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Abstract
Vaccines that trigger an influenza-specific cytotoxic T cell (CTL) response may aid pandem-

ic control by limiting the transmission of novel influenza A viruses (IAV). We consider inter-

ventions with hypothetical CTL-inducing vaccines in a range of epidemiologically plausible

pandemic scenarios. We estimate the achievable reduction in the attack rate, and, by adopt-

ing a model linking epidemic progression to the emergence of IAV variants, the opportunity

for antigenic drift. We demonstrate that CTL-inducing vaccines have limited utility for modi-

fying population-level outcomes if influenza-specific T cells found widely in adults already

suppress transmission and prove difficult to enhance. Administration of CTL-inducing vac-

cines that are efficacious in "influenza-experienced" and "influenza-naive" hosts can likely

slow transmission sufficiently to mitigate a moderate IAV pandemic. However if neutralising

cross-reactive antibody to an emerging IAV are common in influenza-experienced hosts, as

for the swine-variant H3N2v, boosting CTL immunity may be ineffective at reducing popula-

tion spread, indicating that CTL-inducing vaccines are best used against novel subtypes

such as H7N9. Unless vaccines cannot readily suppress transmission from infected hosts

with naive T cell pools, targeting influenza-naive hosts is preferable. Such strategies are of

enhanced benefit if naive hosts are typically intensively mixing children and when a subset

of experienced hosts have pre-existing neutralising cross-reactive antibody. We show that

CTL-inducing vaccination campaigns may have greater power to suppress antigenic drift

than previously suggested, and targeting adults may be the optimal strategy to achieve this

when the vaccination campaign does not have the power to curtail the attack rate. Our re-

sults highlight the need to design interventions based on pre-existing cellular immunity and

knowledge of the host determinants of vaccine efficacy, and provide a framework for as-

sessing the performance requirements of high-impact CTL-inducing vaccines.
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Introduction
Producing the current generation of IAV vaccines—which reduce host susceptibility by induc-
ing antibodies against viral surface proteins—requires antigenic characterisation of the IAV
strain. Intensive global surveillance of seasonal strains enables predictions for the dominant
IAV in the coming influenza season, facilitating the production of sub unit B cell vaccines with
average efficacy of approximately 60 per cent in adults aged 18–65 [1]. However such vaccines
exhibit lower efficacy in the elderly [2], may require two doses to be effective in children [3],
and provide limited if any protection against pandemic viruses [4–7]. Furthermore, timely im-
plementation of traditional vaccines developed specifically for newly emerging pandemic
strains is unlikely to be achievable [8]. Vaccine stockpiles that protect against infection with, or
transmission of, a broad set of IAV viruses remain desirable.

Prime-challenge experiments in animal models demonstrate that CTLs induced by exposure
to a heterologous strain reduce viral loads and disease severity [9, 10]. Whilst experimental data
on CTL responses in humans challenged with IAV is rare (but see [11, 12]), epidemiological stud-
ies have provided indirect evidence that CTL-immunity—mediated by antigenic-specific T cells
directed toward conserved internal proteins [13–15]—reduces viral shedding [16, 17] and illness
[17–19]. Collectively these studies hint that CTL responses, while highly unlikely to induce steri-
lising protection, decrease rates of onward transmission, and thus that enhancement of CTL re-
sponses with vaccines could suppress transmission of novel IAVs [20]. Understanding human
cytotoxic T lymphocyte (CTL) responses to influenza, and the effect of these on disease pathogen-
esis, is key to developing an efficacious CTL-inducing vaccine and optimal strategies for its use.

Recent cohort and challenge studies have established that influenza-specific T cells that
cross-react with pandemic and seasonal IAV are present in most adults without relevant
strain-specific antibodies [12, 21–23]. CTL responses to pandemic, seasonal, and laboratory vi-
ruses are of similar prevalence and magnitude [22], and show little variation with birth cohort
[24], consistent with immunological evidence that influenza-specific T cell immunity is broadly
cross-reactive [25] and that CD8+ T cell epitopes are constrained by functional requirements
[26, 27]. The prevalence of CTLs varies with age; children are unsurprisingly less likely to dis-
play T cell immunity to IAVs [28] and T cell immunity may also decline in elderly hosts [24].

Cellular responses to a novel IAV may differ between naïve and primed hosts [29], indicat-
ing that the epidemiology associated with naturally acquired CTL responses is a key consider-
ation when exploring the impact of large-scale augmentation of cellular responses with
vaccines. There is still uncertainty about the individual roles of CD4+ T cells [12], CD8+ T
cells [30] and other cross-reactive responses [31], in mediating heterosubtypic IAV immunity
and the functionality of widespread naturally acquired T cells in protecting against IAV in hu-
mans is unclear. Recently Sridhar et al. identified late effector cytokine secreting influenza-spe-
cific T cells as correlated with reduced severity of pH1N12009 infection [17]. Highly elevated
levels of effector CTLs present following an acute infection may lead to sub-clinical infection
severity [20]. Poly-cytokine producing CD8+ T cells—likely to have greater efficacy in control-
ling infections—are relatively rare, which may suggest the available CD8+ T cells are function-
ally limited [22]. Memory CD8+ T cells enable ready clonal expansion and may play a role in
regulating influenza infections [32] particularly if they are abundant [33]. There is likely a rich
distribution of potentially protective influenza-specific T cells across the population.

The host-level efficacy of CTL-inducing vaccines will likely depend sensitively on vaccine de-
sign. A number of vaccine formulations—including live attenuated vaccines, lipopeptide vaccines
and viral vector vaccines—are able to induce influenza-specific T cells in vaccinated animals/hu-
mans. Experimental lipopeptide vaccines inducing virus-specific CTL responses in mice have
been shown to provide a strong anti-viral effect, with IFN-γ producing T cells peaking around
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one week after vaccination, and the resulting memory CD8+ T cells long-lived and readily
boosted upon challenge [34]. A corresponding reduction in viral load in vaccinated animals is as-
sociated with reduced morbidity and mortality [35], and findings in a related model systemmay
be reasonably assumed to further constrain infection transmission [36]. Critically, there are indi-
cations that the ‘immunodomination’ of some epitope-specific CTLs by those directed toward
other epitopes may be misaligned with the relative virus clearing capacities of these cells, suggest-
ing that naturally induced CTL responses may not realise the full potential of CTLs to control in-
fection [37, 38]. A major complication in developing these vaccines for use in humans is the large
number of MHC class I haplotypes each recognising different T cell epitopes, making high levels
of effective vaccine coverage a challenge at a population level [20]. Current vaccine approaches in-
clude development of multi-epitope vaccines targeted towards the six most common HLA super-
type families, which collectively represent<85 per cent of the population [35].

Live attenuated influenza vaccines trigger the production of influenza-specific T cells in
children, but may not increase numbers of influenza-specific T cells in adults [39], indicating
antigen presentation as well as prior exposure may influence vaccine efficacy [40]. If a vaccine
cannot significantly boost cellular protection in hosts with pre-existing influenza-specific T
cells, it may have greater utility for priming naïve CTL precursors in children. In contrast,
strain-specific sub-unit B cell vaccines developed for pandemic influenza can show reduced ef-
ficacy in young hosts [41].

Viral vector vaccines—using recombinant viruses expressing NP and M1 IAV genes—have
been shown to induce influenza-specific CD4+ and CD8+ T cell responses in adults of all ages
[42, 43] that reduce disease severity [44]. Viral vector vaccines can induce protective responses
that last in excess of 10 months in mice [45]. The efficacy of this class of vaccines in children is
not yet known. Vaccines able to boost CTL responses in hosts with cross-reactive memory
CD8+ T cells may show broad efficacy across age ranges, and may also have utility in prevent-
ing T cell immunosenescence in elderly hosts [43].

Traditionally models capturing influenza transmission have not been configured to account
for population heterogeneities in cellular immunity and thus have limited utility to predict the
impact of a realistic candidate CTL-inducing vaccine. Recently Arinaminpathy et al. consid-
ered the impact of widespread distribution of a partially protective vaccine targeting conserved
antigen on pandemic attack rates and the turnover of seasonal influenza strains [46]. The
adopted model tracks the emergence of new clusters of antigenic variants of a single influenza
subtype. Infection by a strain in one cluster confers partial protection against strains in another
depending on their phenotypic relationship [47], thus capturing the influence of partially pro-
tective cross-reactive antibody. However the model does not incorporate the heterologous
cross-protective effects that may be offered by CTLs induced via natural infection, or consider
the possibility that vaccine efficacy is heterogeneous with host infection history.

Models for the infection dynamics of pandemic IAV must consider the potential for pre-ex-
isting cellular and humoral immunity to the pandemic virus in the population, which may vary
considerably between candidate pandemic IAVs. Cross-reactive antibodies to pH1N12009 de-
tectable via haemagglutination inhibition assays were only found in elderly hosts prior to pan-
demic onset in 2009 [48]. In contrast, the pH1N12009 T-cell epitopes were highly homologous
with those of recently circulating seasonal viruses [13] and cross-reactive T cells common in
adults [22]. However at least one of the immunodominant peptides for pH1N12009 was differ-
ent to those expressed by cells infected with IAV viruses circulating in the last 60–90 years
[14], which may have contributed to the ability of this virus to trigger an outbreak of pandemic
proportions. Recently an H3N2 IAV of swine origin (H3N2v) caused over 300 confirmed cases
of influenza in the US. Instances of human-human transmission have been reported, and al-
though there were likely many undetected cases, transmission was not sustained [49].
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Characterisation of the relationship of the T cell epitopes of H3N2v to those of recently and
historically circulating influenza suggests that the NP and M proteins of H3N2v are closely re-
lated to those in seasonal viruses circulating prior to 1950. However H3N2v is also antigenically
related to a human H3N2 virus from the 1990’s that has been circulating in swine for a number
of years [50], and indeed seroprevalance of cross-reactive antibodies is high amongst adults
(McVernon, CDC conference, 2013). Other viruses with pandemic potential such as avian
H5N1 or H7N9 IAVs, subtypes that have not circulated widely in humans over the past genera-
tion, are likely to induce cross-reactive cellular responses [51], but are unlikely to be recognised
by neutralising antibody [52].

In this paper we explore the uncertainties in the predicted impact of CTL-inducing vaccines
on the spread of a novel virus, given uncertainties in the strength of the cross-protection af-
forded by influenza-specific T cells triggered by infection with seasonal IAV variants, the prev-
alence of humoral immunity and the (immune state dependent) efficacy of a CTL-inducing
vaccine. We compare the impact of a hypothetical CTL-inducing vaccine administered to a
fully naïve population, to the impact in a population in which some hosts have a primed CTL
response or cross-reactive neutralising antibody. In addition, we use a simple phenomenologi-
cal model to estimate the opportunity for drift variants to emerge during the pandemic to ex-
plore the potential impact of CTL vaccination campaigns on the antigenic evolution of IAV.

Materials and Methods

Infection dynamics of pandemic IAV
We construct a minimal model to perform scenario analyses for assessing the potential impact
of CTL-inducing vaccines in a static population with both pre-existing cellular and humoral
immunity to a pandemic virus which has structure as shown in Fig 1. In our model CTL-induc-
ing vaccines reduce the potential infectiousness of vaccinated hosts in a manner that depends
on pre-existing host immunity.

Our model has 4 main classes of hosts, each occupying an SEIR stratum; vaccinated naïve
(i = 1), unvaccinated naïve (i = 2), unvaccinated experienced (i = 3), and vaccinated experi-
enced (i = 4). Susceptible hosts become exposed at a rate governed by βf and move through a la-
tent state E (implemented using the method of stages to provide Erlang-distributed waiting
times from contact to infection [53, 54]). We assume that exposed hosts become infectious I on
a time-scale of γ� 1/Te = 1/(1.3 days) (in keeping with recent estimates of the latency period
[55, 56]), and recover to R at a rate ν� 1/Ti = 1/(1.6 days), as described below:
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where �N, �, �E, 2 [0, 1] respectively denote the infectiousness of vaccinated naïve, unvaccinated
experienced and vaccinated experienced hosts relative to unvaccinated naïve hosts. Variables
are expressed in numbers of hosts unless otherwise specified. Our choice for Te and Ti yields a
generation time between successive cases of 2.9 days, consistent with average estimates from
pH1N12009 surveillance data [57–59], however our results are not altered when adopting
other plausible choices for Te and Ti.

We assume that a fraction fE of hosts are “influenza-experienced”; having had a previous in-
fection with IAV that confers cross-reactive cellular, and potentially also cross-reactive humor-
al, immunity to the pandemic virus. The remaining hosts are denoted “influenza-naïve”. The
strength of the cellular immunity amongst influenza-experienced hosts � and the prevalence of
the humoral immunity amongst influenza-experienced hosts are specified independently of fE
(see below). With the simplifying assumption that lifetime risk of infection increases with age,

Fig 1. Model structure. Susceptible hosts are divided into 4 strata (labelled by i) depending on their prior influenza experience and vaccination status.
Susceptible hosts Si become exposed (Ei) at a rate proportional to βf, become infectious (Ii) with Erlang distributed waiting time with rate parameter γ = 1/(1.3
days) and recover (Ri) at a rate ν = 1/(1.6 days). Dashed lines indicate the vaccination of hosts. Note we assume that vaccines do not alter the infectiousness
of already exposed hosts (although this distinction is of little consequence if vaccination occurs very early in a pandemic). We allow for the possibility of
strain-specific antibody to the pandemic strain by assuming that some (experienced) hosts begin in the recovered state R3. We assume infected-acquired
immunity is maintained over the course of the simulation, however in practice as immunity wanes recovered hosts who were originally naïve migrate to the
appropriate experienced susceptible state (R1 ! R4, R2! R3).

doi:10.1371/journal.pone.0120138.g001
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our choice of fE = 0.8 roughly translates to assuming that hosts older than 15 have had an infec-
tion with IAV (assuming age-demographics for an industrialised country such as Australia, see
e.g. http://www.abs.gov.au/). Alternate values for fE are explored in a sensitivity analysis. The
population size N is nominally chosen to be 1 million.

We explore results assuming homogeneous/random mixing (mNN =mEE =mNE =mEN = 1)
or weakly assortative mixing withmEE = 0.7,mNN = 1.4,mEN =mNE = 1. The latter choice mim-
ics the increased contact rate between younger hosts and between adults and younger hosts
seen in survey data [60, 61].

Vaccination
In the absence of firm knowledge of the immunological determinants of host response to a
CTL-inducing vaccine, and the epidemiology associated with CTL-immunity, we explore a
range of assumptions for prior immunity and vaccine action. In particular, we consider a sce-
nario in which the population has no prior cellular or humoral immunity (A). Such an assump-
tion is likely appropriate if the pandemic strain is of novel subtype and if influenza-specific T-
cells commonly found in the population are alone insufficient to suppress transmission from
infected hosts (perhaps because elevated levels of effector T cells are required [20]). We also
consider three scenarios (B–D) in which influenza-experienced hosts have pre-existing cellular,
and perhaps also humoral/antibody, immunity. In scenarios B and C we assume that influen-
za-experienced hosts have CTL-mediated protection resulting in infectiousness that is 50 per
cent that of naïve hosts (� = 0.5), but consider alternative vaccine efficacy assumptions in expe-
rienced hosts between the two scenarios (see below). Such protection may reflect the distribu-
tion of effective cellular immunity if the influenza-specific T cells found in most adults [12, 21–
23] reduce viral shedding. The fourth scenario (D) is motivated by the emergence of H3N2v—
a virus with HA protein recognised by antibodies in many adult hosts (McVernon, CDC con-
ference, 2013)—and assigns neutralising antibody to 50 per cent of influenza-experienced
hosts in addition to their reduced infectiousness due to cellular immunity (� = 0.5).

Initially all states are empty except for S2 = (1 − fE)N and S3 = fE N (Scenarios A–C). Hosts
with pre-pandemic sterilising immunity begin in the compartment R3 in our model, yielding
initial conditions S2 = (1 − fE)N, S3 = fE N/2 and R3 = fE N/2 for scenario D. Variations on these
scenarios are explored in the sensitivity analysis.

We denote the infectiousness of vaccinated naïve hosts relative to unvaccinated naïve hosts
�v. In scenario A, when there is no pre-pandemic immunity, the infectiousness of all vaccinated
hosts is uniform. In scenario B we consider a ‘saturating’ vaccine that may not boost existing
CTL responses (�N = �v, �E = min(�, �v)). Such vaccine action may be representative of the ac-
tion of live influenza vaccines able to induce T-cell responses in children more readily than in
adults [39]. In scenarios C and D we consider the impact of a second class of vaccine; a ‘boost-
ing’ vaccine that enhances protection against transmission in experienced hosts who already
have naturally acquired CTL protection by the same factor as for naïve hosts (i.e. �N = �v, �E =
��v). Viral vector vaccines that show promising results in adults may have such an action if
they prove efficacious in children. Lipopeptide vaccines may also have the potential to boost
CTL immunity in hosts with a range of pre-existing naïve and memory CTL pools, depending
on their design [20]. Table 1 summarises the scenarios A–D examined in the main text.

For simplicity we assume that vaccine protection lasts for the duration of the simulation.
We explore rapid vaccine distribution to the general population early in the pandemic (with
baseline assumption that vaccines are distributed over 10 days) at a range of coverage levels, or
pre-emptive targeted distribution of a stockpile allowing 50 per cent coverage. As vaccines in-
ducing T cell responses are still in the design phase, we explore the full range of possible values
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for �v ([0, 1]). This parameter can be considered to subsume both ‘uptake’ (vaccinated propor-
tion) and ‘take’ (effectively immunised proportion) given the anticipation of only partial popu-
lation coverage, resulting from HLA class restriction of CTL epitopes.

Effective reproduction number and the attack rate
The value of the basic reproduction number R0—indicating the average number of transmitted
infections per infected host—expected for future pandemic outbreaks is uncertain. Inferences
using mortality and morbidity data from the 1918 Spanish influenza pandemic suggest that R0

may be as high as 4–6 [62]. The measured effective reproduction number for that pandemic—a
composite parameter recognising the constraining influence of the underlying immune profile,
social mixing patterns and variations in surveillance strategies—was estimated to be much
lower, of order 1.3–3 [63]. Estimates of the effective reproduction number for pH1N12009
[64], and the first wave of the 1968 pandemic [65], also range between 1 and 2.

We consider a pandemic virus that at pandemic onset and prior to vaccination spreads at a
moderate rate Reff = 2. At the time of emergence of a pandemic virus, the existing immune sta-
tus of a given population is unknown, allowing estimation of Reff but not R0 from early observa-
tions of the epidemic growth rate [66]. For this reason, in our main analysis we have
constrained all studied simulations to have a uniform Reff = 2 prior to intervention, enabling us
to consider the influence of underlying prior immunity on vaccine impact for epidemics that
may otherwise appear the same. We explore more severe pandemic scenarios, and a scenario in
which the final size of the epidemic, rather than the initial growth rate, is held fixed in the sen-
sitivity analysis. Reff depends on the population susceptibility profile (including � and fE) and is
the maximum eigenvalue,M, of the matrix constructed by multiplying each row i of βij (Equa-
tion 1) by Si(t). In scenario A the absence of any pre-pandemic immunity renders the basic and
effective reproduction numbers equal (i.e. R0 = Reff). To fix Reff between scenarios the factor bf
must vary. If there is pre-existing cellular or humoral immunity, R0>Reff and βf is higher than
for a scenario without prior immunity. Assuming homogeneous mixing βf = Reff/(NTi) for sce-
nario A, βf = 5Reff/(3NTi) for scenarios B & C, and βf = 5Reff/(2NTi) for scenario D at baseline
(i.e. unimpeded by vaccination).

The proportion of the population infected over the course of an outbreak is known as the
‘final epidemic size’ or ‘attack rate’ (despite not being a ‘rate’). We adopt the latter terminology

here. We evaluate it numerically as limt ! 1∑i Ri(t) or equivalently, n
P

i

R1
0
IiðtÞdt.

Table 1. Scenarios. The infectiousness of vaccinated and/or experienced hosts (relative to unvaccinated naïve hosts) for the four scenarios A–D presented
in the main text. �v is a free parameter that is set to determine the infectiousness of vaccinated naïve hosts relative to unvaccinated naïve hosts.

Scenario Prior cellular
immunity (relative
infectiousness = �)

Prior humoral
(sterilizing)
immunity

Vaccine Vaccinated naïve
infectiousness (�N)

Unvaccinated
experienced
infectiousness (� �)

Vaccinated
experienced
infectiousness (�E)

A None None Uniform (vaccine
boosts proection
uniformly due to fully
susceptible population)

�v – –

B 80% of population None Saturating vaccine �v � min(�, �v)

C 80% of population None Boosting vaccine �v � � × �v

D 80% of population 50% of
experienced
population

Boosting vaccine �v � � × �v

doi:10.1371/journal.pone.0120138.t001
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Antigenic drift
Changes in the pandemic virus may have been responsible for the increased severity of the sec-
ond wave of the 1968–9 H3N2 pandemic [67]. Changes in the dominant circulating virus be-
tween successive waves of pH1N12009, although not antigenically significant, were also noted
[68]. Vaccination campaigns, by altering the immune landscape, have the potential to acceler-
ate, or at least influence, IAV evolution. Modelling frameworks enabling estimation or predic-
tion for the propensity for viral evolution during an epidemic are thus valuable. Invasion by a
phenotypically novel variant is an inherently stochastic process more likely to occur in the ge-
netic bottleneck between epidemic waves [69] which we cannot simulate in our single strain de-
terministic model. However we may estimate the opportunity for generation of new antigenic
types and the selection advantage they may be afforded.

To estimate the opportunity for antigenic drift, we assume that each infectious host in each
stratum Ii has the potential to transmit a new variant. We calculate the “drift opportunity”
Pemg—the cumulative opportunity for drift variants to emerge over the course of the epidemic
—by integrating over all infections as below:

Pemg ¼
1

N

Z tend

t¼te

dt
X

i

IiðtÞg0;iðt � teÞ1:5; ð2Þ

where tend corresponds to the resolution of the epidemic. Note that we only report dimension-
less values of Pemg that are normalised by the value for the same epidemic without intervention.
Pemg > 1 is possible and indicates an epidemic in which drift opportunity under intervention
was greater than than in the absence of intervention. The non-linear dependence on time in
Equation (2) which allows for Pemg> 1 is motivated by results from theoretical models for anti-
genic drift suggesting that new variants may be more likely to circulate later after introduction
of the initial strain [70, 71]. The adopted power-law dependence on time is a phenomenological
fit to the rate of antigenic cluster turnover for H3N2 from Koelle et al. [47]. We have assumed
that te is the time since the cumulative incidence reaches 1 (host) in our deterministic model.

The factor g0,i in Equation (2) is the per infection rate of emergence of new variants for
hosts in stratum i. Arinaminpathy et al. assume that the per infection rate generating new vari-
ants depends only on cluster age [46] (i.e. g0,i = 1). However, the emergence and thus transmis-
sion of variants from a host may be more common when infections are prolonged and viral
replication occurs in the presence of sterilising or cross-reactive antibody [72, 73]. Prime-chal-
lenge experiments in macaques indicate that priming with seasonal H1N1 viruses 4 months
prior to challenge with pH1N12009 enables CTL responses that clear the infection before ap-
pearance of neutralising antibody [74], suggesting that infections in vaccinated hosts with a
readily primed CTL response may be associated with a significantly lower probability of select-
ing and transmitting antigenically novel variants. We thus explore 3 forms for the contribution
of each infection to the overall probability of antigenic emergence: (i) g0,i = 1 (per infection rate
of emergence of new variants independent of vaccination and pre-pandemic immune status),
(ii) g0,i = �i (per infection rate of emergence of new variants proportional to net viral load/host
infectiousness), and (iii) the distribution g0,1 = g0,2 = g0,3 = �i, g0,4 = 0 (per infection contribu-
tion equal for all hosts except no contribution from CTL-vaccinated experienced hosts). Here
�i is the infectiousness of hosts in the ith stratum. It is also possible in principle that CTL re-
sponses may enhance selection of novel variants, in which case scenarios with g0,i > 1 may be
justified. Such a possibility is not explored in this work.

Antigenic variants may have mutations that confer increased virulence/transmissibility and/
or escape recognition of antibodies to the original pandemic virus and thus facilitate the pro-
cess of antigenic drift. We focus on the selective advantage of the latter type of antigenic
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variant, assuming that the intrinsic transmissibility is unchanged from that of the original pan-
demic strain. The selective advantage of a new variant is largely governed by the ratio of effec-
tive reproduction numbers for the replacing and resident strains [75]. To gauge the probability
that an antigenic variant that emerged during the pandemic (with probability proportional to
our calculated “drift opportunity”) is selected, we consider this ratio at the conclusion of the
pandemic. The effective reproduction number of the emerging strain Reff,new is calculated as-
suming that it escapes all antibody-mediated immunity remnant after resolution of the initial
pandemic wave. The ratio Reff,new/Reff naturally increases with the prevalence of immunity to
the resident pandemic strain.

Results

Mitigating potential of CTL-inducing vaccines
Our predictions for the attack rate as a function of CTL-inducing vaccine coverage vary signifi-
cantly with underlying population immunity and vaccine action for pandemic scenarios A–D
with the same initial growth rate. The mitigating potential is very similar for homogeneous and
assortative mixing scenarios when vaccines are distributed uniformly amongst the population
(see Fig 2 and S1 Fig).

In this subsection we focus our discussion on the homogeneous mixing case (Fig 2) but
highlight interesting differences to the assortative mixing case. In the absence of any prior im-
munity (scenario A) the impact of vaccination is simple to predict (see [46]). The highest effi-
cacy vaccine considered, which suppresses the infectiousness of vaccinated naïve hosts to �v =
0.25 relative to unvaccinated naïve hosts, can mitigate the pandemic with 65 per cent coverage.
Attack rates are approximately halved to 40 per cent if coverage with such a vaccine is 50
per cent.

For scenarios in which there is only prior cellular immunity to the pandemic strain (B & C)
baseline attack rates are equal to that for scenario A for fixed Reff. Note that this is only strictly
true when mixing is homogeneous as the introduction of assortative mixing influences the
value of R0 for fixed Reff, however the variation between scenarios A–C is very small for our
choice of assortative mixing (see S1 Fig). In scenario B, unless the ability of the vaccine to sup-
press infectiousness is superior to the suppression arising due to naturally acquired pre-existing
CTL immunity, even high levels of vaccine coverage will not significantly reduce the attack
rate. In particular, attack rates would still be above 70 per cent if coverage of 50 per cent were

Fig 2. Attack rate with coverage for scenarios A-D. Predicted attack rates for four different pandemic and vaccine action scenarios as a function of general
population coverage with a CTL-inducing vaccine. In each panel the solid line corresponds to assumptions of relative infectiousness in vaccinated and
unvaccinated naïve hosts of εv = 0.25, with dashed and dotted lines corresponding to εv = 0.5 and 0.75 respectively. Scenario A captures a population without
pre-existing CTL-mediated immunity to the pandemic strain. In scenarios B and C, 80 per cent of the population have pre-existing CTL-mediated immunity (fE
= 0.8) suppressing infectiousness by 50 per cent (ε = 0.5), with vaccine action saturating (B) or boosting (C). Scenario D is a modification of scenario C that
assumes 50 per cent of those with naturally acquired CTL immunity also have cross-reactive protective antibody.

doi:10.1371/journal.pone.0120138.g002
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achieved for vaccines with �v ≳ 0.5. The benefit of widespread vaccination in scenario B is only
mildly inferior to that for scenario A when �v = 0.25. In contrast, if the vaccine can further sup-
press the infectiousness of vaccinated experienced hosts (scenario C), predictions for vaccine
impact are more promising. Indeed the mitigating impact of vaccination campaigns achievable
in scenario A is recovered.

In scenario D the overall attack rate is lower than scenarios A–C despite assuming the same
initial growth rate, as the size of the cohort without protective antibodies is limited to 0.6N.
Baseline attack rates amongst the naïve subpopulation however are equivalent to those in sce-
narios A–C when mixing is random (S2 Fig). As a larger portion of the initial growth rate is
driven by the naïve hosts, such individuals are preferentially infected driving Reff below 1 more
rapidly than in the other scenarios considered. The accuracy of predictions for the attack rate
from early estimates of Reff is thus clearly contingent on understanding underlying population
heterogeneities in mixing and immunity. Despite the lower attack rate in scenario D, overall at-
tack rates decline more slowly with coverage than for the other scenarios that assume a boost-
ing vaccine (i.e. scenarios A & C, see Fig 2). Slightly higher coverage with the most efficacious
vaccine considered (�v = 0.25) is required to halt the pandemic than for scenarios A or C, as
many vaccines are ‘wasted’ preventing transmission from hosts who are not susceptible (Fig 2).
Distributing CTL-inducing vaccines to the general population will have greater power to re-
duce epidemic spread when there is little existing neutralising cross-reactive antibody to the
pandemic strain.

Distribution strategies for CTL-inducing vaccines
We explore the impact of distributing vaccines to varying proportions of naïve and experienced
hosts assuming both homogeneous and assortative mixing for scenarios B–D (i.e. scenarios
which assume heterogeneous pre-pandemic immunity). The impact of this targeted distribu-
tion when mixing is homogeneous is depicted in Fig 3. The advantage of distributing vaccines
to naïve hosts in scenario B is intuitive when �v≳ � and the vaccine cannot reduce the potential
infectiousness of experienced hosts. However, reduced attack rates when targeting naïve hosts
are apparent even when the vaccine suppresses the transmission potential by the same factor in
naïve and experienced hosts (scenarios C & D). Assuming Reff = 2 and a vaccine stockpile suffi-
cient for 50 per cent population coverage, distribution of a vaccine that completely blocks
transmission (�v = 0) won’t halt population spread unless≳50 per cent of naïve hosts are vacci-
nated in scenarios B-D (Fig 3). It is important to note that the preference for vaccinating naïve
hosts in Fig 3 is purely driven by their larger potential infectiousness. The optimal efficiency of
such ‘equalising’ vaccine strategies have also been discussed elsewhere (see, for example, [76]).
As a result, the benefit of targeting naïve hosts (i.e. small values of “exp coverage”) shows a
similar trend across scenarios B–D (Fig 3), but with some important differences. In particular,
such targeted strategies enable mitigation with poorer performing, but still efficacious
(�v < 1), vaccines.

When assuming random mixing, targeted vaccination in scenarios B & C does not alter the
relative attack rates in naïve and experienced hosts, as all hosts are equally susceptible. Howev-
er targeting naïve hosts in scenario D can markedly reduce the attack rate in this sub-popula-
tion; the attack rate could potentially be constrained to below 10 per cent if �v ≲ 0.35. In
contrast, targeting experienced hosts in scenario D would enable widespread infection of naïve
hosts with sub-population attack rates in excess of 50 per cent if �v ≳ 0.5 (data not shown).
Adopting assortative mixing (as described earlier) instead of homogeneous mixing also in-
creases the predicted benefit of reducing the coverage amongst influenza-experienced hosts for
low to intermediate values of �v (S3 and S4 Figs).
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CTL-inducing vaccines and antigenic drift
For our baseline parameter assumptions, with Reff = 2, the drift opportunity Pemg decreases
with coverage and is necessarily null when the pandemic is mitigated. However, when the per
infection probability of the emergence of variants is constant (i.e. g0,i = 1)—as assumed in pre-
viously published work [46]—the decline in drift opportunity with increased coverage (upper
panels, Fig 4) is slower than that predicted for the attack rate (Fig 2). As a consequence drift op-
portunity is barely reduced even for full population coverage with a lower efficacy vaccine (�v =
0.75) for all scenarios, and remains approximately equal to that for an unimpeded pandemic in
scenario B when �v≳ 0.5. Assuming a boosting vaccine and no strain-specific humoral immu-
nity (scenario C), 50 per cent coverage with a vaccine reducing the infectiousness of naïve
hosts by �v = 0.25 reduces the drift opportunity to approximately 75 per cent of that for an un-
impeded epidemic (Fig 4). Drift opportunity is minimised when vaccines are distributed to
naïve hosts, mirroring the trends seen in the attack rate (left panel, Fig 3).

We focus on exploring variations in the achievable reduction in drift opportunity with the
choice of g0,i for fixed vaccine coverage of 50 per cent in scenario C with homogeneous mixing
(Fig 5). Reductions in drift opportunity are naturally larger when the per infection probability
of emergence of antigenic variants scales with host infectiousness (g0,i = �i) than if this per in-
fection rate is uniform (g0,i = 1). General population vaccination achieving 50 per cent coverage
(i.e. exp coverage = 0.5) using a vaccine with �v = 0.25 can reduce drift opportunity to approxi-
mately 47 per cent of that for an unimpeded epidemic in this situation (see Fig 5). As for the at-
tack rate, drift opportunity is minimised when vaccines are distributed to naïve hosts, despite
the very low infectiousness of vaccinated experienced hosts when the vaccine has a
boosting action.

Fig 3. Attack rates for targeted vaccination in Scenario C. Epidemic attack rates for targeted distribution of a vaccine stockpile sufficient for 50 per cent
coverage. For all epidemics the initial effective reproduction number in the absence of vaccination is fixed at 2. The axis labelled “exp coverage” denotes
coverage in the experienced population and εv is the relative infectiousness of vaccinated and unvaccinated naïve hosts. The minimum plotted value of “exp
coverage” indicates full coverage in the naïve population with the remainder given to experienced hosts, the maximum plotted value is for a scenario in which
all vaccines are given to experienced hosts, and a value of 0.5 indicates equal coverage in naïve and experienced hosts (i.e. general population distribution).
Panels represent estimates for different pre-pandemic immunity and vaccine action scenarios; 80 per cent of the population with naturally acquired CTL-
mediated immunity (fE = 0.8) and saturating vaccine action (scenario B), the same population with a vaccine that boosts protection in all hosts (scenario C), a
population in which 50 per cent of those with naturally acquired CTL responses also have protective antibody to the pandemic strain and vaccine action is
again boosting (scenario D). The strength of naturally acquired CTL-mediated immunity is set to ε = 0.5.

doi:10.1371/journal.pone.0120138.g003
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If CTL vaccination completely suppresses the per infection probability of emergence of vari-
ants from vaccinated experienced hosts (i.e. g0,4 = 0, g0,i = 1 otherwise), then the drift opportu-
nity is further reduced compared to the scenario where g0,i = �i for �v≳ 0.2 (Fig 5). In contrast
to the first two forms for g0,i discussed, distributing CTL-inducing vaccines to experienced
hosts minimises the drift opportunity in scenario C when �v≳ 0.25 (Fig 5). In particular, the
drift opportunity is approximately 20 percentage points lower when a stockpile allowing 50 per
cent coverage for �v = 0.75 is preferentially administered to experienced rather than naïve
hosts. In contrast the attack rate is only 4 percentage points lower (69 per cent compared to 73
per cent) if naïve hosts rather than experienced hosts are targeted. If �v ≲ 0.25 the drift opportu-
nity remains more efficiently suppressed by targeting naïve hosts to curtail the epidemic size.
This trend holds for our assumed choice of assortative mixing (data not shown). Targeting ex-
perienced hosts has similar benefits for suppressing drift opportunity for moderate to high val-
ues of �v in scenario B, but has muted benefit in scenario D due to the smaller contribution of
experienced hosts to the overall attack rate (data not shown). Note that for the final choice of
g0,i presented (right panel, Fig 5) we have assumed that even vaccines that don’t reduce overall
host infectiousness (�v = 1) can completely suppress the emergence of new variants in experi-
enced hosts. In practice a threshold vaccine efficacy may be required to generate such an effect.

Our estimate for the selective advantage of an antigenically novel variant circulating at the
conclusion of the first pandemic wave Reff, new/Reff depends on both pre-pandemic immunity
and the pandemic attack rate, and thus varies between scenarios and with vaccine coverage
(lower panels, Fig 4). In the absence of pre-pandemic neutralising cross-reactive antibody (sce-
narios A–C), if a vaccination campaign is able to mitigate spread the relative effective repro-
duction ratios of the (assumed equally transmissible) antigenically novel variant and resident
pandemic strain remains unity. If vaccination does not mitigate the pandemic, antigenically
novel variants have a distinct advantage that increases with the pandemic attack rate. Although
attack rates—and thus the size of the population with acquired immunity—are smaller when

Fig 4. Drift opportunity with coverage for scenarios A-D. Upper panels: drift opportunity relative to an unimpeded epidemic as a function of general
population coverage for four different pandemic and vaccine action scenarios assuming Reff = 2, homogeneous mixing and g0,i = 1. Lower panels: The ratio
of effective reproduction numbers of antigenically novel and resident pandemic variants. The grey line indicates a ratio of unity. In each panel the solid line
indicates results assuming that the relative infectiousness in vaccinated naïve and naïve hosts is εv = 0.25, with dashed and dotted lines εv = 0.5 and
0.75 respectively.

doi:10.1371/journal.pone.0120138.g004
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there is pre-pandemic antibody mediated immunity in scenario D, the advantage of antigeni-
cally novel variants is compounded by this pre-existing immunity. If antigenic escape were to
occur in this scenario the new variant will likely displace the original pandemic strain (Reff,new/
Reff > 2), potentially triggering a second wave of severe infection unconstrained by the cross-
reactive antibody that limited the initial wave. If a CTL-inducing vaccine offers truly heterolo-
gous protection that suppresses hosts potential to transmit all IAV strains equally, increasing
vaccination coverage cannot erase the advantage afforded to antigenically novel strains that
emerge in the presence of immunity-driven selective pressures unless they halt almost all trans-
mission thereby rendering Pemg negligible (see also [46]). However, unlike traditional vaccina-
tion campaigns which would increase Reff,new/Reff even if the pandemic were mitigated, CTL-
inducing vaccines do not further enhance the selective pressure for new antigenic variants.

Sensitivity analysis
In the above sections we have explored the sensitivity of expected vaccine impact—as measured
by the attack rate and/or drift opportunity—on underlying population immunity, population
mixing characteristics and vaccine action. Here we additionally consider the sensitivity of our
results to the transmissibility of the pandemic virus, the period of vaccine distribution, and al-
ternate profiles for pre-pandemic population immunity for the homogeneous mixing case.

Comparison of scenarios with fixed attack rate. In our primary analysis we considered a
fixed initial growth rate (Reff), resulting in baseline epidemics with considerably smaller attack
rates for scenario D due to the presence of sterilising antibodies reducing the size of the suscep-
tible pool. If we instead assume a fixed baseline attack rate across scenarios (which requires de-
creasing the initial value of Reff for scenarios A–C), the additional coverage required to halt an
epidemic in scenario D relative to scenarios A–C is even more pronounced than for the fixed
initial Reff scenarios (S5 Fig). Similarly, the inflated potential for drift opportunity and selection

Fig 5. Drift opportunity in scenario C. Drift opportunity for scenario C with targeted distribution of a vaccine stockpile sufficient for 50 per cent coverage and
assuming that pre-vaccination Reff = 2. The axis labelled εv indicates the relative infectiousness of vaccinated and unvaccinated naïve hosts and “exp
coverage” indicates the fractional vaccine coverage in experienced hosts (vaccine distribution is random when exp coverage is 0.5). Each panel corresponds
to a different assumption regarding the form for the per infection rate of antigenic emergence g0,i; equal probability per infection (left), proportional to host
infectiousness (middle), and zero for vaccinated hosts with existing CTL protection (right). The vertical axis show the probability of emergence Pemg of an
antigenically novel variant over the course of the epidemic relative to the same scenario without intervention.

doi:10.1371/journal.pone.0120138.g005
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of antigenic variants in scenario D (Fig 4) is greater when compared to scenarios A–C with the
same attack rate (S6 Fig).

Timeline for vaccine distribution in moderate and severe epidemics. Increasing vaccine
coverage slows the rate of transmission, which while reducing the attack rate, also prolongs the
epidemic. The higher probability of generating new variants later in an epidemic in Equation
(2) signals that increased vaccine coverage may drive an increase in drift opportunity in our
model. This effect is most likely to be observed when the per infection probability of generating
variants is uniform (g0,i = 1). This phenomenon is not observed for our nominal choice of Reff

= 2 (see Fig 4). However an increase in drift opportunity relative to a scenario without vaccina-
tion is observed for more severe epidemics with Reff ≳ 3 that unimpeded would resolve very
quickly (see S8 Fig for an example of a severe epidemic for scenario C). As our drift opportuni-
ty is uncalibrated against true risk of antigenic change, it is difficult to assign a significance to
fractional increases in its value, however the selective advantage of an antigenically distinct var-
iant (as measured by the ratio of effective reproduction numbers for the drifted and resident
strains) is particularly high for scenarios with higher Reff due to the large number of people
with infection-acquired immunity to the resident strain when the first wave is resolved (lower
panels, S8 Fig). Trends in drift opportunity and Reff ratios are similar for scenarios A, B, D with
Reff = 4 (data not shown).

We have thus far assumed vaccines are distributed rapidly upon emergence of the pandemic
(at a constant rate over 10 days) when exploring the impact of vaccine coverage. However the
impact of vaccination campaigns on attack rates and epidemic duration is naturally less pro-
nounced when vaccines are distributed over a longer-timescale. Focusing on scenario C, we
show the effect of increasing the duration of vaccine distribution for Reff = 2, 4 in S7 and S8
Figs. Prolonged interventions that distribute vaccines over a period of 6 months have limited
impact on the attack rate (even for lower initial Reff) highlighting the value of rapid or pre-emp-
tive vaccine distribution. As epidemics are resolved more rapidly when vaccination does not
immediately reduce the effective reproduction number, the enhancement of drift opportunity
with increased coverage seen for a severe scenario is diluted when vaccine distribution is pro-
longed (S8 Fig).

Population pre-pandemic immune profile. If population mixing is assumed to be homo-
geneous, we can decouple the concepts of youth and naïvety in our model, and freely vary the
experienced proportion fE. Values of fE less than our baseline value of 0.8 may, for example, re-
flect population immunity if late effector cytokine secreting T cells found to correlate with re-
duced viral shedding [17] are rare and/or effective T cell immunity is short-lived (perhaps
requiring highly elevated numbers of effector T cells [20]).

For scenarios A and C (which both assume that vaccines scale the infectiousness of all hosts
by a constant factor �v), attack rates for fixed initial Reff are independent of the prevalence (fE)
and strength (�) of suppressed infectiousness due to cellular immunity acquired from pre-pan-
demic seasonal IAV infection(s). If vaccine action is saturating, or doesn’t scale with pre-pan-
demic host CTL immunity in another fashion, characterising the landscape of underlying
cellular immunity (determined by fE and � in our model) is crucial for predicting the impact of
a vaccine on the attack rate. S9 Fig illustrates the sensitivity of the impact of vaccination cam-
paigns with fixed coverage (50 or 75 per cent) on the values of �, fE and �v; as �v increases the
benefit of vaccination campaigns becomes increasingly dependent on having a low fraction of
experienced hosts (low fE) and/or poor immunity amongst these hosts (high �).

In scenario D, the unimpeded attack rate is strongly constrained by the fraction of experi-
enced hosts with sterilising antibodies. However, the attack rate in the presence of an interven-
tion in which vaccines are distributed to the general population with fixed coverage has only
weak dependence on the proportion with sterilising antibodies, and minimal/no dependence
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on the strength of the underlying cellular immunity � (see S10 Fig). This result reiterates the in-
efficiency of general population CTL-inducing vaccine roll-out when there is pre-pandemic an-
tibody-mediated immunity.

Discussion
We have explored a set of pandemic scenarios with differing underlying cellular and humoral
immunity and considered the impact of two classes of CTL-inducing vaccines (saturating or
boosting) motivated by potential CTL-inducing vaccine candidates. Our analysis is novel in its
aims to capture the current immunological understanding of cellular immunity in population-
level IAV pandemic transmission models. Doing so enables us to highlight the uncertainties in
predicting the impact of wide-spread use of CTL-inducing vaccines against a pandemic virus
and provide a valuable reference for informing the performance requirements of high impact
CTL-inducing vaccines.

We have focused on the pandemic attack rate and drift opportunity as proxies for the im-
pact of an intervention with CTL-inducing vaccines. By fixing the initial pandemic growth rate
but altering the underlying population immune profile, we have shown that if using a boosting
vaccine (scenarios A, B, D), the anticipated attack rate of a pandemic outbreak depends strong-
ly on the extent of sterilising cross-reactive antibody in influenza-experienced (i.e. effectively
assumed to be older) sub-populations, but not the strength and extent of cross-protective cellu-
lar immunity acting only on host infectiousness (Fig 2 and S10 Fig). When sterilising cross-re-
active antibody is common amongst influenza-experienced hosts (scenario D), the high force
of infection rapidly depletes the most infectious and susceptible hosts, but the epidemic attack
rate is lower (Fig 2). Such trends are consistent with the observations of higher attack rates
amongst younger hosts in the first wave of pH1N12009 [77, 78], although age-dependent mix-
ing rates [61] in addition to the presence of pre-pandemic antibody in older hosts were likely
responsible for this trend. In our hypothetical scenario akin to the emergence of a virus like
H3N2v (scenario D), general population distribution of CTL-inducing vaccines is a particularly
inefficient way to reduce the attack rate. If using a saturating vaccine (scenario B), or similar
vaccine in which the reduction in infectiousness of vaccinated hosts depends on their pre-pan-
demic immunity, the mitigating impact depends crucially upon the strength and prevalence of
pre-existing cellular immunity. If pre-existing cellular immunity is common (i.e. large fE), ef-
fective (i.e. � < 1), and difficult to boost with vaccines (i.e.moderate �v) as explored in scenario
B, general population vaccination campaigns will be inefficient at controlling the spread of an
emerging pandemic virus.

We have highlighted the benefit of targeted distribution strategies for CTL-inducing vac-
cines for minimising attack rates across all scenarios in which there is heterogeneity in pre-pan-
demic CTL mediated immunity (scenarios B–D). Vaccinating influenza-naïve hosts most likely
to transmit has the largest impact on the attack rate, even when there are no other differences
in the immune status or mixing behaviour of naïve and experienced hosts. If influenza-naïve
hosts are typically children, targeting such sub-populations is likely to be of enhanced benefit
for controlling the overall outbreak when taking into account their increased mixing intensity
(S4 Fig). If a sub-population of influenza-experienced hosts have neutralising cross-reactive an-
tibody to the pandemic virus (scenario D), moderately efficacious vaccines are more likely to
mitigate a pandemic when targeted toward younger/naïve hosts than in other scenarios with
the same initial growth rate Reff (S4 Fig).

We have demonstrated that depending on the underlying population immunity and vaccine
action, vaccination campaigns may have very different impact on the opportunity for the pan-
demic virus to undergo antigenic change over the pandemic season, for fixed initial growth
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rate Reff. If the per infection probability of emergence of antigenic variants is uniform across
the population, drift opportunity is difficult to suppress unless the pandemic can be mitigated.
If there is little pre-existing CTL-mediated immunity or the vaccine is able to boost this further
in most hosts (scenarios A and C), then extensive CTL-inducing vaccination campaigns may
significantly decrease the attack rate and modestly reduce the opportunity for antigenic change.
In such scenarios prolonged use of a CTL-inducing vaccine would likely modestly slow the rate
of emergence of antigenically novel clusters [46]. However, if pre-pandemic CTL mediated im-
munity is common, and the vaccine cannot always boost this further (scenario B), vaccination
may have little impact on the attack rate and negligible impact on the ability of the virus to un-
dergo antigenic change.

Uncertainties in the role of enhanced CTL responses in altering the within-host generation
and selection of antigenic variants further cloud expectations for the long-term role of CTL-in-
ducing vaccines on antigenic evolution. If the per infection probability of generating new vari-
ants (g0,i) scales with host infectiousness and/or the rapidity of viral clearance, the probability
of antigenic replacement may decrease more rapidly with coverage than predicted by Arina-
minpathy et al. [46]. If CTL-inducing vaccination facilitates rapid clearance in primed adults,
such that vaccinated adults do not contribute to the drift opportunity, targeting adults may be
optimal for controlling antigenic drift in situations where the vaccine efficacy and achievable
coverage is such that the pandemic cannot be mitigated.

Study limitations
We have adopted a minimal model to explore the impact of prior immunity and CTL-vaccine
action on CTL-inducing vaccination campaign impact. This choice allowed us to explore a
broader set of pandemic and vaccination scenarios, including the possibility of heterogeneous
pre-pandemic cellular immunity, than explored in previous work [46]. As we model the trans-
mission of a single pandemic IAV strain, and include within-host effects of CTL immunity
through stratification of host infectious type, we can only estimate the potential for antigenic
drift and strain replacement after a single epidemic wave without assigning this potential a cali-
brated probability. Population-level IAV circulation may also be influenced by within-host and
population mixing effects not considered in our model: Luo et al. suggest that partial protec-
tion, by preventing target cell depletion, increases the opportunity for novel viruses to attain
higher within-host viral loads [79], and the pattern of immune responses in chains of infection
can also influence viral selection [80]. Our model assumes a simple distribution of pre-pan-
demic cellular and humoral immunity, which likely does not capture all age-cohort dependent
trends in immune status. However detailed models for age-structured T cell immunity are diffi-
cult to justify given the scarcity of available data on human T cell immunity.

Implications
Our modelling demonstrates that the utility of CTL-inducing vaccine candidates is not guaran-
teed, and provides insight into the efficacy and distribution strategies required to control pan-
demic influenza with next-generation CTL-inducing vaccines. In particular we have
demonstrated that vaccine impact may hinge on as yet uncharacterised cellular immunity, with
vaccination campaigns less likely to be of use if this is common and difficult to boost. However
even if CTL-mediated immunity amongst adults is common and can be enhanced with vacci-
nation, the most efficient way to control future pandemics may be to boost CTL immunity in
younger hosts, regardless of considerations of enhanced transmission due to contact patterns
that result in recommendations of preferential vaccination of children with traditional vaccines
[76, 81]. Focusing on developing CTL-inducing vaccines that induce protective responses in
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hosts with naïve T cell pools may therefore be of particular importance. Only if a CTL-inducing
vaccine performs particularly poorly in naïve/unprimed hosts might vaccination campaigns
targeting experienced hosts be preferable for reducing the attack rate. Vaccination campaigns
that aim to prime naïve T cells will likely have ongoing benefit—enhancing post-pandemic cel-
lular immune responses to all IAV—even if the initial protective immune response triggered by
the vaccine wanes over time [20]. However the prevention of senescence of T cell immunity
might offer alternative motivation for administering CTL-inducing vaccines to older hosts
[43].

We have explored the extent to which the genealogy of the pandemic strain may also limit
the impact of CTL-inducing vaccination campaigns. A key determinant of the impact of CTL
vaccination campaigns, particularly those aiming to vaccinate adults, will be the coupling of co-
horts with boostable CTLs and neutralising antibody. Most human IAVs have their origin in
avian variants [82], but viruses with the appropriate receptor specificity are more likely cross-
over from swine, and IAV subtypes that circulate widely in swine are also those that circulate
as seasonal influenza in humans [83]. As illustrated by the emergence of H3N2v, IAVs at the
human-swine interface may be antigenically similar to recently circulating human seasonal
IAV, and induce neutralising cross-reactive antibody in many adults that likely supersedes the
protection afforded by enhanced CTL responses. Cellular immunity—which likely cannot pre-
vent infection but only suppress transmission—may be of limited relevance for controlling the
spread of such a virus. The presence of other heterologous immune responses to the pandemic
virus, such as cross-reactive antibodies to sub-dominant epitopes [84], are likewise of lesser
consequence if there is sterilising immunity to the immunodominant epitopes. Enhancing cel-
lular immunity is more likely to aid pandemic control when the pandemic virus has an antigen-
ic subtype that has experienced limited circulation in humans (scenarios A–C), such as the
avian viruses H5N1 IAV [85] or the recently emerged H7N9 IAV [52]. These insights add to
understanding of the role of pre-pandemic cellular and humoral immunity—in concert with
host mixing effects—in determining the risk landscape for infection with pandemic viruses.

The influence of CTL-mediated immunity on host propensity to transmit new genetic vari-
ants may be an important consideration when designing strategies to minimise the risk of viral
drift during a pandemic [67, 68]. We have demonstrated that the influence of CTL-inducing
vaccination campaigns on antigenic drift may be greater than suggested by previous modelling
work [46]. In contrast to the benefits of targeting children to reduce the attack rate, if CTL-in-
ducing vaccines facilitate rapid clearance in primed hosts, targeting adults may be an efficient
way to reduce the drift opportunity when the vaccination campaign does not have the power to
significantly curtail the attack rate.

Open questions
There is much scope to enhance our understanding of CTL-immunity and the likely utility of
CTL-inducing vaccines by developing mathematical transmission models that incorporate the
accumulating insight from immunological and epidemiological studies of the role of cellular
immunity in regulating IAV infection in humans. Comprehensive modelling of CTL vaccina-
tion impact will require more detailed characterisation of the development and maintenance of
memory CTL, the role of memory CTL on influenza infection, and the distribution of this im-
munity in socially realistic populations. Together with further study of influenza T-cell immu-
nology in animal models, insights from household-based cohort studies or challenge studies
will be key for modelling the development and prevalence of functional T cell immunity. With-
in-host modelling of IAV infection in the presence of CTL responses that can reproduce
emerging experimental data will be required to aid understanding of the potential for CTL-
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inducing vaccines to alter the likelihood that hosts transmit IAV variants. Modelling of IAV
circulation and evolution over time-scales longer than a single season that accounts for the de-
velopment and maintenance of influenza-specific memory CTL will be required to predict the
impact of sustained wide-spread CTL-inducing vaccine usage, including the risks and conse-
quences of CTL vaccine escape.

Our results highlight the need for vaccine design to attend to our developing understanding
of the ontology and evolution of T cell immunity in humans (e.g. [86]). Epidemiological studies
looking for exposure dependent differences between precursor and effector CTL pools, will
give insight into whether CTL-inducing vaccines might alter this response to boost ‘sub-domi-
nant’ epitope-specific CTLs and provide protection superior to that triggered by natural infec-
tion (akin to scenario C), providing insight into the optimal design and potential efficacy of
CTL-inducing vaccines against IAV.

Consideration of the utility of multi-faceted public health responses that use CTL-inducing
vaccines to buy time before a strain-specific vaccine can be distributed, and/or use of CTL-in-
ducing vaccines in tangent with traditional anti-viral drugs, are also of interest. In future work
we will explore strategies for the optimal use of CTL-inducing vaccines that take into account
sociologically important differences in mixing behaviour for adults and children in addition to
differences in immunological memory to IAVs.

Supporting Information
S1 Fig. Sub-population attack rates with assortative mixing. Predicted attack rate as a func-
tion of general population vaccination coverage for scenarios A–D (left to right) assuming Reff

= 2. Red lines indicate attack rates for naïve hosts, blue lines for experienced hosts, and black
lines indicate population-average values.
(EPS)

S2 Fig. Sub-population attack rates in scenario D. Predicted attack rate as a function of gen-
eral population coverage for scenario D assuming Reff = 2 and random (left) or weakly assorta-
tive mixing (right) as described in the main text. As for the figures in the main text, solid lines
indicate �v = 0.25, dashed lines �v = 0.5 and dotted lines �v = 0.75. Red lines indicate attack rates
for naïve hosts, blue lines for experienced hosts, and black lines indicate population-average
values. The grey lines show the results for scenario C with the same initial effective reproduc-
tion number and homogenous mixing.
(EPS)

S3 Fig. Attack rates for targeted vaccination with assortative mixing. Epidemic attack rates
for targeted distribution of a vaccine stockpile enabling 50 per cent population coverage assum-
ing weakly assortative mixing (as described in the main text) and Reff = 2 in scenarios B (left), C
(middle) and D (right). The axis “exp coverage” indicates the fractional coverage in influenza-
experienced hosts, with exp coverage = 0.5 corresponding to general population distribution
of vaccines.
(EPS)

S4 Fig. Reductions in attack rate for targeted vaccination campaigns. Absolute decrease in
the attack rate (coded by the coloured legend) compared to a like scenario (with the same �v
and 50 per cent coverage) where influenza-experienced hosts are preferentially targeted (i.e.
exp coverage equal to 5/8) for scenarios B–D. Upper panels correspond to assumptions of ho-
mogeneous mixing and lower panels for weakly assortative mixing as described in the main
text. Note that this figure is an alternate representation of the results in Fig 3. An optimal value
for �v for each set of scenarios arises due to the benefit of redirecting an imperfect vaccine to

Controlling Influenza with T Cell Vaccines

PLOS ONE | DOI:10.1371/journal.pone.0120138 March 26, 2015 18 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120138.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120138.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120138.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120138.s004


the sub-population more likely to transmit infections.
(EPS)

S5 Fig. Attack rate with coverage for fixed baseline attack rate scenarios. Predicted attack
rates for four different pandemic and vaccine action scenarios as a function of general popula-
tion coverage with a CTL-inducing vaccine. Baseline attack rates (rather than initial values of
Reff) have been fixed at* 48 per cent for all scenarios. In each panel the solid line indicates �v
= 0.25, with dashed and dotted lines corresponding to �v = 0.5 and 0.75 respectively. Scenario
A captures a population without pre-existing CTL mediated immunity to the pandemic strain
that experiences uniform vaccine efficacy. In scenarios B and C, 80 per cent of the population
have CTL-mediated immunity reducing infectiousness by 50 per cent, with vaccine action satu-
rating and boosting respectively. Scenario D assumes that 50 per cent of those with naturally
acquired CTL immunity also have cross-reactive protective antibody and vaccine action
is boosting.
(EPS)

S6 Fig. Drift opportunity with coverage for fixed baseline attack rate scenarios. Upper pan-
els: Drift opportunity as a function of coverage for scenarios A–D with fixed baseline attack
rate of* 48 per cent across all scenarios (rather than fixed initial Reff) and g0,i = 1. Lower pan-
els: The ratio of effective reproduction numbers of antigenically drifted and pandemic variants.
In each panel the solid line indicates the relative infectiousness in vaccinated naïve and naïve
hosts is �v = 0.25, with dashed and dotted lines �v = 0.5 and 0.75 respectively.
(EPS)

S7 Fig. Impact of vaccination campaign duration in moderate scenarios. Predicted attack
rate (upper panels) and drift opportunity (lower panels) as a function of general population
vaccine coverage for Scenario C with an initial Reff = 2 and vaccines distributed over 10 days
(i.e. essentially pre-emptive vaccination, left), 90 days (middle) or 182 days (right). As for the
figures in the main text, solid lines indicate �v = 0.25, dashed lines �v = 0.5 and dotted lines �v =
0.75.
(EPS)

S8 Fig. Impact of vaccination campaign duration in severe scenarios. Predicted attack rate
(upper panels), drift opportunity (middle panels) and ratio of effective reproduction numbers
of drifted and resident strains (lower panels) as a function of general population vaccine cover-
age for Scenario C with an initial Reff = 4 and vaccines distributed over 10 days (left panels), 90
days (middle panels) or 182 days (right panels). As for the figures in the main text, solid lines
indicate �v = 0.25, dashed lines �v = 0.5 and dotted lines �v = 0.75. Note the differences in the
scales of the y-axes when compared to S7 Fig.
(EPS)

S9 Fig. Impact of pre-pandemic immunity: varations on scenario B. Upper panels: Attack
rate assuming 50 per cent coverage of a saturating vaccine in a homogeneously mixing popula-
tion as a function of the fraction of influenza experienced hosts fE and suppression of infec-
tiousness of unvaccinated experienced hosts �. Lower panels: Attack rate assuming 75 per cent
coverage of a saturating vaccine in a homogeneously mixing population as a function of the
fraction of influenza-experienced hosts fE and suppression of infectiousness of unvaccinated
experienced hosts �. Parameters corresponding to scenario B are marked in each panel by a
red dot.
(EPS)
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S10 Fig. Impact of pre-pandemic immunity: variations on scenario D. Attack rate assuming
fE = 0.8 (as for the main results section) a function of the strength of pre-pandemic cellular im-
munity � and the proportion of influenza-experienced hosts with humoral immunity (“fraction
of fE with Abs”). Results are shown for an unimpeded epidemic (left), assuming 50 per cent
general population coverage with a boosting vaccine that suppresses the infectiousness of vacci-
nated naïve hosts by �v = 0.25 (middle) and as for the middle panel but assuming 75 per cent
general population coverage (right). Parameter values corresponding to scenarios C and D are
marked in each panel by red and blue dots respectively.
(EPS)
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