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Abstract

Objectives

The role of microRNAs in association withMycobacterium tuberculosis(MTB) infection and

the immunology regulated by microRNAs upon MTB infection have not been fully unrav-

elled. We examined the microRNA profiles of THP-1 macrophages upon the MTB infection

of Beijing/W and non-Beijing/W clinical strains. We also studied the microRNA profiles of

the host macrophages by microarray in a small cohort with active MTB disease, latent infec-

tion (LTBI), and from healthy controls.

Results

The results revealed that 14 microRNAs differentiated infections of Beijing/W from non-Bei-

jing/W strains (P<0.05). A unique signature of 11 microRNAs in human macrophages was

identified to differentiate active MTB disease from LTBI and healthy controls. Pathway anal-

yses of these differentially expressed miRNAs suggest that the immune-regulatory interac-

tions involving TGF-β signalling pathway take part in the dysregulation of critical TB

processes in the macrophages, resulting in active expression of both cell communication

and signalling transduction systems.

Conclusion

We showed for the first time that the Beijing/W TB strains repressed a number of miRNAs

expressions which may reflect their virulence characteristics in altering the host response.

The unique signatures of 11 microRNAs may deserve further evaluation as candidates for

biomarkers in the diagnosis of MTB and Beijing/W infections.
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Introduction
Tuberculosis is one of the most common causes of death from infectious diseases. Studies have
shown that one-third of the world’s population is infected withM. tuberculosis (MTB). The
people who are infected with MTB but who do not have active tuberculosis have latent infec-
tion (LTBI), and they have a 10% lifetime chance that they will progress to having the active
disease.

Macrophages play a key role in the immune defence, and in particular, early clearance of
MTB. MTB invade and replicate within alveolar macrophages. They evade the host defence
system by blocking the formation of the apoptotic envelope [1] or inhibiting plasma membrane
repair [2], which lead to macrophage necrosis and dissemination of infection in the lung.

MicroRNAs (miRNAs) are small, non-coding RNAs that have an important regulatory role
in gene expression programs [3]. Each miRNA has the potential to repress the expression of
hundreds of genes [4]. Disease-associated miRNAs represent a new class of diagnostic marker
or therapeutic targets [5]. Several of these have recently been demonstrated to regulate the
components of important inflammation signalling pathways under the challenge of specific
MTB antigens [6–12]. For example, miR-144� were over-expressed in the T cells of active TB
patients [6], miR-146a regulating IL-6 production in dendritic cells [7]. High miR-125b expres-
sion and low miR-155 expression with correspondingly low TNF production regulate the mac-
rophage inflammatory response [9–10], while the miR-155/miR-155� ratio was increased in
PBMCs of MTB patients [12].

The effect of miRNA expression on the infection of various MTB strain types is as yet un-
known. While most studies used laboratory strains, clinical strains such as that of the Beijing/
W family have been associated with outbreaks and multidrug resistance, and may harbour a
genetic advantage for disease. We hypothesized that miRNAs have a role in regulating the
unique gene expression of macrophages in a strain- and host-dependent way. In this study, we
examined the expression of 384 unique human-specific and widely expressed miRNAs from
PMA-treated THP-1 derived macrophages infected with different clinical MTB strains. The
results revealed unique signatures that differentiated infections of Beijing/W from non-Bei-
jing/W strains. In addition, we also revealed that differentially expressed miRNA profiles of
macrophages of patients with active MTB infection differed from those of LTBI patients and
healthy controls. Pathway analyses suggested that cell membrane and extracellular matrix
metabolite involve glycosaminoglycan biosynthesis and fatty acid biosynthesis; and that im-
mune-regulatory interactions involving TGF-β signalling pathway take part in the dysregula-
tion of critical TB processes in the macrophages. These miRNAs profiles may serve as disease-
associated markers and enhance our understanding in the host-bacterial interactions in
MTB infections.

Materials and Methods

Bacterial Strains
Twelve clinical isolates of MTB, including six Beijing/W, six non-Beijing/W strains previously
isolated from patients at the Prince of Wales Hospital, Hong Kong were examined. The pheno-
types and genotypes of these strains were respectively confirmed by MIC and DTM-PCRmeth-
ods, as described by Chen et al. [13]. Briefly, DTM-PCR used three primers in a multiplex PCR
to target the RD105 deletion in Beijing/W genotypes and produced a 1,466 bp product for the
non-Beijing genotype and a 761 bp for the Beijing/W genotype.
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Patient recruitment and characteristics
Participants were recruited from the Prince of Wales Hospital, Hong Kong. All participants
were older than 18 years and gave written informed consent. Patients who were pregnant, im-
mune-suppressed, or who had diabetes or autoimmune disease were excluded. From each indi-
vidual in the three cohorts: the healthy (n = 3), the latent (n = 4), and the active TB patients
(n = 3), whole blood specimens were collected for monocytes isolation. Patients with active TB
were confirmed by a positive acid-fast smear and culture. Active TB patients were prospectively
recruited and sampled before any anti-mycobacterial treatment was started. LTBI cases were
identified to be positive in the IFN-γ release assay (IGRA) but without their having signs and
symptoms of active disease. Healthy controls were volunteers who were excluded from any
known acute or chronic infections and who were negative by IGRA. Ethics approval was ob-
tained from the Joint Chinese University of Hong Kong, New Territories East Cluster Clinical
Research Ethics Committee. All participants were older than 18 years and gave written in-
formed consent.

IFN-γ release assay (IGRA) testing
The QuantiFERON TB-Gold Test (Cellestis) was performed in accordance with the
manufacturer’s instructions.

PBMC isolation from whole blood
PBMCs were freshly harvested from the patients’ whole blood by using the Ficoll-Hypaque col-
umn (GE healthcare) in accordance with manufacturer’s instructions. The supernatant con-
taining the autologous donor-specific plasma was saved and heat inactivated at 56°C for 30
min. The PBMC was resuspended in ice-cold monocyte adhesion medium (RPMI1640 + 7.5%
autologous plasma, 1% penicillin-streptomycin) and incubated in a petri dish for 90minutes at
37°C. The adherent monocytes were washed with warm RPMI medium several times to remove
loosely attached cells. The monocytes were detached by incubation with PBS containing 5 mM
EDTA for 10–20 minutes at room temperature and were collected by centrifugation. The dif-
ferentiation into macrophages was according to protocol previously described [14]. The mono-
cytes were refed by fresh medium every 2 days and allowed to differentiate into macrophages
for 10 days in vitroRNA of macrophages was harvested and kept for downstream TaqMan
miRNA array experiments.

Infection of macrophages
THP-1 cells were maintained in RPMI 1640 (Gibco,Carlsbad, CA) supplemented with 10%
fetal bovine serum (Gibco). Cells were incubated with phorbolmyristate acetate (5ng/ml PMA;
Sigma-Aldrich, St Louis, MO) for 48 hours to induce differentiation into a macrophage pheno-
type [15]. MTB isolates were cultured in Middlebrook7H9 (BD Biosciences) at 37°C, 5% CO2

until the cultures reached McFarland 1 (about 107 CFU/mL). The MTB cells were harvested by
centrifugation and the pellet was resuspended in RPMI medium and added to the macro-
phages. Macrophages were infected at a multiplicity of infection (MOI) of 3 bacilli/cell for 2
hours, and the excess free-floating bacilli were removed by washing the culture with fresh
RPMI containing 10μg/ml gentamicin. The culture was incubated in a fresh RPMI medium
without antibiotics at 37°C, 5% CO2for 72-hours. Uninfected control cultures of THP-1 or
human macrophages were setup with identical corresponding treatments but without MTB
infection.
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RNA isolation and Quantification
RNA was isolated from macrophages with the mirVana miRNA Isolation Kit (Ambion, Austin,
TX, USA) in accordance with the manufacturer’s instructions. The purity and quantity of RNA
were measured by NanoDrop (ND-1000 spectrophotometer, Thermo Scientific, Wilmington,
DE, USA). The samples were used immediately or stored at -80°C.

TaqMan microRNA Array Quantitative PCR
The TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA,
USA) was used for preparation of cDNA. RT reactions were performed on a GeneAmp PCR
System 9600 (Applied Biosystems) with the following conditions: 40 cycles of 16°C, 2 min;
42°C, 1 min; 50°C, 1 sec; and 1 cycle of holding at 85°C, 5 minutes. All samples were analysed
with the Human TaqMan low density miRNA array (TLDA, Applied Biosystems) which cov-
ered 384 different miRNAs simultaneously and performed using a fast real-time PCR system
(ABI Prism 7900HT). The cycle threshold (Ct) raw data was analyzed by two manufacturer’s
softwares; SDS 2.4 and RQManager 1.2.1. The uninfected control results were set as the base-
line against the infected in the analyses.

Analysis of potential mRNAs targeted by differentially expressed
microRNAs
Family names were specified by miRBase release 19, while clustered microRNA described in
miRBase release 19 were assumed to be polycistronic pri-miRNAs. Possible mRNA targets of
the differentially expressed miRNA were identified by using the miRwalk databases [16],
through an integrative evaluation with different algorithms: DIANA-mT (http://diana.cslab.
ece.ntua.gr/), miRanda (http://www.microrna.org/microrna/home.do), miRDB (http://mirdb.
org/miRDB/), RNA22(http://cbcsrv.watson.ibm.com/rna22.html), and TargetScan v 6.2
(http://www.targetscan.org/). Only mRNA predicted by at least three of these algorithms were
considered as potential targets. Cellular pathway analysis of the differentially expressed miR-
NAs was performedby using the DIANA-miRPath v2.0 [17], based on information from
DIANA-microT-CDS (http://diana.cslab.ece.ntua.gr/micro-CDS/?r = search) and the KEGG
pathway database (http://www.genome.jp/kegg/pathway.html).

Statistical analysis
The expression level of each miRNA was calculated by the relative quantity (RQ value) (2-ΔΔCt)
method. The internal control, Mammal U6, was selected for normalization across all experi-
ments. The Ct raw data were determined by using an automatic baseline and a threshold of 0.2
(RQManager, ABI, Life Technologies). Significant differences were evaluated in SPSS (v20.0
for Windows). Only miRNAs with a P value of�0.05 and with consistent expression in all of
the samples were considered as differentially expressed. Unsupervised clustering analysis,
using DataAssist v 3.01 of ABI (Life Technologies), was performed to identify the different
sub-groups defined by miRNA expression profiles. "The data discussed in this publication have
been deposited in NCBI's Gene Expression Omnibus [18] and are accessible through GEO Se-
ries accession number GSE65810 for the human miRNA and GSE65811 for THP-1 cells
miRNA profiles (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE810; http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE811) respectively.
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Results

1. MicroRNA expression profiling of THP-1macrophages infected with
MTB strains
PMA-induced THP-1 macrophages were infected separately with six Beijing/W and six non-
Beijing/W strains. MicroRNAs were quantitated by RT-PCR using the Human TaqMan Low
Density Array (TLDA). Of the miRNAs that were fully expressed in all samples, statistically
significant differential expression (p< 0.05) of 14 miRNAs in macrophages of Beijing/WMTB
infection were identified when compared with that of non-Beijing/W strains (Table 1). Of
these, 13 miRNAs (hsa-let-7e, hsa-let-7f, hsa-miR-10a, hsa-miR-21, hsa-miR-26a, hsa-miR-
99a, hsa-miR-140-3p, hsa-miR-150, hsa-miR-181a, hsa-miR-320, hsa-miR-339-5p, hsa-miR-
425, and hsa-miR-582-5p) were repressed in the Beijing/W TB infected group (Fig 1). The clus-
ter analysis is shown in S1 Fig.

Based on these significantly altered miRNA profiles, a number of biological processes were
highlighted in infection with different MTB strains. The pathway analyses of miRNA profiles
induced by Beijing/W versus non-Beijing/W strains (Table 2) showed that immune-regulatory
interactions of the TGF-β signalling pathway were involved. In particular, a change of path-
ways leading to cell communication (Gap junction, focal adhesion, and adherens junction) and
cellular process (endocytosis and apoptosis), as well as signal transduction through MAP ki-
nases, mTOR, ECM receptor, and Wnt were implicated.

2. MicroRNA Expression in host macrophages of active MTB, latent
infection and healthy controls
The miRNA expression in macrophages of active MTB (n = 3), LTBI infection (n = 4), and
healthy controls (n = 3) were examined. Details of the subjects are listed (S1 Table). Eleven
miRNAs was found to be differentially expressed in the active MTB versus the latent/healthy
controls (p< 0.05) (Table 3). Among these 11 miRNAs, no differences were observed between
the latent and healthy controls groups. Seven miRNAs had different expression levels between
active TB and healthy controls: six miRNAs (hsa-miR-16, hsa-miR-137, hsa-miR-140-3p, hsa-
miR-193a-3p, hsa-miR-501-5p, and hsa-miR-598) were upregulated while hsa-miR-95 was
down-regulated. Two miRNAs (hsa-miR-101 and hsa-miR-150) were found to differentiate
the LTBI group from the MTB active disease group (S2 Fig). Interestingly, hsa-miR-146b-3p
and hsa-miR-296-5p were expressed in all of LTBI group but not in the active MTB and
healthy controls. Fig 2 shows a tendency for these 11 differentially expressed miRNAs to cluster
independently the groups of active MTB disease and the LTBI or healthy controls.

The biological pathways potentially implicated by these differentially expressed miRNAs are
listed in Table 4. Pathway analyses identified that the change of cell membrane and extracellu-
lar matrix metabolite involving glycosaminoglycan biosynthesis-HS and fatty acid biosynthesis
might play a role in MTB infection. This might result in signal transduction through MAP ki-
nases, mTOR, ECM receptor, and Wnt, and finally activate the immune-regulatory interac-
tions involving the TGF-β signalling pathway and the T cell receptor signalling pathway.

Discussion
MiRNAs can modulate the innate and adaptive immune responses to pathogens by affecting
mammalian immune cell differentiation and the development of diseases of immunological or-
igin [19], because various bacterial cell wall components, such as peptidoglycan (PG), lipopro-
teins and lipopolysaccharide (LPS) could upregulate the miRNAs levels [20].
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In our studies, miRNA profiles in the macrophages were found to be altered in MTB infec-
tion in a strain- and host-dependent way. The Beijing genotype strain is the most predominant
M. tuberculosis strain in south China, and it has caused large outbreaks of MDR-TB. The Bei-
jing strains showed increased transmission fitness when they acquired streptomycin resistance
[21]. Beijing genotype strains were also found to induce the STAT1 activation and interferon-
related immune response [22–23]. We showed for the first time that the Beijing/W strains re-
pressed a number of miRNAs as compared to the non-Beijing/W TB strains, which might re-
flect their virulence characteristics in altering the host response. Hsa-miR485-3p was found to
be upregulated in Beijing/W infected macrophages. Hsa-miR-485-3p has been shown to be in-
volved in cell survival [24] and knockdown of this miRNA in hepatic cells increased apoptosis
[25]. Previous report indicated that miR-485-3p post-transcriptionally targeted NF-YB [24], a
direct transcriptional repressor of Top2α gene and of MDR1 and CCNB2 genes [26] in regula-
tion of the cell cycle, Our results suggest that high miR-485-3p possibly facilitates survival of
the Beijing/W strains in macrophages and evades apoptosis or alters macrophage lysis and sub-
sequent downstream immune response toward clearance of MTB.

The difficulty in discriminating the spectrum of MTB infections and of latency is prompting
the need to search for new biomarkers for MTB infection. Previous studies that have utilized
such microarrays as diagnostic markers are listed in Table 5. Studies used whole-genome tran-
scriptional profiling of peripheral blood mononuclear cells (PBMCs) [27] or whole blood cells

Table 1. MicroRNAs differentially expressed in THP-1 macrophages infected with Beijing/W and non-Beijing/W clinical TB strains.

miRNA
family

Polycistronic miRNA Precursor Ratioa P-
valueb

hsa-let-7e let-7 hsa-mir-99b/hsa-let-7e/hsa-mir-125a -1.65 0.041

hsa-let-7f let-7 N/A -1.87 0.026

hsa-miR-
10a

miR-10 N/A -2.35 0.015

hsa-miR-21 miR-21 N/A -2.65 0.025

hsa-miR-
26a

miR-26 N/A -1.83 0.015

hsa-miR-
99a

miR-99 hsa-let-7c/hsa-miR-99a -4.34 0.026

hsa-miR-
140-3p

miR-140 N/A -2.10 0.015

hsa-miR-
150

N/A N/A -8.01 0.002

hsa-miR-
181a

miR-181 hsa-miR-181a/hsa-miR-181b -2.85 0.015

hsa-miR-
320

miR-320 N/A -1.55 0.026

hsa-miR-
339-5p

miR-339 N/A -3.03 0.004

hsa-miR-
425

miR-425 hsa-miR-191/hsa-miR-425 -1.70 0.041

hsa-miR-
485-3p

miR-485 hsa-miR-381/hsa-miR-487b/hsa-miR-539/hsa-miR-889/hsa-miR-544a/hsa-miR-655/hsa-miR-487a/hsa-
miR-382/hsa-miR-134/hsa-miR-668/hsa-miR-485/hsa-miR-323b/hsa-miR-154/hsa-miR-496/hsa-miR-
377/hsa-miR-541/hsa-miR-409

14.62 0.041

hsa-miR-
582-5p

miR-582 N/A -2.90 0.041

aFold difference in miRNA expression in THP-1 cells infected with Beijing/W clinical strains vs non-Beijing/W strains.
bP-value was calculated by Mann-Whitney test.

doi:10.1371/journal.pone.0126018.t001
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[28] found that FcGR1B (CD64) and Fc gamma receptor 1B (FCGRIB) were the most differen-
tially expressed genes in the individuals with active TB. A recent report found a dominant
TNF-a+ MTB–specific CD4+ T cell response that discriminated between LTBI and active dis-
ease [29]. The miRNA expression profile of PBMCs [30] and sputum supernatant [31] exhib-
ited a characteristic expression in MTB infection, while the miRNA signatures from serum also
associated to different phases of TB infections [32–35]. These data may shed some light to the
roles of miRNAs in MTB infections, but do not yet explain the transition of latency to active
TB disease. We were able to distinguish with the expression of 11-miRNA signature profiles of
the active TB group from that of the LTBI group but not that of latent and healthy groups.
When we carried out the analysis using group-wise comparisons, the variations between

Fig 1. miRNAs expression level in the THP-1 macrophages infected with Beijing/W and non-Beijing/W
clinical TB strains. The relative quantity (RQ, 2-ΔΔCt) was used to normalize the relative gene expression
data. Statistical analysis between two groups was performed using Mann-Whitney test. Individual values
were denoted by black dots/squares from each group of Beijing/W versus non-Beijing strains. The mean RQ
and S.D. of each group were represented by the————— bar and short bars— in each
figure, respectively.

doi:10.1371/journal.pone.0126018.g001
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individual group members showed that 10–25% of the latent patients remained clustered with
the active TB patients, and this corroborated with a previous study which concluded that the
whole-blood transcript dominated by neutrophil-driven interferon (IFN)-inducible genes cor-
related with the radiological extent of active MTB [36].

The microRNA profile in the human macrophage was quite different from that of whole
blood, sputum and PBMCs from the literature. In our study, some of the miRNAs were proven
to play key roles in the immune and inflammatory pathways, and their biological targets in
MTB infection have been previously described (Table 6). The miRNA-146 family was found to
play key roles in the anti-inflammatory reaction. miR-146b could be induced by LPS or PG
from bacteria [42]. miR-146a/b was a negative regulator of constitutive NF-kB activity, which
results in the suppression of IL-1 receptor-associated kinase 1 and TNF receptor-associated
factor 6 protein levels [42,43]. In our study, the expression of miR-146b in the LTBI group was
significantly higher than that in active TB infections. We propose that hsa-146b-3p may be
highly related to the LTBI.

miR-21 can be induced after Bacillus Calmette-Guerin (BCG) vaccination by NF-kB activa-
tion. miR-21 suppressed the IL-12 production by targeting IL-12p35, which impaired anti-my-
cobacterial T cell responses both in vitro and in vivo. Additionally, miR-21 also promoted

Table 2. Biological pathways potentially affected by the differentially expressedmicroRNAs in THP-1 macrophages infected with Beijing/W and
non-Beijing/W TB clinical strains.

KEGG pathway p-value #genes Description

TGF-beta signalling pathway 1.60E-05 31 Regulate cell differentiation, proliferation, migration and apoptosis

Wnt signalling pathway 2.07E-05 50 Required for developmental processes: cell-fate specification, cell proliferation and
cell division

Lysine degradation 3.25E-05 15 Amino acid metabolism

ECM-receptor interaction 6.05E-05 22 Control of adhesion, migration, differentiation, proliferation, and apoptosis

mTOR signalling pathway 0.000931 22 Signal transduction

T cell receptor signalling pathway 0.002746 37 Activation of T lymphocytes proliferation, cytokine production and differentiation
into effector

MAPK signalling pathway 0.003241 74 Involved in various cellular functions: cell proliferation, differentiation and migration

Cytokine-cytokine receptor interaction 0.003241 60 Engaged in host defenses, cell growth, differentiation, cell death, angiogenesis,
development and repair processes

Adherens junction 0.004389 25 Important for maintaining tissue architecture and cell polarity and can limit cell
movement and proliferation

Protein processing in endoplasmic reticulum 0.004952 46 Newly synthesized peptides glycosylated.

Glycosaminoglycan biosynthesis –

heparansulfate
0.005768 11 Cell membrane and extracellular matrix component biosynthesis

Insulin signalling pathway 0.011156 41 Activation of glycogen synthesis and gene transcription

Endocrine and other factor-regulated calcium
reabsorption

0.013969 15 Calcium (Ca2+) homeostasis

Apoptosis 0.014 25 Program cell death

Gap junction 0.014 24 Contain intercellular channels that allow communication between the cytosolic
compartments of adjacent cells

Adipocytokine signalling pathway 0.017781 22 Positively correlated with leptin production, and negatively correlated with
production of adiponectin

Cysteine and methionine metabolism 0.024674 10 Amino acid synthesization

Glycosaminoglycan biosynthesis –

keratansulfate
0.036004 5 Glycan biosynthesis and metabolism

Osteoclast differentiation 0.036168 36 Responsible for bone resorption

Fc gamma R-mediated phagocytosis 0.044864 27 An essential role in host-defense mechanisms through the uptake and destruction
of infectious pathogens

doi:10.1371/journal.pone.0126018.t002
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Table 3. miRNAs differentially expressed in humanmacrophages with active MTB and latent infections against healthy controls.

miRNA
family

Polycistronic miRNA Precursor Latenta Activeb P-
valuec

hsa-miR-16 miR-15 miR-15a/miR-16-1 1.38 2.02 0.05

hsa-miR-95 miR-95 N/A -1.69 -19.01 0.05

hsa-miR-101 miR-101 hsa-miR-3671/hsa-miR-101-1 3.17 -1.34 0.026

hsa-miR-137 miR-137 hsa-miR-2682/hsa-miR-137 5.25 4.66 0.05

hsa-miR-140-
3p

miR-140 N/A 1.63 3.79 0.032

hsa-miR-150 N/A N/A 1.20 -17.79 0.026

hsa-miR-
193a-3p

miR-193 N/A 4.14 7.27 0.05

hsa-miR-501-
5p

miR-500 hsa-miR-532/hsa-miR-188/hsa-miR-500a/hsa-miR-362/hsa-miR-501/hsa-miR-500b/hsa-
miR-660/hsa-miR-502

2.40 5.12 0.05

hsa-miR-598 miR-598 N/A 2.75 3.58 0.05

hsa-miR-
146b-3p

miR-146 N/A N/A

hsa-miR-296-
5p

miR-296 hsa-miR-296/hsa-miR-298 N/A

aIndicates miRNA expression in macrophages of latent group vs healthy controls.
bIndicates miRNA expression in macrophages of active group vs healthy controls.
cP-value was obtainedby an independent median test.

doi:10.1371/journal.pone.0126018.t003

Fig 2. Clustering analysis of the 11miRNAs was performed using DataAssist 3.0v based on ΔCt-
values of the TLDA results.Upregulated miRNAs are designated by various shades of red and down-
regulated miRNAs by various shades of green. Clinical phenotypes are labelled in different colours: active
MTB infection (red), latent infection (blue), and healthy controls (green).

doi:10.1371/journal.pone.0126018.g002
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dendritic cell (DC) apoptosis by targeting Bcl-2. Therefore, miR-21 may potentially be involved
in the fine-tuning of the anti-mycobacterial Th1 response and in regulating the efficacy of BCG
vaccination [44–47].

miR-150 has been one of the extensively studied miRNAs, and it has been demonstrated to
be selectively expressed in mature naive B and T cells, being down-regulated in their progeni-
tors or in lymphocyte activation and strongly upregulated as maturation progresses [48–51].
The well-known targets for miR-150 are NOTCH3 (a member of the Notch receptor family)
and c-Myb (a transcription factor that plays an essential role in the hematopoietic process that
plays important roles both in T-cell differentiation and leukemogenesis). In our study, the Bei-
jing/W clinical strains suppressed the miR-150 and miR-21expression and they may play a role
in virulence. Lower expression of miR-150 in the active TB patients compared with the latent
and healthy controls may be due to the reduced mature T cells and B cells in patients with ac-
tive TB, as previous studies have shown [36].

Both miR-150 and miR-140-3p were differentially expressed in macrophages infected in
vitro and those from active TB patients. These two miRNAs are related with the secondary sig-
nal transduction pathway, which and likely involved in MTB infection. Four predicted path-
ways, including Wnt signalling pathway, insulin signaling pathway, TGF-β signalling pathway
and glycosaminoglycan biosynthsis, are involved in Beijing/W & non-Beijing/W (Table 2) and
active MTB& LTBI (Table 4) studies. This reaffirms the involvement of the inflammatory de-
fence and signal transduction and cell communication in the macrophages in in MTB infection
in vitro and in the host.

Four pathways of cell membrane and communication (adherens junction, gap junction, gly-
cosaminoglycan biosynthsis-heparan sulfate/keratin sulfate metabolite), suggesting that

Table 4. Biological pathways potentially affected by the differentially expressedmicroRNAs of significance frommacrophages of active MTB dis-
ease, LTBI and healthy controls.

KEGG pathway p-value # of
genes

Description

Glycosaminoglycan biosynthesis –

heparansulfate
6.02E-28 4 Cell membrane and extracellular matrix component biosynthesis

Fatty acid biosynthesis 8.58E-15 1 Lipid Metabolism

MAPK signalling pathway 0.000271 59 Involved in various cellular functions: cell proliferation, differentiation and migration

Wnt signalling pathway 0.004258 38 Required for developmental processes: cell-fate specification, cell proliferation and
cell division

Ubiquitin mediated proteolysis 0.005826 33 Functions as a signal for 26S proteasome dependent protein degradation

Insulin signalling pathway 0.006315 33 Activation of glycogen synthesis and gene transcription

VEGF signalling pathway 0.008692 21 A crucial signal transducer in both physiologic and pathologic angiogenesis

Circadian rhythm—mammal 0.011601 8 An internal biological clock to sustain the absence of environmental cues

Oocyte meiosis 0.011601 24 Involved in cell growth and death

TGF-beta signalling pathway 0.011601 18 Regulate cell differentiation, proliferation, migration and apoptosis

ErbB signalling pathway 0.012265 23 Regulate proliferation, differentiation, cell motility and survival

Focal adhesion 0.013426 42 Cell-matrix adhesions

Phosphatidylinositol signalling system 0.015405 16 An important intracellular second-messenger signaling system

Notch signalling pathway 0.016696 14 Essential for proper embryonic development in all metazoan organisms

T cell receptor signalling pathway 0.016696 26 Activation of T lymphocytes proliferation, cytokine production and differentiation into
effector cells

Endocytosis 0.016696 42 Bring ligands, nutrients, plasma Membrane proteins and lipids from the cell surface
into the cell interior

doi:10.1371/journal.pone.0126018.t004
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Beijing/W TB strain may affect macrophage survival by altering their cell membrane structure
and limit the downstream host immunological defence reaction.

The inflammatory miRNA miR-146b-3p, miR-101 and the cell survival miRNA miR-193a-
3p and miR-296-5p were only found differentially expressed in macrophages of active TB
group, suggesting response that alters macrophage survival in the infected host.

In addition, compared with whole blood, the microRNA profile revealed from the adherent
human macrophages reflect the molecular changes in the TB-engulfed macrophages, bringing
insights into the immunological defence mechanisms of these macrophages, where the initial
clearance of MTB takes place during infection. On the contrary, the microRNA profiles of

Table 5. Potential biomarkers for latent and active TB infections based onmiRNA or whole genomemicroarray studies.

Test groups Sample Array type Finding Reference

TB active, latent and
normal

Whole blood Whole-genome oligonucleotide
microarray (Agilent
Technologies)

Fc gamma receptor 1B (FCGRIB) [28]

H37Rv orΔ-mce1 H37Rv
bacteria

Murine macrophages Oligo whole-mouse Genome
microarrays (Agilent
Technologies)

Mce1 protein complex [37]

Active TB, LTBI, and
Healthy Control

PBMCs The Agilent Human miRNA
microarray platform

Different pathways [30]

Active TB, LTBI, and
Healthy Control

PBMCs Agilent custom designed
oligonucleotide microarrays

CD64 [27]

Active TB and Healthy
Control

PBMCs Agilent’s human miRNA
microarray

miR-155 [12]

Active TB and Healthy
Control

serum miRCURY LNA array (Exiqon) miR-29a [11]

Active TB and Healthy
Control

PBMCs miRCURY LNA microRNA array
(Exiqon)

miR-144* [6]

Healthy donor infected with
M. avium subsp.
hominissuis

PBMC derived
macrophages

miRCURY LNA microRNA array
(Exiqon)

Let-7e, miR-29a, miR-886-5p [38]

Active TB and Healthy
Control

Sputum miRCURY LNA microRNA array
(Exiqon)

miR-19b-2*, miR-3179, miR-147 [31]

Beijing strain & latent MTB
strain

Rabbit lung Whole genome rabbit microarray
(Agilent)

Inflammatory response and STAT1 activation [22]

Beijing MTB strain THP-1 cell HG-U133 Plus 2.0 array
(Affymetrix)

Interferon-related immune response [23]

PTB, EPTB, LTBI serum Taqman low density array (TLDA,
Life Technologies)

10 miRNA profile for European group; 12
miRNA profile for African group

[33]

PTB serum Taqman low density array (TLDA,
Life Technologies)

miR-361-5p, miR-889, miR-576-3p [32]

Active TB, LTBI, and
Healthy Control

Whole blood Illumina human HT-12 beadchip
array

Neutrophil-driven IFN-inducible gene profile [36]

H37Rv Murine dendritic cell miRCURY LNA microRNA array
(Exiqon)

miR-99b, miR-146a, miR-125a-5p [8]

H37Rv RAW264.7 SYBR Green-based miRNA
profiling array (SA Biosciences)

Let-7f [39]

H37Rv PBMC-derived
macrophage from healthy
donor

TaqMan Low-Density Array v2.0
(Applied Biosystem, CA, USA)

miR-155,miR-146a, miR-145,miR-222*, miR-
27a, miR-27b

[40]

H37Rv and H37Ra THP-1 macrophages Microarray from commercial
provider ‘LC Sciences’, USA

miR-30a, miR-30e, miR-155, miR-1275, miR-
3665, miR-3178, miR-4484, miR-4668-5p
and miR-4497

[41]

doi:10.1371/journal.pone.0126018.t005
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blood are the orchestrated outcome of all inflammatory cells and their immune mediators in
the host-bacterial interaction, not simply MTB infection of a single immune cell type [11, 28,
32, 33]. Differentially expressed miRNAs and their transcriptional targets might potentially af-
fect the regulation of multiple biological networks. Pathway analysis of our expression profile
determined different transcripts that were modified by these miRNAs. These results provide
clues for the identification of transcriptionally regulated mechanisms of key biological process-
es in TB, enhance our understanding of the fundamental biology of MTB, and offer leads for
new diagnostics in the future.

Supporting Information
S1 Fig. Clustering analysis of the 16 miRNAs was performed using DataAssist 3.0v based
on ΔCt-values of the TLDA results. Upregulated miRNAs are designated by various shades of
red and down-regulated miRNAs by various shades of green.
(TIF)

S2 Fig. miRNA expression levels in human macrophages with LTBI, active MTB disease
and in healthy controls. Statistical analysis between two groups was performed using the un-
paired t-test. Individual values were denoted by black dots/squares/triangles from each group.
The mean RQ and S.D. of each group were represented by the————— bar and short bars—
in each figure, respectively.
(TIF)

S1 Table. Characteristics of active TB, latent and healthy controls in this study.
(DOCX)
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