
RESEARCH ARTICLE

Neurofunctional Correlates of Environmental
Cognition: An fMRI Study with Images from
Episodic Memory
Aline Vedder1,2,3,4☯, Lukasz Smigielski1☯, Evgeny Gutyrchik1,3,4*, Yan Bao6,7,1,4,
Janusch Blautzik5, Ernst Pöppel1,3,4,6, Yuliya Zaytseva1,3,4,8, Edmund Russell1,9

1 Human Science Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany, 2 Institute of
Sociology, (LMU), Munich, Germany, 3 Institute of Medical Psychology, (LMU), Munich, Germany,
4 Parmenides Center for Art and Science, Pullach, Germany, 5 Institute of Clinical Radiology, (LMU),
Munich, Germany, 6 Department of Psychology, Peking University, Beijing, People’s Republic of China,
7 Key Laboratory of Machine Perception, Peking University, Beijing, People’s Republic of China, 8 Moscow
Research Institute of Psychiatry, Moscow, Russia, 9 Department of History, University of Kansas, Lawrence,
United States of America

☯ These authors contributed equally to this work.
* evgeny.gutyrchik@med.uni-muenchen.de

Abstract
This study capitalizes on individual episodic memories to investigate the question, how dif-

ferent environments affect us on a neural level. Instead of using predefined environmental

stimuli, this study relied on individual representations of beauty and pleasure. Drawing upon

episodic memories we conducted two experiments. Healthy subjects imagined pleasant

and non-pleasant environments, as well as beautiful and non-beautiful environments while

neural activity was measured by using functional Magnetic Resonance Imaging. Although

subjects found the different conditions equally simple to visualize, our results revealed more

distribut-ed brain activations for non-pleasant and non-beautiful environments than for

pleasant and beautiful environments. The additional regions activated in non-pleasant (left

lateral prefrontal cortex) and non-beautiful environments (supplementary motor area, anteri-

or cortical midline structures) are involved in self-regulation and top-down cognitive control.

Taken together, the results show that perceptual experiences and emotional evaluations of

environments within a positive and a negative frame of reference are based on distinct pat-

terns of neural activity. We interpret the data in terms of a different cognitive and processing

load placed by exposure to different environments. The results hint at the efficiency of sub-

ject-generated representations as stimulus material.

Introduction
How do different environments affect us on a neural level? This study capitalizes on individually
unique mental imagery to address the issue of environment in a novel way. Instead of using pre-
defined stimuli, this study focuses on the individual and his/her conceptualization of beautiful
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and pleasant environments. This new approach considers the complexity and inter-individual
variability of the relationship between human beings and their environment. In addition, by col-
lecting neural data we scrutinize the indirect effects of different environmental conditions.

Previous empirical research on the relationship between humans and their environment has
mostly focused on direct effects and physical risks (e.g., pathogens and toxic substances), as
well as on explicit judgments of environmental criteria. But a growing body of evidence has
shown that environments have significant indirect effects too [1], [2], [3]. For instance, inter-
acting with nature brings faster recuperation following stress reactions than interacting with
urban environments, as shown in self-reports, as well as by tracking appropriate physiological
reactions, such as systolic and diastolic blood pressure (SBP, DBP), pulse transit time (PTT),
spontaneous skin conductance response (SCR), frontalis muscle tension (EMG), and heart-pe-
riod data over time [4], [5], [6].

The aesthetic appeal of an environment and its effect upon individuals has been studied and
incorporated into various experimental projects in healthcare facilities [7]. It has been docu-
mented that figurative art has an impact on measurable health indicators. Patients recovering
from open-heart surgery who lived in rooms with images depicting nature, in comparison to
those who lived in rooms with blank walls or decorated with abstract paintings, experienced less
anxiety and consumed less pain medication [8]. Even differences between artistic and non-artis-
tic images [9] or distinct artistic styles [10] can be linked to different processing mechanisms.

Natural environments may provide high levels of inherently fascinating stimuli which en-
gage involuntary attention, thus giving the directed attention fatigue an opportunity to rest and
recuperate [11]. In line with this, environmental psychologists have suggested that an innate
love of nature, biophilia, makes nature essential for human well-being [12]. The biophilia hy-
pothesis treats an environmental feature (nature) as an independent variable to which people
respond in a universal way.

Therefore, to investigate the impact of environmental conditions on affect and cognition, it
is necessary to focus on implicit psychological processes in response to sensory stimulation.
Probably the most salient response to an environmental condition is stress. Non-effective
stress-combatting strategies may affect our health through chronic arousal, suppression of the
immune system, or other forms of allostatic load [13], [14]. In line with this, the concept of ef-
fortless processing (e.g. [15]) addresses the cognitive and neural demands that environments
place on individuals. It can be assumed that health-promoting environments require less cogni-
tive and neural effort to process than environments that are detrimental to health. Accordingly,
the brain of an individual in a health-promoting environment might show less physiological
activity than the brain of the same individual in a health-detrimental environment. This degree
of physiological activity can be measured indirectly with functional magnetic resonance images
of blood-oxygen-level-dependent (BOLD) signals. Using fMRI, Lederbogen et al. (2011) [16]
showed that urban upbringing, as well as living in a city, has dissociable impacts on social eval-
uative stress processing in humans. The authors associate current city living with increased
amygdala activity [16]. According to their study, urban upbringing affects the perigenual ante-
rior cingulate cortex, a key region for the regulation of amygdala activity, negative affect,
and stress [16]. The study reveals a strong connection between environmental settings and
neural mechanisms.

Accordingly, previous research provides a coherent picture of the strong interconnected-
ness between environmental conditions and well-being. Nevertheless, experimental evidence
is required to explain the neural mechanisms that could be responsible for the distinct effects
of different environments [17]. Cognitive neuroscience can also provide insight into implicit
perceptual experiences of aesthetics, its neural foundation, and its relation to other cognitive
processes [18], [19].
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Previous experimental studies typically asked subjects to respond to environmental stimuli
preselected by experimenters. These studies often tested for universal differences, while mask-
ing variation among individuals. Albeit external stimuli, such as pictures, are highly important
in the evaluation of environmental cognition processes and anthropological universals, these
stimuli do not touch upon the aspects that might be characteristic and unique to individual
subjective representations of positive and negative environments. There exist cultural and indi-
vidual differences in regard to attractive and natural elements of environmental surroundings
[20]. Even personality traits may modulate aesthetic experiences [21].

Consequently, this study aims to replace universal conceptualizations of beauty and plea-
sure with individual, subject-generated definitions of beautiful/non-beautiful and pleasant/
non-pleasant environments to examine the neurocognitive processing of positive and negative
environments. We asked subjects to tap into their rich reservoirs of episodic memory through
mental imagery, an ability to generate mental representations of a stimulus in the absence of
the stimulus itself, but preserving its perceptible properties. A rich remembered experience is a
defining feature of episodic memory recall [22]. Episodic memory capitalizes on the interlink-
ing of implicit and explicit knowledge frames [19]. Accumulated findings document that imag-
ery and perception draw on most of the same neural machinery [23], including both cognitive
level [24], [25], [26] and neural topography [27], [28], [29]. Belardinelli and her colleagues
(2009) [30] demonstrated that the ability to generate vivid mental images influences both the
format and the neural activation levels of image formation. Highly-vivid subjects, in compari-
son to lowly-vivid subjects create even more analogic images, characterized by higher levels of
neuronal equivalence with perception.

Capitalizing on the methodological power of functional magnetic resonance imaging, con-
trolled introspection in the form of episodic memories can be used to access the individual en-
vironmental experiences of the study participants. Accordingly, in our study, we were
interested in the impact of different environments on cognitive processes. Which physiologic
mechanisms can be identified for the positive or negative effects of environments? With the de-
cision to investigate beautiful/non-beautiful as well as pleasant/non-pleasant environments,
the study aim was to explore whether certain neural patterns are typical for positive and nega-
tive frames of reference. Both pleasure and beauty refer to the appeal of an environment on the
perceiving person. One condition was chosen that describes the external sensation linked to
the experience of an environment (beautiful/non-beautiful) while the other condition describes
the internal sensation (pleasant/non-pleasant) linked to the experience of an environment.
Considering previous research, we hypothesized that positive and potentially health-promoting
environments require different mental effort to process than negative environments.

Methods

Participants
From a pool of 150 volunteers, we selected 16 right-handed (as assessed by the Edinburgh
Handedness Inventory [31]) subjects (nine females, mean age 23.1), fluent in German lan-
guage, who had scored high on the ability to generate vivid mental representations as assessed
in the Questionnaire Upon Mental Imagery ([32], mean score 54.4). The questionnaire assesses
the vividness of inner representations in seven sensory modalities (visual, auditory, cutaneous,
kinaesthetic, gustatory, olfactory and organic). The short version we used for the current study,
has 35 items [32], five for each of seven modalities. The responses are rated on a seven point
scale where (1) = perfectly clear and as vivid as the actual experience, and (7) = no imagery
present. The study participants were informed about the standard fMRI exclusion criteria (im-
planted metal objects in the bodies, history of neurological or psychiatric disorders, pregnancy,
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claustrophobia), and a written consent was obtained from all participants. The Ethics Commit-
tee of the Medical Faculty at the University of Munich approved the protocol. The study was
conducted in accordance with the Declaration of Helsinki.

Stimuli
Prior to the fMRI experiment, all 16 participants took part in a one-hour preparatory training
session in which they were instructed first to imagine with their eyes closed and then to de-
scribe in writing self-chosen beautiful (German term: schön) and non-beautiful as well as
pleasant (German term: wohltuend) and non-pleasant environments. Subjects were free to
choose scenes from their own individual experience. Written recordings were encouraged to
help them refresh and store images and sensations in memory for further use in the main ex-
periment. Inside the scanner, participants viewed the simplified instructions via a mirror at-
tached to the head-coil on a LCD screen.

Procedure
We performed fMRI scans while the subjects imagined four sceneries in four experimental con-
ditions (beautiful and non-beautiful; pleasant and non-pleasant). The first experiment required
the participants to imagine beautiful and non-beautiful environments while the second experi-
ment required the imagination of pleasant and non-pleasant environments. Half of the partici-
pants had to imagine beautiful and non-beautiful environments first while the other half had
to imagine pleasant and non-pleasant environments first. A block design was used with 8
blocks per each condition, each block comprising instructions for the subjects.

Tasks and procedures were discussed in detail in the training sessions before the experi-
ment. The order of blocks was pseudo-randomized (Presentation, Neurobehavioral Systems,
USA). The instructions were presented for 2 seconds, followed by a black screen displayed for
18 seconds while subjects imagined the different environmental conditions. Since the subjects
were asked to keep their eyes closed during each imagination period, an acoustic signal marked
the end of the visualization session. Next, the participants had 2 seconds to respond to a control
question asking whether the imagined scenery was easy or difficult to imagine by pressing ei-
ther “yes” or “no” on a button (LUMItouch, Photon Control Inc, Canada). With this control
question we could assesses the intensity of the task, obtain an immediate and intuitive answer,
and encourage the concentration and attention of the study participants in the scanner. A fixa-
tion asterisk appeared on the screen for 6 seconds after each block.

Scanning and data analysis
The experiment was conducted with a 3T system (Philips ACHIEVA, Best, The Netherlands) at
the University Hospital LMUMunich. Foam cushions securely, but comfortably, fastened the
subject’s head to minimize movements. As anatomical reference and to detect potential mor-
phological anomalies, a T1-weighted, magnetization-prepared rapid gradient echo (MPRAGE)
sequence was performed: repetition time (TR) = 2400 ms, echo time (TE) = 3.06 ms, flip angle
(FA) = 9°, number of slices = 160, matrix = 224 x 256, spatial resolution 1 x 1 mm. Structural
images were acquired in sagittal orientation. For BOLD imaging, a T2�-weighted EPI sequence
was used (TR = 2000 ms, TE = 35 ms, FA = 90°, 28 axial slices covering whole cerebrum, slice
thickness = 4 mm, inter-slice gap = 0.4 mm, ascending interleaved acquisition, FOV = 230 x 230
mm, matrix = 128 x 128, in-plane resolution = 1.8 x 1.8 mm). In total, 248 functional volumes
were acquired. Functional images were acquired in axial orientation (parallel to the anterior
commissure—posterior commissure [AC-PC] line).
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To account for T1 saturation effects, the first five volumes in each run were excluded from
further analysis. The functional images were realigned, co-registered, and spatially normalized
into standard stereotaxic space (EPI template; Montreal Neurologic Institute, MNI), re-sliced
to 2 x 2 x 2 mm voxels, and smoothed with an 8 mm full-width at half maximum (FWHM)
Gaussian kernel using SPM8 software (Statistical Parametric Mapping; http://www.fil.ion.ucl.
ac.uk/spm). T-contrast images were created versus baseline for each subject at the first level.
After estimation of the random-effects second level (full-factorial design), statistical parametric
maps were thresholded at p<.001 (corrected for multiple comparisons at cluster-level using
the family-wise error correction at p (FWE)<.05).

The clusters were anatomically described using the AAL atlas (Automated Anatomical Label-
ing of Activations [33]; AAL Toolbox for SPM8, http://www.gin.cnrs.fr/spip.php?article217).

Results

Experiment 1: Beautiful and non-beautiful environments
Subjects reported that both environmental conditions were easy to imagine (M = 84.9,
SD = 13.7% for the beautiful andM = 79.5, SD = 14.7% for the non-beautiful setting). The dif-
ference was not statistically significant (t(7) = 0.77, p>.05).

Compared to baseline, conjunction analysis revealed activations in the supplementary
motor area as well as in the superior frontal gyrus for both beautiful and non-
beautiful conditions.

For the non-beautiful condition as compared to the beautiful condition, activations were
registered in the anterior cortical midline structures (anterior cingulate, medial prefrontal cor-
tex, supplementary motor area), right superior frontal gyrus, as well as in the left superior, mid-
dle, inferior frontal gyri, insular cortex, orbitofrontal cortex and temporal pole. The opposite
comparison, beautiful vs. non-beautiful condition, revealed no significant activations.

Fig 1 and Table 1 contain detailed quantitative information about the observed relationship.

Experiment 2: Pleasant and non-pleasant environments
Subjects reported that both environmental conditions were easy to imagine (M = 95.3,
SD = 6.2% for the pleasant andM = 93.0, SD = 12.9% for the non-pleasant setting). The differ-
ence was not statistically significant (t(7) = 0.72, p>.05).

Compared to baseline, conjunction analysis revealed activations in the visual and sensori-
motor cortex over baseline for both pleasant and non-pleasant conditions.

Functional magnetic resonance imaging showed significantly more cortical activations when
subjects imagined non-pleasant environments than when they imagined pleasant environments.

Fig 1. Neurofunctional processing of beautiful and non-beautiful environments. (A) Conjunction of
beautiful and non-beautiful environments versus baseline and (B) higher neural activation for non-beautiful
environments. SM = supplementary motor area, SFG = superior frontal gyrus, LPFC = lateral prefrontal
cortex, STG = superior temporal gyrus, MTG =middle temporal gyrus.

doi:10.1371/journal.pone.0122470.g001
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The higher blood-oxygen-level-dependent (BOLD) signal appeared primarily in the left pre-
frontal cortex (the ventrolateral part including Broca’s speech area). The opposite comparison,
pleasant vs. non-pleasant condition, revealed no significant activations.

Fig 2 and Table 2 contain detailed quantitative information about the observed relationship.

Table 1. Neurofunctional processing of beautiful and non-beautiful environments.

Coordinates

Brain region cluster kE x y z z-value

conjunction of (beautiful > baseline) and (non-beautiful > baseline)

1 239

L supplemental motor area -14 4 60 4.40

L superior frontal g.

non-beautiful > beautiful

1 856

R insular cortex 42 24 -8 5.34

R inferior frontal g.

R middle frontal g.

2 4301

L superior temporal g. -34 14 -20 4.75

L insular cortex

L inferior frontal g.

L. middle temporal g.

L. angular g.

3 1859

Precuneus 4 -52 54 4.69

Cuneus

Middle cingulate cortex

4 1796

R superior temporal g. 56 -10 -6 4.59

R thamalus

5 7580

Anterior cingulate cortex 8 40 24 4.55

L supplementary motor area

L superior frontal g. (medial part)

R superior frontal g. (medial part)

L middle frontal g.

6 374

R hippocampus 36 -8 -18 4.38

R amygdala

7 506

L precentral g. -42 4 48 4.06

L inferior frontal g.

L middle frontal g.

8 554

R angular g. 38 -72 48 3.85

R superior parietal g.

Note. kE = size in voxels (2 x 2 x 2 mm). R = right, L = left, g. = gyrus. The x, y and z coordinates are in the MNI stereotactic space. p <.001.

doi:10.1371/journal.pone.0122470.t001
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Discussion
The results of this study show that a positive and a negative frame of reference elicit distinct
neural patterns of environmental cognition. We assume that non-beautiful and non-pleasant
environments demand more mental processing than beautiful and pleasant environments.
Although behavioral data illustrates that subjects found the different environmental

Fig 2. Neurofunctional processing of pleasant and non-pleasant environments. (A) Conjunction of
pleasant and non-pleasant environments versus baseline and (B) higher neural activation for non-pleasant
environments. VC = visual cortex, SM = supplementary motor area, SFG = superior frontal gyrus,
LPFC = lateral prefrontal cortex.

doi:10.1371/journal.pone.0122470.g002

Table 2. Neurofunctional processing of pleasant and non-pleasant environments.

Coordinates

Brain region cluster kE x y z z-value

conjunction of (pleasant > baseline) and (non-pleasant > baseline)

1 358

L precuneus -28 -54 14 5.89

L calcarine

2 480

R precuneus

R calcarine 20 -44 16 4.95

3 1045

L supplementary motor area -32 -14 60 3.30

R supplementary motor area

L superior frontal g.

R superior frontal g.

L precentral g.

R precentral g.

R parahippocampal

non-pleasant > pleasant

1 810

L precentral g. -36 4 62 3.18

L middle frontal g.

L inferior frontal g.

L. superior temporal g.

Note. kE = size in voxels (2 x 2 x 2 mm). R = right, L = left, g. = gyrus. The x, y and z coordinates are in the MNI stereotactic space. p <.001.

doi:10.1371/journal.pone.0122470.t002
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conditions equally easy to visualize, imagining non-beautiful and non-pleasant environments
activated more brain areas, revealing a greater diversification of brain reactivity than beauti-
ful and pleasant environments. The results correlate with previous propositions to explain
the experience of negative environments as characterized by the demand on more mental re-
sources than the experience of positive environments. Taken together, cognitive experiences
within different environmental frames are based on different patterns of neural activity.

The perception of non-pleasant environments is characterized by a higher neural response
in the left prefrontal cortex. Previous research has identified the left prefrontal cortex as a key
structure in the executive-control system [34]. The hypothesis that cognitive costs correlate
with activation of brain areas responsible for executive control, particularly the left prefrontal
cortex, has found solid support in functional MRI experiments [35]. Thus, the weaker BOLD
signal for pleasant mental scenarios in the left lateral prefrontal cortex suggests a lower cogni-
tive load, which indicates that positive and potentially health-promoting environments might
require less effort in neural processing.

A similar pattern of increased neural activity can be observed for the processing of non-
beautiful environments. The non-beautiful condition elicits activity in the orbitofrontal cortex
(OFC) that can be linked to the online monitoring of behavior based on emotional cues and so-
matic signals [36]. Other areas activated in the non-beautiful condition indicate top-down cog-
nitive control (right superior frontal gyrus and left inferior frontal gyrus) [37], [38] and
response to an increase in executive demand in the working memory system (left superior fron-
tal gyrus) [39]. In addition, a stronger activation of the supplementary motor area (SMA) can
be observed. The SMA has been suggested to be a motor-limbic interface contributing to the
transformation of visually-triggered emotional experiences into motor actions [40]. The non-
beautiful condition also causes increased activity in the anterior cortical midline structures, in-
cluding the anterior cingulate cortex (ACC) and the medial prefrontal cortex (mPFC). The role
of the ACC-mPFC network (having vast projections to the amygdala) in the appraisal of nega-
tively charged emotional stimuli has been suggested previously [41]. Many studies highlight
that the same circuitry is also involved in emotion regulation [42] [43]. Activity in the ACC
has also been linked to a conscious mental effort related to cognitive processing [44]. Thus,
an enhanced signal in the ACC and ACC-mPFC network may imply that the processing of
non-beautiful settings demands increases in top-down cognitive control and regulatory mecha-
nisms. In line with this, the stronger BOLD signal in the left insular cortex for the processing
of non-beautiful environments can be attributed to higher emotional arousal. There is evidence
that the insula plays an important role in generating anticipatory signals, which are critical for
learning about aversive outcomes [45]. Activity in the left insular cortex may point to the mobi-
lization of greater neural resources toward discomfort-inducing, unappealing, and potentially
aversive events.

Considering the data, we propose that interacting with a negative environment requires an
additional investment in emotion processing, cognitive control, and motor function. The neu-
ral results locate causal mechanisms for the fundamental effects of different environments and
support the effortless processing concept of cognition [15]. This argumentation finds addition-
al support from the results of the study conducted by Martinez-Soto and colleagues [46] on the
neural correlates of restorative environments. The exposure to low restorative pictures revealed
a more distributed brain pattern (same as in our study) and activated the cortical areas related
to direct, endogenous and top-down attention, in comparison with the high restorative pictures
activating more involuntary, exogenous and bottom-up attentional resources.

The implications of our study can be considered with respect to the discussion on the im-
pact of the physical environment on cognitive processing, evidence-driven studies of human-
environment interaction, and even health-related parameters.
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The task to imagine beautiful/non-beautiful and pleasant/non-pleasant environments can
be considered to be a complex cognitive process. Thus, it is plausible that no single cortical re-
gion can wholly account for the different experimental conditions. To our knowledge, this is
the first study to measure the influence of mental representations of different environments on
a neural level using functional MRI.

Some limits of the study point to areas for future research. Our focus was an inner experi-
ence based on a conscious, quasi-perceptual phenomenon of mental imagery fed by episodic
memory. Extending the data to real perceptual experiences should be performed with caution
in spite of the fact that similar neural structures are involved in both instances. The results also
raise questions about temporal frames and the long-term neural effects of different environ-
mental conditions [47]. Furthermore, intercultural comparisons would help to clarify the ex-
tent to which certain effects of environmental cognition can be generalized. A formulation of
evidence-based postulates on how to mold and organize physical space for the benefit of indi-
viduals should be the aim of future research. Accordingly, the most urgent challenge for future
research will be to elucidate the neural mechanisms through which environments affect our
well-being and health.

The results of this study highlight the difference in neural activity linked to the experience
of positive and negative environments. The outcome is remarkable, considering that subjects
were simply imagining different environments rather than responding to real environments.
Taken together, the observed patterns of brain responsiveness have led us to conclude that the
neurofunctional processing of positive environments in comparison to negative environments
might involve less processing costs, less cognitive monitoring, and emotion regulation.
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