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Abstract
We focus on Internet rumors and present an empirical analysis and simulation results of

their diffusion and convergence during emergencies. In particular, we study one rumor that

appeared in the immediate aftermath of the Great East Japan Earthquake on March 11,

2011, which later turned out to be misinformation. By investigating whole Japanese tweets

that were sent one week after the quake, we show that one correction tweet, which originat-

ed from a city hall account, diffused enormously. We also demonstrate a stochastic agent-

based model, which is inspired by contagion model of epidemics SIR, can reproduce ob-

served rumor dynamics. Our model can estimate the rumor infection rate as well as the

number of people who still believe in the rumor that cannot be observed directly. For appli-

cations, rumor diffusion sizes can be estimated in various scenarios by combining our

model with the real data.

Introduction
Online social media have become ubiquitous since the beginning of this century. People use so-
cial media in both everyday life and emergencies. As a result, analysis of large amounts of social
media data has become the target of researchers for both application-oriented topics and basic
scientific studies. For instance, Google flu trends (http://www.google.org/flutrends/) can report
influenza epidemics in any area in real time [1]. A combination of GPS information and texts
on social media, such as geotagged tweets, can predict the probability of infection on an indi-
vidual basis [2], which allows a novel perspective of public health. It is also possible to predict
movie box-office revenue [3], to estimate macroeconomic statistics such as unemployment
rates [4], and to scientifically study online retailers’ sales rank behavior as a typical case of
ranking fluctuations [5]. Furthermore, with the growing number of people using online social
media, politicians can no longer ignore their opinions [6–9].
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The ease and convenience of social media mean that online rumors diffuse more rapidly
and widely than their conventional counterparts. For instance, the retweet function on Twitter
enables a subscriber to forward copies of a received tweet to their followers with a single click,
allowing tweets to diffuse quickly to a substantial number of people. In 2013, the World Eco-
nomic Forum described online rumors as “digital wildfire,” and highlighted their risk [10, 11].
Like real wildfires, digital wildfires spread rapidly and can become uncontrollable, even if the
information is false or scientifically unfounded.

Since ancient Roman times, there have been reports of rumors that diffused in emergency
situations, such as natural disasters and wars [12, 13]. As recently as 2012, rumors diffused
when hurricane Sandy hit the north-eastern United States. For example, there were rumors
that the government was issuing food stamps for free and that the New York stock exchange
was underwater. In response to this problem, the U.S. government established a special section
for “rumor control” on the Federal Emergency Management Agency website (http://www.
fema.gov/hurricane-sandy-rumor-control) to correct the rumors. However, it is not just misin-
formation that spreads through social media. Useful information can also appear on social
media during an emergency situation, the study of which is a growing area of research [14–16].

Rumor diffusion, or information cascade, is associated with phase-transition phenomena
showing sudden qualitative changes under continuous variation of parameters, and has been
attracting attention from scientists [17–26]. Mathematical models of rumor diffusion have
been analyzed for many types of networks, such as random networks [20, 21] and scale-free
networks [22–24].

In this study, we examine real diffusion and convergence process of one particular rumor by
analyzing all Twitter data written in Japanese during the week beginning March 11, 2011, the
day of the Great East Japan Earthquake (the 3.11 Earthquake). We first show an overview of a
rumor diffusion, then we explain how a correction tweet sent from a city hall account diffused
enormously by retweets. We introduce a mathematical model of rumor diffusion inspired by
an agent-based stochastic contagion model of epidemics, widely known as the Susceptible-In-
fected-Recovered (SIR) model, and show that our model presents an accurate picture of rumor
diffusion dynamics by combining our model with the real data.

Results

Rumor Diffusion
An earthquake registering 9.0 on the Richter scale hit the east coast of Japan at 14:46 (JST) on
March 11, 2011, followed by many aftershocks. People rushed to the Internet in search of infor-
mation that had not yet been broadcast and to send messages to relatives and friends, as many
telephone lines were destroyed or jammed. Electricity and Internet connectivity resumed in the
Tokyo metropolitan area and western Japan, allowing many people to access social media such
as Twitter, the most popular social platform [27]. Most online information was helpful, but
false or unfounded information also appeared.

The abnormal sequence of aftershocks caused a liquefied petroleum gas (LPG) tank to fall at
15:15 in an oil company located on the eastern shore of Tokyo Bay, and the leaked gas ignited.
People living near the gas tank uploaded photos of the fire to Twitter soon after the accident,
along with worried comments. A series of gas tank explosions began at 17:04 [28] and the num-
ber of tweets increased, many expressing fear.

At around 18:00 the first rumor appeared: “Please spread: To those people who live close to
the east shore of Tokyo Bay! Due to the explosion of oil tanks, harmful chemical materials may
fall with rain soon. Bring your umbrella and rain coat with you to protect your skin from the
dangerous rain!!” This warning turned out to be false information with no scientific basis, but
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many people spread the rumor via Twitter, as shown in Fig. 1. “Individual Dynamics” in Fig. 1
shows the temporal activity of individual users ordered by the time of the first tweet in the data-
set on the vertical axis. The numbers on the vertical axis are normalized by the whole number
of tweets and the scale on the horizontal axis is measured per minute. Successive dots for the
same horizontal direction mean that the same user has tweeted continuously.

The false information was transmitted by a Twitter user who had roughly 360 followers in
our data. However, in the end, a total of 88,657 users were eventually involved in the rumor dif-
fusion (38,226 users) and rumor correction (56,818 users). Note that we cannot identify the
only one user who actually started the rumor, because some users who tweeted the rumor have
already deleted their tweets, and they do not appear in our data. Further, the same rumor
emerged almost simultaneously from different users.

Rumor Convergence
By observing the tweet data in detail, we found that the first correction tweet, which mentions
clearly that the rumor tweets about the chemically contaminated rain were scientifically false,
was submitted at 19:30 on March 11, just 90 minutes after the appearance of the first rumor
tweet. However, at this stage, we found that the number of rumor tweets grew much faster than
the number of rumor-correction tweets, as shown in Fig. 1. Obviously, the correction tweet
could not stop the diffusion of the rumor in the early stages.

The blue line in Fig. 1 shows that the number of correction tweets increased enormously
around 15:00 on March 12 (t = 2340), about 21 hours after the first rumor tweet. This corre-
sponds to the time that an official home page of the City Hall of Urayasu, located near the ex-
ploded gas tanks, announced that the rumor of chemically contaminated rain was not
scientifically valid. In addition, the City Hall sent correction tweets directly to around 15,000
followers, stating “After the LPG tanks explosion, there are rumors that harmful chemically
contaminated rain may fall. However, the Earthquake Disaster Prevention Division of the City
Fire Department confirmed that there is no scientific basis for these rumors. Please be careful
not to be confused by the rumors.” After this municipal action, the rumor-correction tweets
spread quickly, and the rumor tweets soon disappeared.

Fig. 2 shows the time evolution of the retweet networks about the rumor tweets and correc-
tion tweets. Here, each node represents a Twitter user and each link represents at least one
retweet between users. At 21:00 on March 11 (Fig. 2(a)), three hours after the first rumor, there
were many rumor tweets (shown by red dots) and almost no correction tweets (blue dots).
About 15 hours later (Fig. 2(b)), the numbers of rumor tweets and correction tweets were
about the same. Soon after the official correction tweets from the City Hall (Fig. 2(c)), the cor-
rection tweets overwhelmed the rumors and the rumors disappeared (Fig. 2(d)).

The largest number of rumor-correction retweets was 21,204, originating from the City
Hall. The second largest was 3,402 by the official information center for the earthquake, while
the largest number of rumor retweets was 2,078. The final number of nodes in the rumor-cor-
rection retweet network is 53,071. This suggests that approximately half of the nodes in the
rumor-correction network are linked directly to the City Hall. Furthermore, not only directly
retweeted users, but also 37.3% of rumor-correction tweeted users mentioned the City Hall’s
tweet. Thus, the City Hall’s correction tweet is outstanding in this case.

There are also several cases in which government officials or public announcements play
key roles in stopping rumors. For example, during the aftermath of the 1923 Great Kanto
earthquake, the Tokyo Metropolitan Police Department distributed flyers saying that punish-
ment would be meted out to those who told false rumors [29]. An official announcement from
the Ministry of Finance and the Bank of Japan stopped a bank run caused by a rumor that led
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Fig 1. Time evolution and individual dynamics of rumor tweet R(t) (red) and rumor-correction Rc(t) tweets (blue). Time series is per minute and
normalized by the total number of tweets. In the plot of individual dynamics, the vertical axis is user index, which is ordered by the time of the first appearance
in the data set and normalized by the entire tweet volume.

doi:10.1371/journal.pone.0121443.g001
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to the withdrawal of 8.7 million dollars during one week in 1973 [30]. Recently, in 2012, the U.
S. government corrected rumors during Hurricane Sandy, on the Federal Emergency Manage-
ment Agency website. In India, there is a law to crack down on rumors that might cause panic
during disasters [13]. The Chinese government launched an anti-Internet rumor website
(http://py.qianlong.com/) with the cooperation of executives from major Internet companies
in 2013. Our results and these pieces of evidence reflect the possibility that official institutions
can play active roles in rumor convergence.

Rumor Simulation
To understand the macroscopic dynamics of rumor diffusion and convergence from the per-
spective of microscopic Twitter users’ interactions, we simulated rumor diffusion and conver-
gence based on stochastic SIR(susceptible-infected-recovered) model [31], which is one of the
well-known minimal models of epidemics such as the influenza virus and Ebola, and repro-
duces dynamics such as the exponential growth of infected people. Historically, deterministic
and stochastic SIR models have been proposed. The deterministic model describes dynamics of

Fig 2. Snapshots of retweet network in three-hour time windows. Each node represents an active user and a link shows a retweet. (a) The rumor (red) is
well diffused at 21:00–23:59 on March 11. (b) The rumor and correction (blue) coexist at 12:29–15:30 on March 12. (c) The correction spreads quickly soon
after the City Hall tweet at 15:31–18:30 on March 12. (d) The rumor converges at 21:00-23:59 on March 12.

doi:10.1371/journal.pone.0121443.g002
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population for each state(susceptible-infected-recovered) by ordinary differential equations.
On the other hand, the stochastic one describes the dynamics of each individual state as the fol-
lowing chemical reaction processes or contact processes: S + I! 2S(α) and I! R(β), where α
and β represent reaction rates.

There are remarkable analogies between epidemics and rumor diffusion, and many studies
on rumor diffusion have employed the SIR model [17–19]. In the case of epidemics, viruses
spread by physical transmission, such as through coughing; on the other hand, vicious rumors
spread by virtual contact over the Internet. After the transmission, some people become in-
fected in the case of epidemics and, similarly, some people believe the rumor (become infected
with a vicious rumor) and spread the rumor through their tweets, causing rumor spread. After
the infection, people recover over time, while in the case of rumors, people become tired of
communicating or have the accurate information, and stop tweeting the rumor. We may regard
public announcements as corresponding to vaccines in the case of epidemics and, therefore,
many people move from a susceptible state to a recovered state. It is not easy to judge when a
patient has recovered in the case of epidemics; however, in the case of rumors, we can precisely
observe the alteration of users’ state from an infected state to a recovered state through
data analysis.

Since our model is inspired by traditional SIR model, we employ the following three states
for users [32], as shown in Fig. 3.

• Ground state (G): users who have not encountered the rumor

Fig 3. State transition diagram of our model with transition probabilities per minute α, β, and ρ. Users tweet the rumor depending on their state
(Ground, Excited, and Final) with probability qE, and qG = qF = 0, respectively. Total number of users is n = nG(t) + nE(t) + nE(t). α changes with the number of
rumors, and β and ρ change with the number of rumor-corrections as given by Equation (2), (3), and (4).

doi:10.1371/journal.pone.0121443.g003
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• Excited state (E): users who believe the rumor

• Final state (F): users who already know that the rumor is false

Users tweet a rumor stochastically, depending on their state. At first, most users are in the
Ground state. Upon receiving a rumor tweet, the user has a probability α of becoming infected,
in which case he/she enters the Excited state. In the Excited state, he/she has a high probability,
qE, of submitting a rumor tweet. When the user receives a correction tweet, he/she moves to
the Final state with probability β. A user can go directly from the Ground to the Final state
with probability ρ (Fig. 3). We saw many examples of users who only submitted a correction
tweet, with no history of originally submitting the rumor. We assume there are n users in total,
divided between the Ground state (nG(t)), Excited state (nE(t)), and Final state (nF(t)). Our ini-
tial condition is nG(0) = n, nE(0) = 0, and nF(0) = 0.

In order to run simulations, we set the seven parameters (r, qG, qE, qF, α, β, ρ). We systemati-
cally estimated these parameters, as shown in Table 1, to minimize the error between real data
and simulation results. First, we determine the tweet probability r from real data. We define the
active time of each user as the time range from the first tweet to the last tweet. From the active
time, we can calculate the number of active users U(t) as the number of users who are active at
time t. We calculate the tweet probability from the number of active users and the number of
whole tweetsW(t) at time t.

r ¼
�
WðtÞ
UðtÞ

�
� 0:01: ð1Þ

Second, we set the probability qG and qF as zero because users in the Ground state do not know
the rumor, and users in the Final state have lost interest in the rumor or they notice that the
rumor is false.

Finally, we choose the other four parameters (α, β, ρ, qE). We assume that these parameters
are determined by the following representations:

a ¼ kð1Þa RðtÞ þ kð2Þa ð2Þ

b ¼ kð1Þb RcðtÞ þ kð2Þb ð3Þ

r ¼ krRcðtÞ ð4Þ

qE ¼ kqE ð5Þ

where R(t) is rumor density and Rc(t) is rumor-correction density. We choose these six param-

eters, ðkð1Þa ; kð2Þa ; kð1Þb ; kð2Þb ; kr; kqEÞ to run simulations. In this procedure, we use the rumor density

and individual dynamics.
For rumor density, we define the real time series Rr(t) as follows.

RrðtÞ ¼
wðtÞ
WðtÞ ð6Þ

where w(t) is the number of rumor tweets at time t. We also define the simulated time series
Rs(t), which we can calculate using the model parameters as follows. We define random vari-

ables Si(t) and Q
ðsÞ
i ðtÞ for each user i with state σi(t) 2 {G, E, F} by using uniform random
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numbers xi,t, yi,t 2 [0, 1).

SiðtÞ ¼
1 xi;t < r

0 otherwise
ð7Þ

(

QðsÞ
i ðtÞ ¼

1 yi;t < qs

0 otherwise
ð8Þ

(

From these variables, we can define Rs(t) as follows.

RsðtÞ ¼

X
i:siðtÞ2G

SiðtÞQðGÞ
i ðtÞ þ

X
i:siðtÞ2E

SiðtÞQðEÞ
i ðtÞ þ

X
i:siðtÞ2F

SiðtÞQðFÞ
i ðtÞ

X
i

SiðtÞ
ð9Þ

The average behavior of Rs(t) of many trials is given as follows, with the condition that
qG = qF = 0.

hRsðtÞi ¼
nGðtÞrqG þ nEðtÞrqE þ nFðtÞrqF

nr
¼ nEðtÞqE

n
ð10Þ

Table 1. Detailed values of simulation parameters in Fig. 6(a). Tweet density of rumors R(t) and rumor-
corrections Rc(t) are introduced. Initial number in Excited state is nE(0) = 0.

Values

n 106

r 0.010

qG 0

qE 3.3 × 10−2 (t = 1289)

2.9 × 10−2 (1840 � t � 1950)

2.1 × 10−2 (1970 � t � 2160)

2.5 × 10−2 (otherwise)

qF 0

α 3.5 × 10−2 (t = 1140)

0.35R(t) (1141 � t � 1340, 1423 � t � 2160)

0.35R(t) + 0.12 (t = 1289)

0.35R(t) + 1.0 × 10−2 (1740 � t � 1750)

0.35R(t) + 0.15 (t = 1765)

0.79R(t) (1341 � t � 1422)

1.1R(t) (2161 � t � 3240)

β 3.2 × 10−2 (1290 � t � 1340)

5.9 × 10−3 (1341 � t � 1739)

6.5 × 10−2 (1740 � t � 1790)

0.30Rc(t) + 3.5 × 10−3 (2161 � t � 2475)

0.30Rc(t) + 9.5 × 10−3 (2476 � t � 3240)

3.5 × 10−3 (otherwise)

ρ 0.80Rc(t) (2161 � t � 3240)

0 (otherwise)

doi:10.1371/journal.pone.0121443.t001
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For individual dynamics, we focus on the first posting line (FPL), which corresponds to the
normalized accumulated number of users who tweet rumors. We define real FPL Fr(t) as fol-
lows.

FrðtÞ ¼
Xtmax

t¼tmin

NðtÞ
WðtÞ ð11Þ

Here, N(t) is the number of users who tweet a rumor for the first time at time t. We also define
simulated FPL Fs(t). We simulate twenty times for each parameter, and calculate Rs(t) and Fs(t)
as the median value.

Next, we define errors �1 and �2 as follows.

�1 ¼
Xtmax

t¼tmin

RrðtÞ � RsðtÞ
hRri

� �2

ð12Þ

�2 ¼
Xtmax

t¼tmin

FrðtÞ � FsðtÞ
FrðtÞ

� �2

ð13Þ

�1 and �2 are the square of the relative error between the real and simulated time series. Howev-
er, we use the average of time series hRri instead of Rr(t) in the denominator of Equation (12)
to avoid overestimation caused by the case that the denominator Rr(t) has a small value.

Depending on the clear peaks and the trends in the empirical result of rumor spreading as
shown in Fig. 4, we divide the time series into seven parts manually, and estimate the parame-
ters in each time window to minimize the errors. We assume that there are two causes for the
peaks of rumor density: one is the news of the gas tank explosion (t = 1289), and the other is
the hub user who has many connections with users and a great spreading force (t = 1765).

Fig 4. (a) Segmentation of the time series and estimated parameters. Vertical dashed lines represent the
boundaries of the segments in the simulation. These boundaries are determined manually by changes in the
tweet density and curvature of individual dynamics. (b)Time series of parameter values in the simulation
shown in Fig. 6(a). (Top) Coefficients of time-varying terms in Equation (2), (3), and (4). (Bottom)
Coefficients of time-invariant terms in Equation (2), (3) and (5).

doi:10.1371/journal.pone.0121443.g004
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However, the order is different between �1 and �2; therefore, we define Rank(�1) and Rank
(�2) as rank in ascending order of each parameter sets. In addition, we define the optimal pa-

rameter set ðkð1Þ�a ; kð2Þ�a ; kð1Þ�b ; kð2Þ�b ; k�r; k
�
qE
Þ as follows.

kð1Þ�a ; kð2Þ�a ; kð1Þ�b ; kð2Þ�b ; k�r; k
�
qE

� �
¼ arg min

ðkð1Þa ;k
ð2Þ
a ;k

ð1Þ
b

;k
ð2Þ
b

;kr;kqE Þ
Rankð�1Þ þ Rankð�2Þ½ � ð14Þ

where “arg min” is the argument for the minimization of Rank(�1) + Rank(�2). Fig. 5 shows an

example of the heat map of the sum of the ranking with the parameters kð1Þa and kð1Þb in t 2
[2161, 2475]. The other parameters do not appear in Fig. 5, but they are optimized in Equation

(14) with kð2Þ�a ; kð2Þ�b ; k�r; k
�
qE

� �
¼ ð0; 3:5� 10�3; 0:80; 2:5� 10�2Þ. In this case, we choose the

parameters kð1Þ�a ¼ 1:1 and kð1Þ�b ¼ 0:30 from this heat map.

The top chart in Fig. 6(a) is the simulated rumor density, Rs(t), and the second chart repre-
sents the simulated individual dynamics of users’ tweets. Both charts are close to the real data
shown in Fig. 1, by choosing appropriate parameters. The third chart is the dynamics of por-
tions with each state. From the values of parameters, we can estimate the probability of submit-
ting a tweet in each state (qG, qE, qF), the probability of a transition to another state (α, β, ρ) in
Fig. 4(b) and Table 1, and the number of users in each state (nG(t), nE(t), nF(t)) in Fig. 6(a),
which are not directly observable.

Using this model, we can simulate various situations of rumor diffusion. Fig. 6(b) shows a
simulation in which the official announcement of City Hall is declared two hours earlier than
the actual data. The peak around t = 2300 becomes clearly smaller than the actual case of Fig. 6
(a). This result demonstrates that this early announcement can work as a preventive effect and
reduces the rumor spread.

Fig 5. Heat map of optimal parameters in t 2 [2161, 2475] shaded byRank(ϵ1) + Rank(ϵ2), Equation
(14). Horizontal axis is kð1Þ

a in Equation (3) and vertical axis is kð1Þ
b in Equation (2) which both vary with time.

doi:10.1371/journal.pone.0121443.g005
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Fig 6. (a) Simulation of rumor diffusion reproducing the empirical result of Fig. 1. (b) Simulation of rumor diffusion if correction tweets had
appeared 120minutes earlier. By comparison of (a) and (b), the Rumor Density R(t) around t = 2,400 is almost diminished and the final number of rumor
tweeted users decreased as shown in Individual Dynamics.

doi:10.1371/journal.pone.0121443.g006
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Discussion
Most rumors are not serious, but sometimes rumors can cause significant confusion and result
in time and economic losses. While conventional rumors are difficult to observe, and their dif-
fusion and convergence take a long time, rumors that are spread electronically (e.g., via Twit-
ter) are precisely observable, and the characteristic time scale is much shorter, as we have
seen here.

With regard to the rumor convergence, we found that the official announcement played a
key role. Here, 37.3% of users who received a rumor-correction tweet from City Hall directly
retweeted the message. On the other hand, the most retweeted user was only connected to 5.4%
of the users who received the rumor tweet. There are several pieces of evidence that an official
announcement can stop the rumors across the world, because governments aggressively inter-
vene to correct rumors [13, 29, 30]. Our result regarding rumor convergence supports this evi-
dence that the official announcement can play a key role in stopping rumors.

The agent-based stochastic model of rumors which is inspired by SIR model helps us in un-
derstanding the complicated social phenomenon of when rumors spread. As we have shown,
the model can reproduce the actual time evolution of rumors. Through a process of parameter
fitting using the real data, we can estimate quantities such as “the infection rate of the rumor”
and “the ratio of users who still believe the rumor,” which cannot be observed without the
model. In addition, we can repeat numerical experiments to establish how to suppress rumor
growth. For example, we show that the total number of rumor tweets would have been much
smaller had the City Hall issued a correction tweet earlier than it did.

There are four tasks to enhance the applicability of the present model. First, we should ex-
tend our analysis to languages other than Japanese to clarify language dependence. Second, we
need to introduce fully automatic categorization of tweets into rumors and rumor-corrections,
as there were cases in which our separation algorithm required human judgment, which was
quite time consuming. Third, the data assimilation method can be revised to estimate more ac-
curate time-dependent values with a lower calculation cost. At present, we simply calculate the
square of relative errors. Finally, in this paper, we proposed our model from the view point of
minimal modeling, and our model satisfies all major properties of rumor diffusion and conver-
sion observed in the real data. Other types of modeling for the rumor diffusion and conversion
may also be possible. Comparison between other types of model such as Lotka-Volterra preda-
tor-prey model of ecosystem and our model is also an interesting problem.

Rumor diffusion is a universal phenomenon, can occur anywhere in the world, and has
throughout history. Here we study only one empirical case of rumor diffusion, but we believe it
is important to discover the universal properties of rumors beyond the borders of languages
and nationalities. As we now have tools to observe rumors in cyberspace, it will become possi-
ble to detect malignant rumors automatically at an early stage in real time.

Materials and Methods

Data description
We analyzed all Japanese tweets from 09:00, March 11, 2011, to 09:00, March 17, 2011. In total,
these included 179,286,297 tweets from 3,691,599 users (Fig. 7). In Fig. 8, cumulative distribu-
tion of tweets per users is plotted in semi-log scale. The median of the tweets during this week
is seven tweets per user while the mean is 48. The most tweeted users are “bots” that automati-
cally generate tweets about missing people. The bots repeated their announcement and tweeted
more than 150 thousand times during the week. Here, we found that a stretched exponential
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Fig 7. Number of whole tweets per minute fromMarch 11 to 17 in 2011 (top). Number of tweets per
second with ground acceleration at the very moment of the quake on March 11 (middle) and 15
(bottom).Red colored areas in the top figure are enlarged in the lower figures, which depict the very moment
of the quakes. There are two big earthquakes on March 11 and 15 in 2011. One is the Great East Japan
earthquake that registered 9.0 on the Richter scale in the Tohoku area on March 11, and the other hit
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function is well-fitted as follows.

Pð� xÞ ¼ exp
�lðx � 1Þg

t

� 	
ð15Þ

where λ = 1.0, γ = 0.39, and τ = 2.9 that are estimated in the range x 2 [1, 2800] by Levenberg-
Marquardt algorithm [33].

The data format for each tweet consists of the following tags: (1) tweet ID (simple sequential
number); (2) user ID (anonymously assigned number); (3) time stamp in seconds; and (4) the
main text of the tweet, limited to 140 Japanese characters. Official data were provided by Twit-
ter Japan, Inc. through Project 311 [34]. The project was organized by Google Japan, and sever-
al companies gave support by providing data, including broadcasted TV programs, newspaper
articles, and GPS information from mobile phones and automobiles. The aim of the project
was to extract insights that might be useful in the event of other disasters by attracting re-
searchers who were interested in analyzing large amounts of data from this confusing period.
The project was held in 2012 for two months with the final session of the participants. During

Shizuoka area (middle-eastern Japan) on March 15, with 6.4 on the Richter scale. The ground acceleration
data are obtained from the Japan Meteorological Agency (http://www.seisvol.kishou.go.jp/eq/kyoshin/jishin/
index.html).

doi:10.1371/journal.pone.0121443.g007

Fig 8. Cumulative distribution of number of tweets per user during one week after the quake x in a semi-log plot. Red dashed lines is the stretched
exponential function introduced in Equation (15). (Inset) An enlarged part of the same figure in x 2 [1, 200]. The most tweeted user is known as a “bot” who
tweeted 15,635 times during the week. The bot is a kind of robot that automatically tweets information about the missing person’s safety with the hash tag
“#pf_anpi.” The median value of tweets per user during the week is seven, that is, one tweet per day.

doi:10.1371/journal.pone.0121443.g008
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the period, the participants can use the data under the agreement with Twitter Japan Inc. The
same data we analyzed in our paper can be purchased from Twitter for the purpose of scientific
study (https://twitter.com/).

Identify rumor and correction
We identified those rumor tweets that included false information by choosing appropriate key-
words. More than 30 rumors from different sources were confirmed during the week under ob-
servation. An example of a rumor was “For prevention of side effects from radioactivity, it is
good to drink mouthwash including iodine and to eat as much seaweed as you can.” This infor-
mation was rapidly revealed to be false. We then chose the largest of these rumors.

Since rumor tweets often appear simultaneously with rumor-correction tweets, distinguish-
ing rumors from rumor corrections is not a straightforward process. To avoid possible mislead-
ing tweets, we randomly selected and read approximately 10,000 tweets to differentiate
between rumors and corrections. We carefully extracted rumor and rumor-correction tweets
by combining logical conjunctions and negations.

First, we selected tweets including the word “cosmo oil (コスモ石油),” the name of the oil
company that had the accident, yielding 164,811 tweets. Among these tweets, we identified
rumor-related tweets that included one of four keywords as listed in Table 2 giving us 106,278
tweets. We then separated these remaining tweets into rumor and rumor-correction tweets by
searching for the keywords listed in Table 3. To divide the tweets, we identified a tweet as a

Table 2. Keyword 1 that used for identifying rumor-related tweets as shown Fig. 9.

Keyword (English) Keywords (Original form)

umbrella 傘

mac カッパ

harmful material 有害物質

raincoat レインコート

doi:10.1371/journal.pone.0121443.t002

Table 3. Keyword 2 for identifying correction tweets as shown Fig. 9.

Keyword (English) Keywords (Original form)

correction 訂正

error デマ,デマ,デ　マ, [single/double space inserted]

bum steer ガセ

misinformation 誤情報

contradiction 否定

fallaciousness 虚偽

chain mail チェーンメール,チェーンメイル [different character expression]

no fact at all 事実はありません

harmlessness 無害

said no (without “said dangerous”) ないそうです [without 危ないそうです]

lie 嘘,ウソ [Chinese/Katakana character expression]

no basis in fact 事実無根

without the occurrence 発生しない

mistake (without “no mistake”) 間違 [without 間違いない]

LP gas LPガス

false report 誤報

We identify a correction when a tweet contains at least one of the following keywords.

doi:10.1371/journal.pone.0121443.t003
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rumor-correction tweet if it contained more than one keyword relating to rumor correction, as
shown in Table 3. The remainder of the tweets were identified as rumor tweets (Fig. 9).

Finally we had 40,448 rumors from 38,226 users and 65,830 rumor-corrections from 56,818
users for the analysis. Our algorithm has 98% accuracy for rumor and rumor-correction tweets,
which we established by checking 100 random tweets. The misleading tweets were caused by
tweets that were difficult to distinguish between rumor and rumor-correction. (Some examples
of the rumor, correction and mis-categorized tweets are listed in S1 Text. Only 15.7% of users
who tweeted rumors sent rumor-correction tweets. There may have been users who had sent
rumor tweets who just deleted the tweet when they have noticed the wrong information. How-
ever, we cannot trace these activities from this data.

Supporting Information
S1 Text. Examples of rumor, rumor-correction and mis-categorized tweets. This document
contains the tweet examples. The original tweets are Japanese, but they are translated into En-
glish by the authors.
(PDF)

Fig 9. Flow diagram of the tweet detection algorithm for rumor and correction. By combining several keywords listed in Table 2 and 3, rumor and rumor-
correction tweets are extracted.

doi:10.1371/journal.pone.0121443.g009
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