}$
Normal oxygen flux from blood to tissue.

k_{aut}

Implementation Name: k_{aut}
Units: dimensionless
Initial value: 1
Overall functioning of autoregulatory response.

K_G

Implementation Name: K_G
Units: $ml_{blood} ml_{brain}^{-1} mmHg^{-1} s^{-1} cm^{-4}$
Initial value: $G_n^{\text{pow}(r_n, 4)}$
Proportionality constant in Poiseuille relation for conductance.

kCV

Implementation Name: kCV
Units: mV$^{-1}$
Initial value: 0.02047339
Factor relating the Complex V driving force to the membrane potential and demand.

λ_L

Implementation Name: L_{O_2}
Units: mM s$^{-1}$
Initial value: -15.339464
Fitted intercept for the linear model for L.

$\lambda_{L,p}$

Implementation Name: $L_{O_2,p}$
Units: mM s$^{-1}$ mV$^{-1}$
Initial value: 0.097097
Fitted linear dependence of L on Δp.

$\lambda_{L,\theta}$

Implementation Name: $L_{O_2,\theta}$
Units: mM s$^{-1}$
Initial value: 5.665904
Fitted linear dependence of L on θ.

λ_0

Implementation Name: $1aa_0$
Units: cm
13.7 Parameters

Initial value: 0.02327
Intercept of the fitted linear model for blood vessel radius.

\(\lambda_{\mu} \)
Implementation Name: lam_mu
Units: cm
Initial value: −0.006375
Fitted linear dependence of blood vessel radius on autoregulatory stimuli.

\(\lambda_{P} \)
Implementation Name: lam_p
Units: cm mmHg
Initial value: −0.4697
Fitted linear dependence of blood vessel radius on reciprocal of blood pressure.

\(n_h \)
Implementation Name: n_h
Units: dimensionless
Initial value: 2.5
Hill coefficient for oxygen dissociation from haemoglobin.

\(O_{2,n} \)
Implementation Name: O2_n
Units: mM
Initial value: 0.024
Normal mitochondrial oxygen concentration.

\(O_{2,c,n} \)
Implementation Name: O2c_n
Units: mM
Initial value: \(\phi \) pow \(\left(\frac{S_{c,O_2,n}}{1 - S_{c,O_2,n}}, \frac{1}{n_h} \right) \)
Normal capillary oxygen concentration.

\(p_1 \)
Implementation Name: p1
Units: dimensionless
Initial value: 12
Proton cost of the reaction reducing CuA.

\(p_3 \)
Implementation Name: p2
Units: dimensionless
Initial value: 4
Proton cost of the reaction reducing a3.

\(p_3 \)
Implementation Name: p3
Units: dimensionless
Initial value: 4
Proton cost of the reaction reducing O2.

\(P_a \)
Implementation Name: P_a
Units: mmHg
Initial value: \(P_{a,n} \)
Mean arterial blood pressure.

\(P_{a,n} \)
Implementation Name: P_an
Units: mmHg
Initial value: 100
Normal arterial blood pressure.

\[P_v \]
Implementation Name: \(P_v \)
Units: mmHg
Initial value: \(P_{v,n} \)
Venous blood pressure.

\[P_{v,n} \]
Implementation Name: \(P_{vn} \)
Units: mmHg
Initial value: 4
Normal venous blood pressure.

\[P_{aCO_2} \]
Implementation Name: \(Pa_{CO2} \)
Units: mmHg
Initial value: \(P_{aCO2,n} \)
Arterial partial pressure of carbon dioxide.

\[P_{aCO_2,n} \]
Implementation Name: \(Pa_{CO2n} \)
Units: mmHg
Initial value: 40
Normal arterial partial pressure of carbon dioxide.

\(\phi \)
Implementation Name: \(phi \)
Units: mM
Initial value: 0.036
Oxygen concentration at half-maximal saturation.

\[R_{CO_2} \]
Implementation Name: \(R_{aut\,c} \)
Units: dimensionless
Initial value: 2.2
Autoregulatory reactivity to carbon dioxide.

\[R_{O_2} \]
Implementation Name: \(R_{auto} \)
Units: dimensionless
Initial value: 1.5
Autoregulatory reactivity to oxygen.

\[R_{p_a} \]
Implementation Name: \(R_{aut\,p} \)
Units: dimensionless
Initial value: 4
Autoregulatory reactivity to blood pressure.

\[R_u \]
Implementation Name: \(R_{aut\,u} \)
Units: dimensionless
Initial value: 0.5
Autoregulatory reactivity to demand.

\[R_{Hi,H} \]
Implementation Name: \(R_{Hi,H} \)
Units: mM
13.7 Parameters

Initial value: 9.565483
Proton buffering factor.

r_n
Implementation Name: $r_{,n}$
Units: cm
Initial value: 0.0187
Normal blood vessel radius. Normal effective blood vessel radius.

$S_{a,O_2,n}$
Implementation Name: $SaO_2_{,n}$
Units: dimensionless
Initial value: 0.96
Normal arterial oxygen saturation.

S_{a,O_2}
Implementation Name: $SaO_2_{,n}$
Units: dimensionless
Initial value: $S_{a,O_2,n}$
Arterial oxygen saturation.

$S_{c,O_2,n}$
Implementation Name: $ScO_2_{,n}$
Units: dimensionless
Initial value: $\frac{S_{a,O_2,n} + S_{v,O_2,n}}{2}$
Normal capillary oxygen saturation.

$S_{v,O_2,n}$
Implementation Name: $SvO_2_{,n}$
Units: dimensionless
Initial value: $\frac{HbO_{2,v,n}}{Hb_{tot,n}}$
Normal venous oxygen saturation.

t
Implementation Name: t
Units: s
Initial value: 0
Time over which the system evolves.

τ_{CO_2}
Implementation Name: $\tau_{,c}$
Units: s
Initial value: 5
Filter time constant for stimulus effect of carbon dioxide.

τ_{O_2}
Implementation Name: $\tau_{,o}$
Units: s
Initial value: 20
Filter time constant for stimulus effect of capillary oxygen.

τ_{Pa}
Implementation Name: $\tau_{,p}$
Units: s
Initial value: 5
Filter time constant for stimulus effect of blood pressure.

τ_{tu}
Implementation Name: $\tau_{,u}$
Units: s
Initial value: 0.5
Filter time constant for stimulus effect of demand.

\(u \)
Implementation Name: u
Units: dimensionless
Initial value: \(u_n \)
Parameter indicating metabolic demand.

\(u_n \)
Implementation Name: u_n
Units: dimensionless
Initial value: 1
Normal demand.

\(v_{CO_2,n} \)
Implementation Name: v_c_n
Units: mmHg
Initial value: \(P_{aCO_2,n} \)
Normal filtered carbon dioxide partial pressure. Normal filtered carbon dioxide partial pressure.

\(v_{O_2,n} \)
Implementation Name: v_o_n
Units: mM
Initial value: \(O_2,c,n \)
Normal filtered capillary oxygen concentration. Normal filtered capillary oxygen concentration.

\(v_{P_a,n} \)
Implementation Name: v_p_n
Units: mmHg
Initial value: \(P_{a,n} \)
Normal filtered arterial blood pressure. Normal filtered blood pressure.

\(v_{u,n} \)
Implementation Name: v_u_n
Units: dimensionless
Initial value: \(u_n \)
Normal filtered demand. Normal filtered demand.

\(VArat_n \)
Implementation Name: VArat_n
Units: dimensionless
Initial value: 3
Normal volume ratio of veins to arteries in brain tissue.

\(V_{a,n} \)
Implementation Name: Vol_artn
Units: dimensionless
Initial value: \(\frac{1}{1 + VArat_n} \)
Normal relative arterial blood volume.

\(Vol_{mit} \)
Implementation Name: Vol_mit
Units: dimensionless
Initial value: 0.067
Fraction of brain tissue volume that is mitochondria.

\(V_v \)
13.7 Parameters

Implementation Name: Vol_ven
Units: dimensionless
Initial value: \(\frac{\text{Varat}_n}{1 + \text{Varat}_n} \)
Relative venous blood volume.

\[\text{HbO}_{2,a} = \text{Hb}_{tot} \cdot S_{a,\text{O}_2} \]
Implementation Name: X0a
Units: mM
Initial value: \(\text{HbO}_{2,a,n} \)
Arterial concentration of oxygen bound to haemoglobin.

\[\text{HbO}_{2,a,n} \]
Implementation Name: X0a_n
Units: mM
Initial value: \(\text{Hb}_{tot,n} \cdot S_{a,\text{O}_2,n} \)
Normal arterial concentration of oxygen bound to haemoglobin.

\[\text{HbO}_{2,v,n} \]
Implementation Name: X0v_n
Units: mM
Initial value: \(\frac{\text{CBF}_n \cdot \text{HbO}_{2,a,n}}{\text{J}_{O_2,n}} \)
Normal venous concentration of oxygen bound to haemoglobin.

\[\text{Hb}_{tot} \]
Implementation Name: Xtot
Units: mM
Initial value: 9.1
Total concentration of haemoglobin O\(_2\) binding sites in blood (4 times haemoglobin concentration).

\[\text{Hb}_{tot,n} \]
Implementation Name: Xtot_n
Units: mM
Initial value: 9.1
Normal total concentration of haemoglobin O\(_2\) binding sites in blood (4 times haemoglobin concentration).

\[Z \]
Implementation Name: Z
Units: mV
Initial value: 59.028
Proportionality constant in calculation of driving forces due to concentration differences. Defined as \(RT/F \), where \(F \) is Faraday’s constant, \(R \) the ideal gas constant and \(T \) the absolute temperature.