
SI 2: Data analysis

1 Statistical model

As described in the paper, a main statistical challenge is to use the responses (e.g., Table 1) to

estimate the opinion matrix, Θ, which represents how much each respondent values each item. To

do this, we begin by assuming a model for how the votes are generated; a natural first choice would

be

Pr(a beats b in session j) = F (θj,a − θj,b) (1)

where θj,a is the amount that respondent j values item a. That is, the probability that item a

beats item b is a function of the difference in the appeals of the two items θj,a and θj,b. In previous

work, numerous functional forms have been assumed for F , but the two common choices are the

cumulative standard normal—resulting in the Thurstone-Mosteller model [1, 2]—or the logistic

function—leading to the Bradley-Terry model [3]. In fact, Stern [4] has shown that the Thurstone-

Mosteller model and the Bradley-Terry model can both be viewed as special cases of a more general

model, and empirically, both models produce estimates that are essentially equivalent [5]. However,

the Thurstone-Mosteller model is much easier to work with computationally because it facilitates

the Gibbs sampling updates as described below. For that reason we assume that

Pr(a beats b in session j) = Φ(θj,a − θj,b) (2)

where Φ is the cumulative standard normal distribution. Thus, we map the difference between

the appeals, which ranges from −∞ to ∞, to a value that ranges from 0 to 1. Future work could

explore the robustness of our estimates to the choice of the standard normal or could attempt to

estimate the shape of F directly. Another extension of the model would allow for “I can’t decide”
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Respondent Response Pair

1 1 [item 1] item 4
1 2 item 3 [item 1]
1 3 [item 4] item 3
2 4 [item 3] item 4
2 5 item 4 [item 2]

Table 1: An example of five responses given by two respondents. The bolded item is the one that
was chosen by the respondent.

responses, which are not included in our current modeling framework.

Given the response model described in equation 2 and assuming that responses are independent,

we can create a design matrix X and outcome vector Y so that the likelihood can be written to

resemble a standard probit model,

p(θ | Y ,X) =
V∏
i=1

Φ(xTi θ)yi(1− Φ(xTi θ))1−yi . (3)

In this case, X has V rows and J×K columns, where V is the number of votes, J is the number of

respondents, and K is the number of items. Therefore, xi = (xi1, xi2, . . . xim) and m = J ×K. In

order for the algebra to work out properly, each row in X has a “1” in the column of the respon-

dent/item that appeared on the left of the pair and a “-1” on the column of the respondent/item

that appeared on the right of the pair. Y is a vector with V entries that has a “1” if the item

on the left is chosen and “0” if the item on the right is chosen. For example, the votes in Table 1

would lead to

Y =



1

0

1

1

0


and X =

θ1,1 θ1,2 θ1,3 θ1,4 θ2,1 θ2,2 θ2,3 θ2,4



1 0 0 -1

0-1 0 1 0

0 0 -1 1

0
0 0 1 -1

0 -1 0 1

By explicitly attempting to estimate each respondent’s opinion about each item, this modeling

approach allows for heterogeneity in the preferences of the respondents. However, the cost of such

flexibility is that there are an enormous number of parameters to be estimated; in each of the
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case studies in the paper, there were about 375,000 parameters to estimate (∼1,500 respondents ×

∼250 items). Therefore, to add more structure to the problem and to allow for partial pooling of

information across respondents [6, 7], we add hierarchical terms in the model that assume that the

opinions about each item are normally distributed with an item-specific mean µk and a common

standard deviation of σ (θ·,k ∼ N(µk, σ)),

p(θ | Y ,X,µ, σ) =
V∏
i=1

Φ(xTi θ)yi(1− Φ(xTi θ))1−yi ×
J∏
j=1

K∏
k=1

N(θj,k | µk, σ) (4)

where µ = µ1 . . . µK and σ is assumed to be 1. In the case studies considered in this paper, we

re-ran the model with σ = 0.5 and σ = 2 as a robustness check, and in both cases, the results were

essentially the same as when σ = 1. Future work could improve the model by estimating a σk for

each item or even estimating the functional form that the θj,k follow for each k.

Finally we add conjugate priors to yield the following posterior distribution:

p(θ,µ, | Y ,X, σ,µ0, τ
2
0 ) ∝

V∏
i=1

Φ(xTi θ)yi(1− Φ(xTi θ))1−yi ×
J∏
j=1

K∏
k=1

N(θj,k | µk, σ)

×
K∏
k=1

N(µk | µ0[k], τ
2
0[k]) (5)

As is common in discrete-choice models [8], the model above is only weakly identified because

one could add a constant c to all the θ parameters and leave the posterior largely unchanged (it may

be easier to see this non-identifiability from the model for a single response (Eq. 2)). Therefore, we

pick an arbitrary item to have µk = 0 which requires setting the hyper-parameters µ0[k] = 0 and

τ2
0[k] = 0.000001. For the remaining items, we set weakly informative priors: µ0[k] = 0, τ2

0[k] = 4.

For readers accustomed to graphical models, our model for the 5 responses in Table 1 is presented

in Figure 1.

This model is just one possible model for estimating the opinion matrix from responses. Further,

we do not yet have good procedures for testing modeling assumptions, and we do not know how

robust the model is to violations of underlying assumptions. We suspect that the biggest problems

will arise from our assumption about the distribution of opinions across respondents. In the pairwise

wiki surveys analyzed in this paper, it is important to realize that many respondents did not
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�

Figure 1: Graphical representation of the model (see Equation 5). This graphical model shows the
assumed data generating process for the sample data shown in Table 1. At the top of the figure,
priors are used to generate item-specific means (e.g., µ1). Next, these parameters and σ, which is
assumed to be 1, generate the elements of the opinion matrix (e.g., θ1,1). Finally, these elements
of the opinion matrix generate the observed responses (e.g., y1). The challenge is then to estimate
the unknown parameters (θ and µ) from the observed data.

encounter many of the items. Thus, there are actually two types of θ parameters, those that

are informed by a specific vote (θv) and those that are not (θh). We exploit this feature of the

data later when describing our approach to computation, but it also has important substantive

implications. Our hierarchical modeling assumption means that we are assuming that the θ’s we

estimate based on a specific vote are directly informative of the θ’s for which we have no specific

vote (and therefore must make an estimate using data from other respondents). We can think

of two cases in which this assumption might be unreasonable. First, consider an item uploaded

by respondent j. All respondents before j did not have a chance to respond to this item so we

will estimate their opinions about the item based on the respondents after j. Therefore, if for

some reason the preferences of respondents vary systematically over time, our procedure will not

work well. Second, the greedy nature of the wiki survey could also lead to problems if people

who respond many times have systematically different preferences than those who respond fewer

times. For example, imagine that there are two types of people: vegans and non-vegans. Further,

imagine that all vegans love bicycles, all non-vegans hate bicycles, and that vegans contribute more

responses than non-vegans. Now, if we have a respondent j that did not encounter an idea k (“more
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bike racks in Manhattan”), the model will estimate θj,k based on the other θ·,k ∈ θv. But, in this

case, the θ·,k ∈ θv over-represent opinions of vegans relative to non-vegans. This example shows

that an important extension to the model would include co-variates at the level of the respondent

and at the level of the item, not only because these are substantively meaningful, but because

they can reduce distortions caused by the unequal amount of responses that we have from each

respondent. Diagnostics and robustness will both be important areas of future research for models

to estimate the opinion matrix from responses.

2 Computation

To make draws from this posterior distribution in equation 8 we use Markov chain Monte Carlo,

specifically Gibbs sampling [9]. That is, we repeatedly draw from the conditional distribution

for each parameter given the current values of the other parameters; for a review of Gibbs sam-

pling, see [10]. However, before attempting to sample from this posterior distribution in this way,

we perform two additional steps that greatly facilitate computation, but which do not affect the

underlying model that we are estimating.

First, as described earlier, many respondents do not encounter many of the items. For example,

in the voting data in Table 1, respondent 1 never encountered item 2 and respondent 2 never

encountered item 1. Thus, as described earlier, there are actually two types of θ parameters, those

that are informed by a specific vote (in this case, θ1,1, θ1,3, θ1,4, θ2,2, θ2,3, θ2,4) and those that are

not (in this case, θ1,2, θ2,1). Thus, we note that

p(θ | Y ,X,µ, σ) = p(θv | Y , Ẋ,µ, σ)× p(θh | µ, σ) (6)

where θv are parameters that are estimated from the votes and the hyper-parameters and θh are

parameters that depend on the votes only through the hyper-parameters, and Ẋ is the reduced

form of the original design matrix X that only includes columns for θ ∈ θv. For example, for the
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votes in Table 1, Ẋ is

Ẋ =

θ1,1 θ1,3 θ1,4 θ2,2 θ2,3 θ2,4



1 0 -1

0-1 1 0

0 -1 1

0
0 1 -1

-1 0 1

In this simple example Ẋ is 33% smaller than X, but in both cases considered in the paper

the reduction is much more substantial: Ẋ is about 90% smaller than X. Reducing the size of

the design matrix in this way yields a substantial savings in terms of computing time and RAM

needed to make draws from the posterior distribution. Given this fact, we can re-write equation 4

as follows:

p(θv,θh | Y ,X,µ) ∝

 V∏
i=1

Φ(xTi θv)yi(1− Φ(xTi θv))1−yi ×
θj,k∈θv∏

(j,k)

N(θj,k | µk, σ)


×

1×
θj,k∈θh∏

(j,k)

N(θj,k | µk, σ)

 (7)

A second computational trick is to note that by introducing a latent variable z we are able to

sample from the posterior more easily, an approach sometimes called data augmentation. Roughly,

we are assuming that although we observe a discrete outcome yi, there is actually an underlying

continuous value zi that generates yi. As shown by Albert and Chib [11], including this continuous

latent variable, zi, in our model enables us to sample from the posterior distribution more easily.

For a more thorough discussion of this type of data augmentation, see [12] and [13].
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Combining these two computational tricks, we are left with the following posterior distribution:

p(θv,θh, z,µ | Y , Ẋ, σ,µ0, τ
2
0 ) ∝ V∏

v=1

(I(zi > 0)I(yi = 1) + I(zi < 0)I(yi = 0))×N(zi | ẋTi θv, 1)×
θj,k∈θv∏

(j,k)

N(θj,k | µk, σ)


×

1×
θj,k∈θh∏

(j,k)

N(θj,k | µk, σ)

× K∏
k=1

N
(
µk | µ0[k], τ

2
0[k]

)
(8)

In order to sample from the posterior distribution, we ran three parallel chains from over-

dispersed starting values for 200,000 steps, saving every 200th draw, and discarded the first half of

each chain as burn-in. At that point, all parameter estimates had approximately converged, R̂ <

1.1 [10], and so we combined the post burn-in draws to summarize the posterior distribution [14].

Overall, these computations took about 36 hours per dataset on a fast desktop computer.

The votes and ideas were then used to fit the model in equation 8 using Gibbs sampling with

four update steps.

• Step 1: Draw z | Y ,θv, Ẋ

Recall that z is the underlying latent outcome that we cannot observe. Based on ideas developed

by Albert and Chib [11], we sample z from a truncated normal distribution such that zi > 0 if

yi = 1 and zi < 0 if yi = 0. That is,

zi ∼


N(ẋTi θv, 1)I(z∗i > 0) if yi = 1

N(ẋTi θv, 1)I(z∗i < 0) if yi = 0

(9)

where I is an indication function which equals 1 when its argument is true and 0 when false [13].

This indicator function ensures that we are drawing from a properly truncated distribution. Com-

putationally, we draw from the truncated normal using the truncnorm package in R [15].

• Step 2: Draw θv | z,µ, Ẋ, σ

Under the data augmentation we used [11], once we have simulated z, the latent outcome, we

are left with a standard hierarchical linear model. To update θv we use the “all-at-once” approach

described in Gelman et al. [16].
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That is,

θv ∼ N(θ̂d, V̂θv) (10)

where

θ̂d = (X̃
T
Σ̃
−1
X̃)−1X̃

T
Σ̃
−1
Ỹ , V̂θv = (X̃

T
Σ̃
−1
X̃)−1

X̃ =

 Ẋ

I

 , Ỹ =

 Y

µ̃

 , and Σ̃ =

 Σy 0

0 Σθ

 .

Further, I is the identity matrix, Σy = Diag(1), Σθ = Diag(σ), and µ̃ is a vector that is the

same length as θv and represents an “expanded” version of µ. That is, if the ith column of Ẋ

represents item k (independent of what respondent is involved), then the ith element of µ̃ is µk.

Computationally, we note that X̃ and Σ̃ are almost all zeros, so the calculations described

above to make a draw are made using sparse matrix routines that are implemented in the Matrix

package in R [17].

• Step 3: Update θh | µ, σ

A large number of the θ parameters are determined by data only through the hyper-parameters.

For these θ, which we call θh, we update as follows:

θj,k ∼ N(µk, σ) ∀ θj,k ∈ θh (11)

Thus, this step is roughly like an imputation based on the overall estimated characteristics of the

population. Computationally, no special steps are required to make these updates.

• Step 4: Update µ | θv,θh, σ,µ0, τ
2
0

µk ∼ N(µ, τ2) (12)

where

µ =

1

τ20
µ0+ n

σ2
θ̄·,k

1

τ20
+ n
σ2

and τ2 = 1
1

τ20
+ n
σ2

where θ̄·,k is the mean of the θ for a specific item k (that is, 1
J

∑J
j=1 θj,k) and n is the number of

estimates involved (in this case, the number of user-sessions, J). See [18, Ch. 6] for a derivation.

No special computational issues are involved in this update.
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3 Data processing

1

In order to analyze the data collected in these two case studies, we followed a three-step proce-

dure. First, using the standard features available to any wiki survey creator at www.allourideas.

org, we downloaded comma-separated value (csv) files that record respondent activity in that wiki

survey. Second, we cleaned the csv files to correct for website errors that occurred during data

collection. More specifically, there were two main data cleaning steps caused by website errors:

1) for a small fraction of participants, www.allourideas.org automatically created a new session

after each vote; and 2) for participants whose sessions timed out after 10 minutes (see SI 1, Sec

3 for more on sessions and session time-outs), www.allourideas.org improperly assigned some

information to the old session instead of the new session. After these website issues were discov-

ered while writing this paper, we have improved the code at www.allourideas.org so that these

problems no longer occur. Finally, after cleaning, we subset the data so that we only estimated

parameters for items with at least one win from a valid vote and at least one loss from a valid

vote. For completeness, we describe, in detail, the changes that took place between the data we

downloaded from the website and the data that we used for estimation.

3.1 PlaNYC

The raw data files from the website included 489 ideas—25 seed ideas and 464 user-contributed

ideas—as well as 31,893 responses—26,727 valid votes, 1,988 invalid votes, and 3,178 skips—from

2,094 sessions. There were no responses or ideas uploaded outside of the appropriate time window

of 2010-10-07 to 2011-01-30.

Cleaning the files caused two main changes. First, because of participants who were erroneously

placed in a new session after each vote, 52 actual sessions had originally been misrepresented as

710 sessions. Therefore, we collapsed these 710 sessions to the appropriate 52 sessions. This

change in session definitions created 30 valid votes that were immediately preceded by a skip, so

we invalidated these 30 votes (see SI 1, Sec 3 for more on invalidating votes after skips to improve

1In this case, the number of user-contributed ideas per session is somewhat difficult to interpret because some
user-contributed ideas were bulk-uploaded by the Mayor’s Office following community meetings at which ideas were
recorded on paper. Unfortunately no records were kept of this bulk uploading, so we cannot distinguish it from other
respondent behavior.
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data quality). Then, after correcting for errors caused by session time-outs, 9 valid votes were

immediately preceded by skips, so we invalidated these 9 votes. Thus, after cleaning, the files

contained 489 ideas—25 seed ideas and 464 user-contributed ideas—as well as 31,893 responses—

26,688 valid votes, 2,027 invalid votes, and 3,178 skips—from 1,436 sessions.

When applying our model to the case studies in this paper, we estimated parameters for all

items that were active on the final day and had at least one valid win and at least one valid loss. In

PlaNYC there were 269 such items with 26,604 valid votes among them, cast from 1,397 sessions.

Thus, for PlaNYC the opinion matrix, θ, had dimension 1,397 × 269.

3.1.1 OECD

The raw data files from the website included 594 ideas—35 seed ideas and 559 user-contributed

ideas—as well as 30,763 responses—27,133 valid votes, 1,338 invalid votes, and 2,292 skips—from

3,373 sessions. The OECD conducted a period of internal pilot testing from 2010-09-03 to 2010-

09-15, and we dropped the 1,747 votes and 164 skips contributed from 182 sessions during this

time. We also converted the 25 ideas contributed during the internal pilot testing to seed ideas.

No responses or ideas were contributed after 2010-10-15.

Cleaning the files caused two main changes. First, because of participants who were erroneously

placed in a new session after each vote, 104 actual sessions had originally been represented as 1,627

sessions. Therefore, we collapsed these 1,627 sessions to the appropriate 104 sessions. This change

in session definitions created 93 valid votes that were immediately preceded by a skip, so we

invalidated these 93 votes. Then, after correcting for errors caused by session time-outs, 8 valid

votes were immediately preceded by skips, so we invalidated these 8 votes. Thus, after cleaning,

the files contained 594 ideas—60 seed ideas and 534 user-contributed ideas—as well as 28,852

responses—25,393 valid votes, 1,331 invalid votes, and 2,128 skips—from 1,668 sessions.

When applying our model to the case studies in this paper, we estimated parameters for all

items that were active on the final day and had at least one valid win and at least one valid loss.

In OECD there were 285 such items with 23,845 valid votes among them, cast from 1,620 sessions.

Thus, for OECD the opinion matrix, θ, had dimension 1,620 × 285.
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