
RESEARCH ARTICLE

Comparison of Sequencing Based CNV
Discovery Methods Using Monozygotic
Twin Quartets
Marc-André Legault1, Simon Girard2, Louis-Philippe Lemieux Perreault1,3,
Guy A. Rouleau4, Marie-Pierre Dubé1,3*

1 Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada, 2 Department of Human
Genetics, McGill University, Montreal, Quebec, Canada, 3 Beaulieu-Saucier Pharmacogenomics Center,
Montreal Heart, Institute Research Center, Montreal, Quebec, Canada, 4 Montreal Neurological Institute and
Hospital, McGill University, Montreal, Quebec, Canada

* Marie-Pierre.Dube@umontreal.ca

Abstract

Background

The advent of high throughput sequencing methods breeds an important amount of techni-

cal challenges. Among those is the one raised by the discovery of copy-number variations

(CNVs) using whole-genome sequencing data. CNVs are genomic structural variations de-

fined as a variation in the number of copies of a large genomic fragment, usually more than

one kilobase. Here, we aim to compare different CNV calling methods in order to assess

their ability to consistently identify CNVs by comparison of the calls in 9 quartets of identical

twin pairs. The use of monozygotic twins provides a means of estimating the error rate of

each algorithm by observing CNVs that are inconsistently called when considering the rules

of Mendelian inheritance and the assumption of an identical genome between twins. The

similarity between the calls from the different tools and the advantage of combining call sets

were also considered.

Results

ERDS and CNVnator obtained the best performance when considering the inherited CNV

rate with a mean of 0.74 and 0.70, respectively. Venn diagrams were generated to show the

agreement between the different algorithms, before and after filtering out familial inconsis-

tencies. This filtering revealed a high number of false positives for CNVer and Breakdancer.

A low overall agreement between the methods suggested a high complementarity of the dif-

ferent tools when calling CNVs. The breakpoint sensitivity analysis indicated that CNVnator

and ERDS achieved better resolution of CNV borders than the other tools. The highest in-

herited CNV rate was achieved through the intersection of these two tools (81%).

Conclusions

This study showed that ERDS and CNVnator provide good performance on whole genome

sequencing data with respect to CNV consistency across families, CNV breakpoint
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resolution and CNV call specificity. The intersection of the calls from the two tools would be

valuable for CNV genotyping pipelines.

Introduction
Copy Number Variants (CNVs) are large (>1 kilobase) genomic structural variations [1, 2].
The phenotypic effect of such changes in genomic structure can result in perturbations in gene
dosage, gene interruption, gene fusion or the unmasking of recessive alleles [3]. The implica-
tion of CNVs in the etiology of human diseases has been previously established in the case of
both Mendelian and complex disorders [4, 5]. These important biological consequences moti-
vate the refinement of the methods used to detect CNVs using modern genetic datasets such as
whole genome next-generation sequencing data. The current state of the detection methods
has limited the widespread study of CNVs in the context of phenotypic associations, in part be-
cause of the limited characterization of their genomic structure. The development of bioinfor-
matics protocols and tools producing high confidence, consistent CNV calls will be the first
step leading to the thorough investigation of such associations. Accurate characterizations of
CNV calling tools have been published in the context of whole exome sequencing [6]. This
technology being different from whole genome sequencing in terms of systematic biases (e.g.
due to exome capture) and genome coverage, the underlying algorithms are often different
than for whole genome sequencing. Recent method comparisons have also addressed tools
suited for whole genome data, but often restricted their scope to an algorithmic family such as
depth of coveragemethods [7]. Here, we will compare methods from all the different commonly
used algorithmic methods for CNV discovery in whole genome sequencing data. The aim of in-
tegrating different methods in this comparison is to derive an optimal CNV call set regardless
of the underlying bioinformatics strategies.

One of the first methods used for CNV detection was comparative genomic hybridization ar-
rays (aCGH). This technique co-hybridizes differently labelled genomic DNA from ‘test’ and
‘reference’ cell populations to an array of probes and compares the ratio of fluorescence to detect
significant variation in copy-number [8]. Unfortunately, the probe density and the size of the
targets limit the resolution of the CNV breakpoints. Estimates of the resolution of aCGH vary
between 0.25Mb and 2Mb depending on the difference in copy number [9, 10]. Another method
for CNV detection uses genotyping arrays. These methods rely on the use of single nucleotide
polymorphisms (SNP) arrays to assess continuous genomic regions of low or high probe inten-
sity representing regions of decreased or increased copy number, respectively. Hence, the preci-
sion of the detection is dependent on the distribution of the probes in the genome, as regions of
high probe density will be more thoroughly assayed. Those experimental biases make the confi-
dent discovery of new CNVs and the precise resolution of their breakpoints harder.

Modern techniques, including whole genome high-throughput sequencing, partially over-
come these disadvantages by providing increased breakpoint resolution, robust copy number
estimation and the ability to discover structural variants using paired-end sequencing signa-
tures and depth of coverage. The interpretation of such data still requires algorithmic develop-
ments in order to increase sensitivity and specificity. Current methods can be divided in four
categories: (1) read depth, (2) paired-end mapping, (3) split-reads and (4) assembly-based
methods. Read depth methods detect CNVs according to the number of sequenced reads
mapped to a given genomic position. This concept is analogous to the SNP microarrays where
the fluorescence intensity at a given probe allows the detection of similar events [11]. Paired-
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end mapping methods use information from the distance and orientation between sequencing
reads issued from the same insert to detect structural variants (including, but not limited to
CNVs) [12]. Split-reads methods use paired-end reads where one of the reads is mapped to a
given genomic region and the other pair fails to map, which helps define the breakpoints of
CNVs [13]. Assembly-based methods rely on the de novo assembly of sequences to discover in-
sertions and deletions that are absent from the reference [14]. The short read length currently
available from next-generation sequencing, however, makes this approach impractical in the
case of large, complex genomes such as the human genome [15]. Some hybrid methods also
combine different approaches in order to broaden the spectrum of information used in CNV
discovery. It has been discussed that the combination of different information types may help
achieve better CNV calls [16].

In the present study, 9 quartets composed of monozygotic twins and their parents have
been sequenced using whole-genome sequencing. Different CNV discovery tools have been
used on every sample allowing a thorough comparison of the selected methods by comparing
the calls from both twins. The use of monozygotic twins allows the assumption of an identical
genome when ignoring de novo CNVs since they account for a very small portion of the total
CNV burden. Tracking variants transmission from parents to their offspring provides a useful
metric (rate of inherited CNVs) to compare the tested algorithms.

Methods

CNV calling tools
Four CNV-calling tools have been selected for comparison (CNVer, BreakDancer, CNVnator
and ERDS) (Table 1). The selection of these tools was based on the differences in their underly-
ing algorithmic approaches. At least one algorithm of each of the main categories was selected
(paired-end mapping, read depth and hybrid). Assembly based methods were not used as they
are dependent on the capacity of deriving confident genome assemblies from the short reads is-
sued from high throughtput sequencing platforms. The algorithm's efficiency were assessed by
using whole-genome sequencing data from 9 monozygotic twin quartets.

CNVer (v0.8.1) uses information from both paired end mapping and read depth methods
in a graph-theoretic framework to call CNVs. The paired-end mapping make it possible to cre-
ate linking clusters of discordant read pairs which span the breakpoints of CNVs. The read
depth signatures are then combined to the previously described information in a data structure
called the donor graph, representing the donor genome in a compact manner. The raw output
from CNVer is a file identifying every genomic region of “gain” or “loss” with its corresponding
depth of coverage ratio (computed in small genomic windows to avoid bias from GC content).
A separate tool is provided to infer the absolute copy number counts after CNV calling [12].

Table 1. Summary of the selected CNV calling algorithms.

Algorithm Category Summary characteristics Reference

CNVer Hybrid (PEM + RD) Builds a donor graph integrating PEM and RD information. Requires specific mapping with Bowtie. [12]

BreakDancer PEM Detects CNVs, inversions and translocations. Provides Phred-like score. Software for small indels
(10–100 bp) also available.

[17]

CNVnator RD Uses a mean-shift technique to partition genomic bins in segments of different copy number. [18]

ERDS Hybrid (PEM + RD
+ SC*)

Uses a HMM to combine SNV heterozygosity and RD information. Supports calls with PEM and SC
signatures. Requires a Variant Call Format file and high coverage (> 20X is recommended)

[19]

*Soft-clipping signatures are analogous to split-reads signatures

PEM stands for Paired-End Mapping, RD for Read Depth and SC for Soft Clipping.

doi:10.1371/journal.pone.0122287.t001
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To call CNVs with CNVer on our dataset, we defined the read length as 100 bp, the computed
mean insert size was of 314 bp (σ = 63) and at least 20 mate pairs were required to form a clus-
ter, which is reasonable given the coverage in our dataset. Based on a paired-end mapping
method, BreakDancer (v1.1.2) classifies structural variations in six different categories: nor-
mal, deletion, insertion, inversion, intrachromosomal translocation and interchromosomal
translocation. Genomic regions with a statistically significant amount of anomalous read pairs
are then considered to be structural variations breakpoints. A Poissonmodel considering the
number of supporting anomalous reads, the size of the region and the genomic coverage is
used to compute a confidence score that is converted to a Phred scale score (Q ¼ �log10 P
where Q is the Phred scale score and P is a p-value). BreakDancer’s true positive rate (TPR) is
correlated with the physical coverage. According to simulated data, a 30X fold physical cover-
age corresponds to a 20% TPR [17]. The default parameter values were used for BreakDancer.

CNVnator (v0.2.7) uses read depth information in non-overlapping genomic bins of identi-
cal size (user defined) to identify segments of different copy number, which represent putative
CNV breakpoints. The mean-shift technique is used to identify such segments, and their statis-
tical significance is assessed using a t-test statistic (p < 0:05) corrected for multiple hypothesis
testing. The scenario where large CNVs would be fragmented in multiple smaller calls has been
resolved by merging adjacent calls if the read depth signal is identical in both calls and the re-
gion in between [18]. We used a bin size of 1,000 for the analysis presented in this paper. Such
a large bin size should lead to a higher confidence calls, but weaker breakpoint resolution.

ERDS (v1.1) first partitions the genome into regions deemed amplified and non-amplified
by considering the ability of the aligner to distinguish them. This strategy is meant to avoid
calling CNVs independently in paralogous loci. Similarly to other read depth methods, a slid-
ing, fixed-size genomic window is used to compute the read depth across the genome. For the
non-amplified regions, a hidden Markov model (HMM) is then used to combine single nucleo-
tide variation (SNV) heterozygosity and read depth data in order to detect CNVs. Additional
information from paired-end mapping and soft-clipping signatures is then combined with the
previously established calls to either reinforce low-confidence calls or to detect CNVs that were
undetected by the HMM [19]. Soft-clipping signatures are similar to split-reads signatures as
they rely on the parts of a read that are not mapped to the reference (soft-clipped subse-
quences) to detect SV breakpoints [20]. ERDS does not provide hyperparameters to tune the
bahaviour of the underlying algorithm.

Sequencing
DNA from the 36 individuals was extracted directly from blood provided by the Quebec Study
of Newborn Twins [21]. Libraries were constructed according to Illumina standard protocols.
Sequencing was done on an Illumina HiSeq 2500 at Illumina sequencing facilities. Paired-end
mode was used and the median fragment length was found to be ~300 bp for every individuals.
The raw sequence data has been submitted to the European Nucleotide Archive (ENA). The
study accession number is PRJEB8308.

Mapping and variant calling
The paired-end reads were mapped to the reference genome (GRCh37) using the Burrows-
Wheeler Aligner (bwa version 0.6.2-r126-tpx), increasing the quality threshold for read trimming
from 0 to 5 [22]. The Genome Analysis Toolkit (GATK v1.6) [23] was used for indel realigne-
ment, read duplicate removal and quality score recalibration. The GATKDepthOfCoverage tool
was used to generate quality control metrics. The mean depth of coverage was 36.9 (s ¼ 3:4).
Indels and SNVs were called using GATKUnifiedGenotyper, because ERDS relies on the
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generated VCF files for CNV genotyping. For CNVer, a specific alignment was strongly recom-
mended by the authors. Therefore, the reads were mapped to the reference using the Bowtie tool
(v0.12.9) [24] with options restricting the reads to the single position with the least number of
mismatches (options “-v 3-a-m 600—best—strata”).

Analysis
In order to have comparable calls between the different tools, only the CNVs were kept, even if
a given algorithm had called other structural variations. The numeric copy number was not
considered for the analysis, only the “gain” or “loss” status was used for a copy-number above
or below 2, respectively. Distinct calls having the same status and separated by less than 5 kb
were merged in order to remove biases resulting from call fragmentation, which can occur if no
statistical testing is used to insure the region between adjacent calls is not part of the same bio-
logical entity. Except for CNVer, this merging procedure had little effect on the calls, but more
than 50% of CNVer's calls were affected, suggesting a high call fragmentation for this algorithm
(S1 Fig.). All other analyses were conducted using the Python programming language and the
set of tools (CNV Analysis Toolkit) available on StatGen’s website (http://www.statgen.org).
Documentation and source control can be found on StatGen’s Bitbucket page (https://
bitbucket.org/mhi_statgen/cnvanalysistoolkit). For two CNVs to be considered "equal", the
concept of reciprocal overlap (RO) threshold was used. Here, we define RO as a tuple of the
number of overlapping bases divided by the size of both of the compared CNVs. Unless other-
wise specified, a threshold of 70% was used for all the analysis, meaning that when comparing
two copy number variable regions, the number of overlapping bases divided by the whole re-
gion had to be more than 70%. The inherited CNV rate is defined as the number of CNVs
shared by both twins and at least one parent divided by the total number of CNVs called for
the twins. Concretely, it was computed as 2� shared=ðN1 þ N2Þ, where shared corresponds to
the previously described CNVs and N are cardinalities of the twin’s CNV call sets.

The familial relationship classification test was used to estimate the randomness in CNV
calls under the assumption that if the calls are specific, unrelated and genetically related indi-
viduals would be easy to distinguish. The 9 pairs of twins were used along with the correspond-
ing 18 pairs of child-parent and 9 randomly generated pairs of unrelated individuals. The rate
of shared CNVs in each pair was then computed (S2 Fig.) and the k-means algorithm was
used in order to create three clusters representing the familial relationships. The classification
corresponding to the previously described clustering was used to compute the F1-Scores for
every tool. Concretely, this score corresponds to the weighted average of precision and recall:
F1 ¼ 2 � ðP � RÞ=ðP þ RÞ where P is the precision and R is the recall. This metric is often used
to evaluate classification test accuracy and, in this case, provides insight over the existence of
systematic bias of the genotyping method. For both the k-means and the F1-Score computa-
tions, the implementation from scikit-learn was used [25].

Ethics statement
The patients gave informed written consent and the ethics committee of the CHU Sainte-
Justine approved the project.

Results and Discussion

CNV call characterization
In order to evaluate the characteristics of the CNV calls obtained from the tested algorithms,
we computed statistics serving as assessment metrics, which included the number of calls per
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sample, the size of the calls, the mean distance between adjacent calls and the total portion of
the genome covered by CNV calls. Table 2 summarizes the results of these statistics for the dif-
ferent tools after merging the CNVs as described in the Methods. These statistics help charac-
terize the systematic behaviour of the algorithms such as CNV size overestimation, call
fragmentation (where a single true CNV is fragmented into multiple calls) or a high false posi-
tive rate. It is noticeable that the mean number of CNVs genotyped by Breakdancer is consider-
ably larger than what is expected when comparing to the other tools. One could argue that this
high number of calls, which are largely separated by a small number of bases (4kb), is symp-
tomatic of a higher false positive rate. It is also interesting to note that the CNV size is smaller,
on average, for Breakdancer and larger for CNVnator. This could be attributable to the type of
information used by the underlying algorithms (paired-end mappings versus read depth).
CNV size overestimation by read depth methods due to poor breakpoint resolution has previ-
ously been observed [15, 16] and justifies the high nucleotide based genome coverage of
CNVnator. Larger studies also estimate the genome coverage of CNVs to be between 3.7% and
12%, which is higher than what all tools except CNVnator detected in our study [26–28]. This
can be attributed the tested tools’ inability to detect all of the CNVs in a given genome. It could
also be due to an overestimation of the genome coverage because of systematic CNV size over-
estimation in the literature [29].

Quality metrics
To assess the tested algorithms' error rate, two metrics were used: (1) the rate of inherited
CNVs defined as the number of CNVs in a family that were validated by comparing both twins
and at least one parent by the total number of CNVs in the twins, and (2) the F1-score from
the familial relationship classification test. Table 2 summarizes the average value of these quali-
ty metrics for the different tools. The inherited CNV rate is a good indicator of how reliable a
tool is, as a high rate requires calls to be consistent in at least three individuals of the quartet
(both twins and one parent). The F1-score is a good method of assessing randomness in CNV
calls as non-specific ones would render unrelated pairs indistinguishable from twin-twin or
child-parent pairs. In other words, this test would detect CNV calls influenced by mapping ar-
tefacts or by specific genomic regions. Such systematic bias would be present across all individ-
uals (both related and unrelated), assuming consistency in the mapping algorithms and the
sequencing process. When considering call consistency and randomness in a family, CNVnator
and ERDS outperformed the other methods with higher inherited CNV rates (0.71 and 0.74,
respectively) and perfect familial classification F1-Scores. CNVer suffered from a lower consis-
tency in calling CNVs across related samples when compared to Breakdancer, as demonstrated
by the inherited CNV rates (0.23 and 0.43, respectively, Table 2). The familial classification test

Table 2. Characterization of the CNV calls for the different tools.

Mean Number of
CNVs

Mean size
(kilobase)

Mean distance between
adjacent CNVs (kb)

Genome
coverage

Inherited CNV
rate

Familial classification
F1 Score

CNVer 1751 (72) 38 (2) 1259 (77) 0.019 0.23 (0.02) 0.91

Breakdancer 4903 (299) 4 (5) 568 (43) 0.007 0.43 (0.04) 0.84

CNVnator 1231 (39) 190 (6) 2537 (93) 0.102 0.71 (0.01) 1

ERDS 2292 (106) 15 (0.8) 1234 (63) 0.013 0.74 (0.02) 1

The mean for all samples (n ¼ 36) is presented for the number, size, distance between CNVs and genome coverage. The standard deviation is given in

parenthesis. For the genome coverage, all the standard deviations were smaller than 1%. For the inherited CNV rate the mean and standard deviation is

across families.

doi:10.1371/journal.pone.0122287.t002
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revealed that CNVer’s call set had better delimitation between unrelated, twins and parent-
child pairs than Breakdancer, suggesting that even though it suffered from a lower consistency
within a family, it performed better at inferring the genetic relationship between individuals
(Table 2).

Agreement between tools
The agreement between the tools can be visualised through the use of the Venn diagrams pre-
sented in Fig. 1. Diagrams were generated prior to any filtering (Fig. 1A) and after filtering for
inherited CNVs (Fig. 1B). The difference between these two diagrams in a given space suggests
a low reproducibility of the calls as filtering eliminates the CNVs that were not found in both
twins and at least one parent. The reduction in the number of orphan calls for CNVer (90%)
and Breakdancer (97%) is particularly striking when compared to the other tools. Such a large
difference before and after filtering combined with the poor performance when considering the

Fig 1. Venn diagrams representing the agreement between different CNV calling tools. The first diagram (A.) represents the mean number of CNVs
shared between tools prior to any filtering based on familial relationship. B. is the mean number of CNVs shared between the tools after filtering for Mendelian
inheritance (i.e. CNVs that are in both twins and at least one parent). C. is the ratio of lost CNVs when filtering for Mendelian inheritance (1� B=A). DGV is the
Database of Genomic Variants.

doi:10.1371/journal.pone.0122287.g001
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previously described metrics suggests that these two methods suffer from a high false positive
rate. Interestingly, the set representing the CNVs that were detected using all the tools and
found in the DGV database lost a high amount of calls after filtering, suggesting that the inter-
section of all the methods is inappropriate as this call set might be affected by sequencing or
mapping biases. To find an alternative combination of methods that would be suitable for inte-
gration in genotyping pipelines, the rate of filtered CNVs for pairwise union and intersection
of tools was computed (Fig. 2). The intersection between two tools being a stringent criterion,
the inherited rate for intersections is generally higher than for unions, where no redundancy
between CNV calls is required. However, the trade-off lies in the lower number of discovered
CNVs when using the intersection between two tools. When keeping in mind the mean num-
ber of calls and the rate of inherited CNVs within a set, the intersection between ERDS and
CNVnator is a suitable alternative for integration in genotyping pipelines. This solution yields,
on average 2,006 CNVs where 81% were validated by the familial information. We have also
compared the CNV size, GC content (of the genomic sequence) and the distance to telomeres
or to the centromere between consistent and discordant CNVs in this set. A logistic regression
model was used to assess the association between these sequence features and the concordance
status. All of the features except the CNV size had significant association p-values after Bonfer-
roni correction (a ¼ 0:01=4 ¼ 0:0025), but the effects were too small to allow efficient filtering
based on these characteristics (S1 Table).

Fig 2. Rate of inherited CNVs when considering sets resulting from the intersection or union of pairs of tools. The rate of inherited CNVs is defined
as the number of regions that were detected in both twins and at least one parent, divided by the total number of distinct regions in the twins. The union
operation takes all the CNVs in either of the tools from a given pair and the intersection represents only the CNVs that were found by both tools. The mean
number of CNVs in each set is provided on top of the corresponding bars.

doi:10.1371/journal.pone.0122287.g002
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Breakpoint detection accuracy
One of the major limitations of previous CNV genotyping methods (e.g. microarrays or array
comparative genomic hybridization) was poor breakpoint resolution resulting in CNV size
overestimation and in their inability to detect smaller events [30]. This problem is expected to
be less apparent in whole genome sequencing data as resolution is on the single nucleotide
scale. To test the performance of the algorithms in accurately detecting CNV breakpoints, dif-
ferent reciprocal overlap (RO) thresholds were used to evaluate the effect on inherited CNV
rate (Fig. 3). Rates varied greatly, from above 60% for small RO thresholds to under 20% for
more stringent ones. To better quantify this difference, the mean slope of this curve was com-
puted for every algorithm (Fig. 3). The negative slope for all the methods was expected as the
inherited CNV rate should decrease when more rigorous thresholds are applied. Although a
limited breakpoint resolution is observable for every method, CNVnator and ERDS had better
performance (slopes of -0.29 and -0.27 respectively) when compared to Breakdancer and
CNVer (slopes of -0.41 and -0.61 respectively). In other words, CNVnator and ERDS were less

Fig 3. Rate of inherited CNVs as a function of the reciprocal overlap threshold used to declare copy-number variable regions identical. The slope,
representing the variation in the inherited CNV rate when the reciprocal overlap threshold varies, is given in parenthesis.

doi:10.1371/journal.pone.0122287.g003
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affected by the use of a more stringent overlap threshold, suggesting their breakpoint resolution
is more precise.

Conclusions
Different metrics were computed in order to thoroughly characterize the different CNV discov-
ery methods. The use of genetically related individuals provides a valuable means of compari-
son as an alternative to the use of a well characterised gold standard for CNV detection. The
maximum achievable inherited rate of CNVs (81%) was obtained using the intersection be-
tween ERDS and CNVnator, suggesting the importance of confirming CNV calls with inde-
pendent tools. It is also noticeable that even though these two algorithms performed noticeably
better than the others, roughly 20% of their calls were discordant with Mendelian inheritance
and the shared genome between monozygotic twins hypothesis. This is attributable to both
false positives, where a CNV is mistakenly detected in a twin, and false negatives, where a CNV
is correctly identified in a twin but goes unnoticed in the identical sibling. Such discordances
could partly be accounted for by using probabilistic models to integrate familial information in
the discovery process [31]. Further development of tools taking into account this important ge-
netic information, when available, would probably be greatly beneficial to the confidant geno-
typing of CNVs. The performance of the compared tools regarding other structural variations
was beyond the scope of this article. Only CNV calls were compared, because the spectrum of
detectable structural variants was variable across tools. It is also important for future studies to
assess the effect of dataset specific statistics on CNV calling. The effect of depth of coverage on
the efficiency of the different tools remains to be studied. Also, software related considerations,
such as the importance of the parameterization of the mapping tools, needs to be further ana-
lyzed. A robust understanding of the effect of all these parameters is a crucial step towards the
study of the phenotypic effect and population characteristics of CNVs.

Supporting Information
S1 Fig. Example of call fragmentation by CNVer in a family. The left histograms represent
the distribution of the distance between adjacent CNVs for every sample of the family. The
right pane represents the cumulative rate of CNVs separated by a given distance, i.e. the rate of
CNVs affected by merging adjacent variants with a distance threshold.
(PNG)

S2 Fig. Box plots of the rate of shared CNVs for different genetic relationships. Distribution
of the rate of shared CNVs for 9 pairs of twins, 18 pairs of twin-parent and 9 pairs of unrelated
individuals for all the considered tools.
(PNG)

S1 Table. Comparison of sequence characteristics between discrepant and concordants
calls for the CNVnator and ERDS intersection. Slope estimates and p-values are from a mul-
tivariate logistic regression model.
(DOCX)
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