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Abstract
We present a theory by which idealized models of auditory receptive fields can be derived in

a principled axiomatic manner, from a set of structural properties to (i) enable invariance of

receptive field responses under natural sound transformations and (ii) ensure internal con-

sistency between spectro-temporal receptive fields at different temporal and spectral

scales. For defining a time-frequency transformation of a purely temporal sound signal, it is

shown that the framework allows for a new way of deriving the Gabor and Gammatone fil-

ters as well as a novel family of generalized Gammatone filters, with additional degrees of

freedom to obtain different trade-offs between the spectral selectivity and the temporal

delay of time-causal temporal window functions. When applied to the definition of a second-

layer of receptive fields from a spectrogram, it is shown that the framework leads to two ca-

nonical families of spectro-temporal receptive fields, in terms of spectro-temporal deriva-

tives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-

causal first-order integrators over the temporal domain and a Gaussian filter over the log-

spectral domain. For each filter family, the spectro-temporal receptive fields can be either

separable over the time-frequency domain or be adapted to local glissando transformations

that represent variations in logarithmic frequencies over time. Within each domain of either

non-causal or time-causal time, these receptive field families are derived by uniqueness

from the assumptions. It is demonstrated how the presented framework allows for computa-

tion of basic auditory features for audio processing and that it leads to predictions about au-

ditory receptive fields with good qualitative similarity to biological receptive fields measured

in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals.

Introduction
The information in sound is based on variations in the air pressure over time, which for many
sound sources can be modelled as a superposition of sine wave oscillations of different frequen-
cies. To capture this information by auditory perception or signal processing, the sound signal
has to be processed over some non-infinitesimal amount of time and in the case of a spectral
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analysis also over some range of frequencies. Such a region over time or over the spectro-tem-
poral domain is referred to as a temporal or spectro-temporal receptive field (Aertsen and
Johannesma [1]; Theunissen et al. [2]; Miller et al. [3]; Fritz et al. [4]).

If one considers the theoretical or algorithmic problem of designing an auditory system that
is going to analyse the variations in air pressure over time, one may ask what types of auditory
operations should be performed on the sound signal. Would any operation be reasonable? Spe-
cifically, regarding the notion of receptive fields, what types of temporal or spectro-temporal
receptive field profiles would be reasonable? Is it possible to derive a theoretical model of how
receptive fields “ought to” respond to auditory signals?

In vision, the corresponding problem of formulating a theoretical model for visual receptive
fields (Lindeberg [5]) can be addressed based on a framework developed in the area of comput-
er vision known as scale-space theory (Iijima [6]; Witkin [7]; Koenderink [8]; Koenderink and
van Doorn [9, 10]; Lindeberg [11–14]; Sporring et al. [15]; Florack [16]; ter Haar Romeny
[17]). A paradigm that has been developed in this field is to impose structural constraints on
the first stages of processing that reflect symmetry properties of the environment. Interestingly,
it turns out to be possible to substantially reduce the class of permissible image operations
from such arguments, and it has been shown that biological receptive fields as measured in the
lateral geniculate nucleus (LGN) and the primary visual cortex (V1) of higher mammals
(Hubel and Wiesel [18–20]; DeAngelis et al. [21, 22]; Conway and Livingstone [23]; Johnson
et al. [24]) can be well modelled by idealized scale-space operations (Young et al. [25, 26]; Lin-
deberg [5, 27]).

The subject of this article is to show how a corresponding normative theory for receptive
fields can be developed for auditory stimuli, and how idealized models of auditory receptive
fields can be derived in a principled manner by applying scale-space theory to auditory signals.
Our aim is to express auditory operations that are well localized over time and frequencies and
which allow for well-founded handling of temporal phenomena that occur at different tempo-
ral scales as well as receptive fields that operate over different ranges of frequencies in such a
way that operations over different ranges of frequencies can be related in a well-
defined manner.

When applied to the definition of spectrograms, alternatively to the formulation of an ideal-
ized cochlea model, the scale-space approach can be used for deriving the Gabor (Gabor [28];
Wolfe et al. [29]; Lobo and Loizou [30]; Qiu et al. [31]; Wu et al. [32]) and Gamma-tone
(Johannesma [33]; Patterson et al. [34]; Hewitt and Meddis [35, 36]) approaches for computing
local windowed Fourier transforms as specific cases of a complex-valued scale-space transform
over different frequencies. In addition, the scale-space approach to defining spectrograms leads
to a new family of generalized Gamma-tone filters, where the time constants of the individual
first-order integrators coupled in cascade are not equal as for regular Gamma-tone filters but
instead distributed logarithmically over temporal scales and allowing for different trade-offs in
terms of e.g. the frequency selectivity of the spectrogram and the temporal delay of time-causal
receptive fields.

When applied to a logarithmic transformation of the spectrogram, as motivated from the
desire of handling sound signals of different strength (sound pressure) in an invariant manner
and with a logarithmic transformation of the frequencies as motivated by the desire of enabling
invariance properties under a frequency shift, such as transposing a musical piece by one oc-
tave, we will show how this theory also allows for the formulation of spectro-temporal receptive
fields at higher levels in the auditory hierarchy in terms of spectro-temporal derivatives of spec-
tro-temporal smoothing operations as obtained from scale-space theory.

It will be demonstrated how such second-layer receptive fields can be used for computing
basic auditory features such as onset detection, partial tone enhancement and formants, and
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specifically how different types of features can be obtained at different temporal scales τ, spec-
tral scales s and how this theory naturally also leads to a glissando parameter v that represents
how logarithmic frequencies νmay vary over time t according to a local linear approximation
ν0 = ν + vt.

Compared to the more common approach of computing auditory features in digital signal
processing by local windowed fast Fourier transforms (FFT), we argue that the proposed theory
provides a way to avoid artifacts of performing the computation in temporal blocks that later
have to be combined again. Furthermore, by the built-in covariance properties of the model
under temporal shifts, variations in sound pressure, frequency shifts and glissando transforma-
tions, the proposed approach allows for provable invariance properties under such transforma-
tions of sound signals.

It will also be shown how idealized models of spectro-temporal receptive fields as obtained
from the presented theory in terms of spectro-temporal derivatives of spectro-temporal scale-
space kernels can be used for generating predictions of auditory receptive fields that are qualita-
tively similar to biological receptive fields as measured by cell recordings in the inferior collicu-
lus (ICC) and the primary auditory cortex (A1) (Miller et al. [3]; Qiu et al. [31]; Machens et al.
[37]; Andoni et al. [38]; Elhilali et al. [39]; Atencio and Schreiner [40]).

Outline of the presentation
The presentation is organized as follows: The section “Structural requirements on temporal re-
ceptive fields” describes basic constraints on temporal receptive fields as motivated by the de-
sire of capturing temporal structures at different temporal scales in a theoretically well-defined
manner. The section “Scale-space concepts for purely temporal domains” then describes the
temporal scale-space concepts that satisfy these properties, with a distinction on whether the
auditory processing operations are required to be time-causal or not. For off-line processing of
pre-recorded sound signals, we may take the liberty of accessing the virtual future in relation to
any pre-recorded time moment, whereas one in a real-time situation has to take the fact that
the future cannot be accessed into explicit account. Thereby, we obtain different theories de-
pending on whether time is treated in a non-causal or a time-causal manner.

In the section “Multi-scale spectrograms for auditory signals” we apply these temporal
scale-space theories to the definition of multi-scale spectrograms by the formulation of locally
windowed Fourier transforms of different temporal extent to be able to capture temporal phe-
nomena at different temporal scales. The section “Receptive fields defined over the spectro-
gram” develops a corresponding theory for spectro-temporal receptive fields applied to the
spectrogram, and it is shown how auditory receptive fields over the spectro-temporal domain
can be expressed in an analogous way to how visual receptive fields are defined over space-
time, with the conceptual difference that the two spatial dimensions in vision are replaced by a
logarithmic frequency dimension. Specifically, we demonstrate how basic auditory features can
be computed in this way from spectro-temporal derivatives of idealized receptive fields as ob-
tained from the auditory scale-space theory.

The section “Relations to biological receptive fields” gives examples of how biological audi-
tory receptive fields can be modelled by the proposed theory. The section “Relations to previ-
ous work in audio processing” relates the presented theory to previous approaches in audio
processing, and the section “Summary and discussion” concludes with an overall summary of
the contributions in the paper, implications of the theory and directions for future work.

The section “Frequency selectivity of the spectrograms” complements the above treatment
by an in-depth analysis of the frequency selectivity properties of the temporal scale-space ker-
nels. The section “Temporal dynamics of the time-causal kernels” gives a corresponding
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analysis of the temporal delays of the time-causal receptive fields. Finally, the section “Compu-
tational implementation” shows how the presented continuous theory can be transferred to a
discrete implementation while still preserving the theoretical scale-space properties, and there-
by allowing for theoretically well-founded digital implementation e.g. for digital audio signal
processing or computational modelling of auditory perception.

Structural requirements on temporal receptive fields
In the following, we will describe a set of structural requirements concerning temporal recep-
tive fields for a general sensory system that processes a scalar time-dependent signal regarding
(i) the measurement of sensory data with its close relationship to the notion of temporal scale,
(ii) internal derived representations of the signal that are to be computed by a general sensory
system, and (iii) the special nature of time in terms of temporal causality and
temporal recursivity.

If we regard the sensory signal f as defined on a one-dimensional continuous temporal axis f
: R! R, then the problem of defining a set of early sensory operations can be formulated as
finding a family of operators Tτ that are to act on f to produce a family of new intermediate rep-
resentations of the signal

Lð�; tÞ ¼ T t f ð�Þ ð1Þ
which are also to be defined as functions on R, i.e., L(�; τ) : R! R.

(In Equation (1), the symbol “�” at the position of the first argument of L is a place holder to
emphasize that in this relation, L is regarded as a function and not evaluated with respect to its
first argument t. The following semi-colon emphasizes the different natures of the temporal co-
ordinate t and the filter parameter τ.)

The evaluation of one (specific example) function L can be interpreted as the response of a
(set of) sensory neurons in biology or as an internal representation in a temporal signal pro-
cessing system that processes temporal information. Combined with additional processing
over frequencies, we will later use such internal representations for modelling neurons in the
inferior colliculus (ICC) and the primary auditory cortex (A1).

General scale-space axioms for temporal receptive fields
Linearity. If we want the initial auditory processing stages to make as few irreversible deci-

sions as possible, it is natural to require Tτ to be linear such that

T t ða1f1 þ a2f2Þ ¼ a1T t f1 þ a2T t f2 ð2Þ
holds for all functions f1, f2 : R! R and all scalar constants a1, a2 2 R. The motivation for
avoiding early irreversible decisions is that we would as much as possible like to preserve an
isomorphic mapping to the input, not losing important information.

Linearity also implies that a number of special properties of receptive fields (to be developed
below) transfer to temporal derivatives of these and do therefore imply that different types of
time-dependent structures in the signal will be treated in a similar manner irrespective of what
types of linear filters they are captured by.

Concerning the assumption of linearity, it should be noted that there is an implicit degree of
freedom in this formulation concerning the parameterization of the units by which the input
signal f is measured. Given an underlying measurement signal I(t) in units of energy from a
sensor, one could for a positive signal also consider defining the input signal f in terms of a
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reparameterization of the sensor signal I according to a self-similar power law for some α> 0

f ðtÞ ¼ IðtÞð Þa ð3Þ

or a self-similar logarithmic transformation

f ðtÞ ¼ log
IðtÞ
I0

� �
ð4Þ

defined relative to some reference level I0. Both of these transformations are self-similar in the
sense that (i) they are well-behaved under rescalings of the measurement domain I(t) 7! a I(t)
for a> 0 and (ii) the local magnification/compression around any measurement value as de-
fined from the derivative also follows a self-similar power law.

Temporal shift invariance. Let us require Tτ to be a shift-invariant operator in the sense
that it commutes with the temporal shift operator SΔt defined by (SΔt f)(t) = f(t − Δt), such that

T t SDt fð Þ ¼ SDt T t fð Þ ð5Þ

holds for all Δt 2 R. The motivation behind this assumption is the basic requirement that the
representation of a sensory event should be similar irrespective of when it occurs.

Convolution structure. Together, the assumptions of linearity and shift-invariance imply
that the internal representations L(�; τ) are given by convolution transformations (Hirschmann
andWidder [41])

Lðt; tÞ ¼ ðTð�; tÞ � f ÞðtÞ ¼
Z
x2R

Tðx; tÞ f ðt � xÞ dx ð6Þ

where T(�; τ) denotes some family of convolution kernels. These kernels and their temporal de-
rivatives can also be referred to as temporal receptive fields.

Regularity. To be able to use tools from functional analysis, we will initially assume that
both the original signal f and the family of convolution kernels T(�; τ) are in the Banach space
L2(R), i.e. that f 2 L2(R) and T(�; τ) 2 L2(R) with the norm

k f k2
2¼
Z
t2R

jf ðtÞj2 dt: ð7Þ

Then, also the intermediate representations L(�; τ) will be in the same Banach space, and the
operators Tτ can be regarded as well-defined.

Positivity (non-negativity). Concerning the convolution kernels T, one may require these
to be non-negative to constitute smoothing transformations

Tðt; tÞ � 0: ð8Þ

Normalization. Furthermore, it is natural to require the convolution kernels to be nor-
malized to unit mass

k Tð�; tÞ k1 ¼
Z
t2R

Tðt; tÞ dt ¼ 1 ð9Þ

to leave a constant signal unaffected by the temporal smoothing transformation.
Quantitative measurement of the temporal extent and the temporal offset of non-nega-

tive scale-space kernels. For a non-negative convolution kernel, we can measure the temporal
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offsetm ¼ �t by the temporal mean operator

m ¼ �t ¼ MðTð�; tÞÞ ¼
R
t2Rt Tðt; tÞ dtR
t2RTðt; tÞ dt

ð10Þ

and the temporal extent by the temporal variance

S ¼ VðTð�; tÞÞ ¼
R
t2Rðt � �tÞ2 Tðt; tÞ dtR

t2RTðt; tÞ dt
: ð11Þ

Using the additive properties of mean values and variances under convolution, which hold for
non-negative distributions, it follows that

m ¼ MðTð�; t 1Þ � Tð�; t 2ÞÞ ¼ MðTð�; t 1ÞÞ þMðTð�; t 2ÞÞ ¼ m1 þm2; ð12Þ

S ¼ VðTð�; t 1Þ � Tð�; t 2ÞÞ ¼ VðTð�; t 1ÞÞ þ VðTð�; t 2ÞÞ ¼ S1 þ S2: ð13Þ

Identity operation with continuity. To guarantee that the limit case of the internal scale-
space representations when the scale parameter τ tends to zero should correspond to the origi-
nal sound signal f, we will assume that

lim
t#0

Lð�; tÞ ¼ lim
t#0

T t f ¼ f : ð14Þ

Hence, the intermediate signal representations L(�; τ) can be regarded as a family of derived
representations parameterized by a temporal scale parameter τ.

Semi-group alternatively Markov structure over scale. For such sensory measurements
to be properly related between different temporal scales, it is natural to require the operators Tτ
with their associated convolution kernels T(�; τ) to form a semi-group over τ

T t 1
T t 2

¼ T t 1þt 2
ð15Þ

which means that the composition of two kernels from the semi-group should also be a mem-
ber of the same family of kernels and with added parameter values

Tð�; t 1Þ � Tð�; t 2Þ ¼ Tð�; t 1 þ t 2Þ: ð16Þ

Then, the transformation between any different and ordered scale levels τ1 and τ2 with τ2 � τ1
will obey the cascade property

Lð�; t 2Þ ¼ Tð�; t 2 � t 1Þ � Tð�; t 1Þ � f ¼ Tð�; t 2 � t 1Þ � Lð�; t 1Þ ð17Þ

implying that we can compute the representation L(�; τ2) at a coarser scale from the representa-
tion L(�; τ1) at any finer scale using a similar type of transformation as when computing the re-
presentation at any scale from the original data f.

For a temporal scale-space representation based on a discrete set of temporal scale levels τk
(k = 0 . . . K), we can alternatively require aMarkov property of the form

Tð�; tkþ1Þ ¼ ðDTÞð�; kÞ � Tð�; t kÞ ð18Þ

where (ΔT)(�; k) represents the transformation between adjacent scale levels τk and τki+1. Then,
the mapping between any pair of temporal scale levelsm< n

Tð�; t nÞ ¼ ðDTÞð�; m 7!nÞ � Tð�; t mÞ ð19Þ
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will be given by convolution with the kernel

ðDTÞð�; m 7!nÞ ¼ �n�1
k¼mðDTÞð�; kÞ: ð20Þ

The difference between the semi-group and the Markov assumptions is that the semi-group
structure forces the transformations between adjacent scales to be independent of the current
scale level, whereas the transformations between adjacent scales may vary with scale under the
Markov assumption. The reason for relaxing the semi-group structure to a Markov structure is
to make it possible to take larger temporal scale steps Δτk at coarser temporal scales, which will
have important implications for time-causal receptive fields.

A representation of a signal possessing these properties is called a temporal multi-scale
representation.

Self-similarity over scale. Regarding the family of convolution kernels used for computing
a multi-scale representation, one may require them to be self-similar over temporal scales, such
that all the kernels correspond to rescaled copies

Tðt; tÞ ¼ 1

φðtÞ
�T

t
φðtÞ
� �

ð21Þ

of some prototype kernel �T for some transformation of φ(τ) of the temporal scale parameter τ.
The reason for introducing a function φ for transforming the scale parameter s into a scaling

factor φ(τ) over time, is that the semi-group requirement (15) does not imply any restriction
on how the parameter τ should be related to sound measurements in dimensions of time—the
semi-group structure only implies an abstract ordering relation between coarser and finer
scales τ2 > τ1 that could also be satisfied for any monotonously increasing transformation of
the scale parameter τ. For the Gaussian temporal scale-space concept (25)–(26) this transfor-
mation is given by s ¼ φðt Þ ¼ ffiffiffiffi

t
p

.
Temporal covariance. If the same sensory stimulus is recorded by two sensors that sample

the variations in the stimulus with different temporal sampling rates, or if similar temporal
events occur at a somewhat different speed, it seems natural that the auditory system should be
able to relate the temporal scale-space representations that are computed from the data.

Therefore, one may require that if the temporal dimension is rescaled by a uniform scaling
factor f0 = Sf corresponding to f 0(t0) = f(t) with t0 = S t, then there should exist some transforma-
tion of the temporal scale τ0 = B(τ) such that the corresponding temporal scale-space represen-
tations are equal: L0(t0; τ0) = L(t; τ) corresponding to TB(τ)ℬf = ℬTτ f. In the case of a discrete set
of temporal scale levels, we cannot however require self-similarity or temporal covariance to
hold exactly. At best, we can aim at approximate transformation properties e.g. in terms of the
temporal variance of the temporal scale-space kernels.

Non-creation of new structures with increasing scale. A necessary requirement on a
scale-space representation is that convolution with the scale-space kernel T(�; τ) should corre-
spond to a smoothing transformation in the sense that coarser scale representations should be
guaranteed to constitute simplifications of corresponding finer scale representations, so that
new structures are not created from finer to coarser scales:

Non-creation of local extrema (zero-crossings). One way of formalizing such a require-
ment for a one-dimensional signal f : R!R, is by the requirement that the number of local ex-
trema in the data must not increase with scale for any signal and is referred to as non-creation
of local extrema. Formally, a one-dimensional kernel T is a scale-space kernel if for any signal f,
the number of local extrema in T � f is guaranteed to not exceed the number of local extrema in
f (Lindeberg [42]). For a one-dimensional signal, this condition can also be equivalently ex-
pressed in terms of zero-crossings.
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Specific scale-space axioms for a non-causal temporal domain
Depending on the conditions under which the sensory data is processed, we can consider two
types of cases. For pre-recorded signals, we may in principle assume access to the data at all
temporal moments simultaneously and thereby apply operations to the signal that would cor-
respond to access to virtual future. For real-time signal processing or when modelling biologi-
cal perception, there is, however, no way of having access to the future, which imposes
fundamental additional structural requirements on a temporal front-end. For pre-recorded
temporal signals, we require the following:

Non-enhancement of local extrema. In the case of a continuous scale parameter, one way
of formalizing the requirement of non-creation of new structures in the signal with increasing
scale is that local extrema must not be enhanced with increasing scale. In other words, if a point
(t0; τ0) is a local (spatial) maximum of the mapping t 7! L(t; τ0) then the value must not in-
crease with scale. Similarly, if a point (t; τ0) is a local (spatial) minimum of the mapping t 7! L
(t; τ0), then the value must not decrease with scale (see fig. 1). Given the above mentioned
differentiability property with respect to scale, we say that the multi-scale representation con-
stitutes a scale-space representation if for a scalar scale parameter it satisfies the following con-
ditions (Lindeberg [14, 43]):

@t Lðt0; t 0Þ � 0 at any non� degenerate local maximum; ð22Þ

@t Lðt0; tt 0Þ � 0 at any non� degenerate local minimum: ð23Þ

By considering the response to a constant signal, it follows from the requirement of non-en-
hancement of local extrema that a scale-space kernel should be normalized to unit L1-norm,
corresponding to the normalization requirement in Equation (9).

Specific scale-space axioms for a time-causal temporal domain
When processing sensory data in a real-time scenario, the following additional temporal re-
quirements are instead needed:

Fig 1. Illustration of the notion of non-enhancement of local extrema for a 1-D signal. The requirement
of non-enhancement of local extrema is a way of restricting the class of possible filtering operations by
formalizing the notion that new structures in the signal must not be created with increasing scale, by requiring
that the value at a local maximummust not increase with scale and that the value at a local minimummust not
decrease. (Figure from Lindeberg [27].)

doi:10.1371/journal.pone.0119032.g001
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Temporal causality. For a sensory system that interacts with the environment in a real-
time setting, a fundamental constraint on the convolution kernels (the temporal receptive
fields) is that there is no way of having access to future information, implying that the temporal
smoothing kernels must be time-causal such that the convolution kernel must be zero for any
relative time moment that would imply access to the future:

Tðt; tÞ ¼ 0 if t < 0: ð24Þ
The possibly pragmatic solution of using a truncated symmetric filter of finite support in com-
bination with a temporal delay may not be appropriate for a time-critical real-time system,
since it would lead to unnecessarily long time delays in particular at coarser temporal scales.
Therefore, a dedicated theory for truly time-causal spatio-temporal scale-space concepts
is needed.

Time-recursivity. Another fundamental constraint on a real-time system is that it cannot
be expected to keep a full record of everything that has happened in the past. To keep down
memory requirements, it is desirable that the computations can be based on a limited internal
temporal buffer M(t), which should provide:

• a sufficient record of past information and

• sufficient information to update its internal state in a recursive manner over time as new
information arrives.

A particularly useful solution in this context is to use the internal temporal representations L at
different temporal scales as a sufficient temporal memory buffer of the past.

Non-creation of structure in the context of discrete temporal scale levels. For a tempo-
ral scale-space representation involving a discrete set of scale levels only, we build on the re-
quirement of non-creation of local extrema as expressed for a one-dimensional temporal signal
depending on time t only. Let us therefore regard a one-dimensional temporal smoothing ker-
nel Ttime as a temporal scale-space kernel if and only if the kernel is (i) time-causal and in addi-
tion (ii) for any purely temporal signal f, the number of local extrema in Ttime

� f is guaranteed
to not exceed the number of local extrema in f (Lindeberg and Fagerström [44]).

Scale-space concepts for purely temporal domains
In this section we will describe how the structural requirements listed in the section “Structural
requirements on temporal receptive fields” restrict the class of temporal scale-space kernels
and thus the class of possible temporal receptive fields.

Non-causal Gaussian temporal scale-space
If, for the purpose of analyzing pre-recorded auditory data, we allow for unlimited freedom of
accessing the sensory data at all temporal moments simultaneously, we can apply a similar way
of reasoning as has been used for deriving scale-space concepts for image data over a spatial do-
main (Iijima [6]; Witkin [7]; Koenderink [8]; Lindeberg [11–14, 43]; Sporring et al. [15]; Flor-
ack [16]; Weickert et al. [45]; ter Haar Romeny [17]):

Given time-dependent sensory data f : R! R defined over a one-dimensional temporal do-
main, let us assume that the first stage of sensory processing as represented by the operator Tτ
should satisfy the following structural requirements: (i) linearity, (ii) shift invariance and (iii)
obey a semi-group structure over temporal scales τ, where we also have to assume (iv) certain
regularity properties of the semi-group Tτ over scale τ to guarantee sufficient differentiability
properties with respect to time t and temporal scales τ. Let us furthermore require (iv) non-

Idealized Computational Models for Auditory Receptive Fields

PLOS ONE | DOI:10.1371/journal.pone.0119032 March 30, 2015 9 / 58



enhancement of local extrema to hold for any smooth function f 2 C1(R) \ L1(R) and for any
positive scale direction s.

Then, it follows from (Lindeberg [14], theorem 5) that these conditions together imply that
the scale-space family Lmust satisfy a diffusion equation of the form

@t L ¼ 1

2
S0 @ttL� d0 @tL ð25Þ

with initial condition L(t; 0) = f(t) for some positive constant S0 and some constant δ0. Equiva-
lently, this spatio-temporal scale-space representation at scale τ can be obtained by convolution
with temporal Gaussian kernels of the form

gðt; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2pSt

p e�ðt�dt Þ2=2t ð26Þ

with Sτ = τS0 and δτ = τ δ0. Since the parameter S0 only corresponds to an unessential rescal-
ing of the temporal scale parameter τ, we will set S0 = 1.

To verify that the solutions of the diffusion equation obey non-enhancement of local extrema is
straightforward. For a one-dimensional signal the first-order derivative is zero, whereas the value
of the second derivative will be positive at local minima and negative at local maxima. Hence, for
Gaussian smoothing as governed by the diffusion Equation (25), the derivative with respect to
scale is guaranteed to be positive at local minima and negative at local maxima (sufficiency). A less
immediate result is that non-enhancement of local extrema also implies that the evolution over
scale must be governed by the diffusion equation (necessity) and is proved in (Lindeberg [14]).

Graphs of these Gaussian kernels are shown in fig. 2. Notably, these kernels are not strictly
time causal. To arbitrary degree of accuracy, however, they can be approximated by truncated
time-causal kernels, provided that the time delay δ is chosen sufficiently long in relation to the
temporal scale τ. Hence, the choice of δ leads to a trade-off between the computational accura-
cy of the implementation and the temporal response properties as delimited by a non-zero
time delay. This problem, however, arises only for real-time analysis. For off-line computa-
tions, the time delay may be set to zero, corresponding to kernels that are mirror symmetric T
(−t; s) = T(t; s) through the origin. Thus, the truncated and time-shifted Gaussian kernels can
serve as a simplest possible model for a temporal scale-space representation, provided that the
requirements of temporal causality and temporal recursivity can be relaxed.

Derived receptive fields in terms of temporal derivatives. In addition to the zero-order
smoothing kernel T, we have in fig. 2 also shown its first- and second-order temporal deriva-
tives Tt and Ttt. Such derivatives of scale-space kernels do also obey desirable structural

Fig 2. The time-shifted Gaussian kernel gðt; t ; dÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
2pt

p
expð�ðt � dÞ2=2t Þ for τ = 1 and δ = 4 with its first- and second-order temporal

derivatives.

doi:10.1371/journal.pone.0119032.g002
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properties in terms of linearity, shift invariance and nice properties over scale in terms of non-
enhancement of local extrema, with the semi-group property replaced by a cascade property
over scale

ð@taLÞð�; t 2Þ ¼ Tð�; t 2 � t 1Þ � ð@taLÞð�; t 1Þ ð27Þ
and with the limit case when the temporal scale goes to zero (14) replaced by

lim
t#0

ð@taLÞð�; tÞ ¼ lim
t#0

@taðT t f Þ ¼ @ta f ð28Þ

provided that the corresponding derivative of f exists. Regarding temporal receptive fields that
are expressed in terms of derivatives of scale-space kernels, the normalization condition (9) is
replaced by the integral of the receptive field being zero

k ð@taTÞð�; tÞk1 ¼
Z
t2R

ð@taTÞðt; tÞ dt ¼ 0: ð29Þ

In all other major respects, such receptive fields satisfy essential scale-space properties in terms of
non-creation of new structures with increasing scale in the sense that local extrema in the receptive
field response are not enhanced from a fine to a coarser scale or that the number of local extrema
or zero-crossings in the signal is guaranteed to not increase from any fine to any coarser scale.

Additionally, receptive fields that are expressed in terms of temporal derivatives are invari-
ant under additive transformations of the signal

f ðtÞ7!f ðtÞ þ C ð30Þ
and thereby provide a mechanism for capturing local variations in the signal under variabilities
of its baseline.

Time-causal temporal scale-space
When constructing a system for real-time processing of sensory data, a fundamental constraint
on the temporal smoothing kernels is that they have to be time-causal. The ad hoc solution of
using a truncated symmetric filter of finite temporal extent in combination with a temporal
delay is not appropriate in a time-critical context. Because of computational and memory effi-
ciency, the computations should furthermore be based on a compact temporal buffer that con-
tains sufficient information for representing sensory information at multiple temporal scales
and computing features therefrom. Corresponding requirements are necessary in computa-
tional modelling of biological perception.

Time-causal scale-space kernels for pure temporal domain. Given the requirement on
temporal scale-space kernels by non-creation of local extrema over a pure temporal domain,
truncated exponential kernels

hexpðt; mkÞ ¼
1

mk

e�t=mk t � 0

0 t < 0

ð31Þ

8><
>:

can be shown to constitute the only class of time-causal scale-space kernels over a continuous
domain (Lindeberg [42]; Lindeberg and Fagerström [44]). The Laplace transform of such a ker-
nel is given by

Hexpðq; mkÞ ¼
Z 1

t¼�1
hexpðt; mkÞ e�qt dt ¼ 1

1þ mkq
ð32Þ
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and coupling K such kernels in cascade leads to a composed filter

hcomposedðt; mÞ ¼ �Kk¼1hexpðt; mkÞ ð33Þ

having a Laplace transform of the form

Hcomposedðq; mÞ ¼
Z 1

t¼�1
ð�Kk¼1hexpðt; mkÞÞ e�qt dt ¼

YK
k¼1

1

1þ mkq
ð34Þ

The composed filter has temporal mean and variance

mK ¼ Mðhcomposedð�; mÞÞ ¼
XK
k¼1

mk ð35Þ

t K ¼ Vðhcomposedð�; mÞÞ ¼
XK
k¼1

m2
k ð36Þ

In terms of physical models, repeated convolution with such kernels corresponds to coupling a
series of first-order integrators with time constants μk in cascade:

@tLðt; t kÞ ¼
1

mk

Lðt; tk�1Þ � Lðt; t kÞð Þ ð37Þ

with L(t; 0) = f(t). These temporal smoothing kernels satisfy scale-space properties in the sense
that the number of local extrema or the number of zero-crossings in the temporal signal are
guaranteed to not increase with the temporal scale. In this respect, these kernels have a desir-
able and well-founded smoothing property that can be used for defining multi-scale observa-
tions over time. A limitation of this type of temporal scale-space representation, however, is
that the scale levels are required to be discrete and that the scale-space representation does
hence not admit a continuous scale parameter. Computationally, however, the scale-space re-
presentation based on truncated exponential kernels can be highly efficient and admits for di-
rect implementation in terms of hardware (or wetware) that emulates first-order integration
over time (see fig. 3 for an illustration of a corresponding electric wiring diagram).

Fig 3. Electric wiring diagram consisting of a set of resistors and capacitors that emulate a series of
first-order integrators coupled in cascade.Here, we regard the time-varying voltage fin as representing the
time varying input signal and the resulting output voltage fout as representing the time varying output signal at
a coarser temporal scale. According to the theory of temporal scale-space kernels for one-dimensional
signals (Lindeberg [42]; Lindeberg and Fagerström [44]), the corresponding equivalent truncated exponential
kernels are the only primitive temporal smoothing kernels that guarantee both temporal causality and non-
creation of local extrema (alternatively zero-crossings) with increasing temporal scale. Such first-order
temporal integration can be used as a straightforward computational model for temporal processing in
biological neurons; see also (Koch [46], chapters 11–12) regarding physical modelling of the information
transfer in dendrites of neurons.

doi:10.1371/journal.pone.0119032.g003
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When implementing this temporal scale-space concept, a set of intermediate scale levels has
to be distributed between some minimum and maximum scale levels τmin and τmax. Assuming
that a total number of K scale levels is to be used, it is natural to distribute the temporal scale
levels according to a geometric series, corresponding to a uniform distribution in units of effec-
tive temporal scale τeff = logτ (Lindeberg [47]). Using such a logarithmic distribution of the
temporal scale levels, the different levels in the temporal scale-space representation at increas-
ing temporal scales will serve as a logarithmic memory of the past, with qualitative similarity to
the mapping of the past onto a logarithmic time axis in the scale-time model by Koenderink
[48]. If we have the freedom of choosing τmin freely, a natural way of parameterizing these tem-
poral scale levels is by using a distribution parameter c> 1 such that

t k ¼ c2ðk�KÞtmax ð1 � k � KÞ ð38Þ

which by Equation (36) implies that time constants of the individual first-order integrators will
be given by

m1 ¼ c1�K ffiffiffiffiffiffiffiffi
tmax

p ð39Þ

mk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t k � tk�1

p ¼ ck�K�1
ffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p ffiffiffiffiffiffiffiffi
tmax

p ð2 � k � KÞ ð40Þ

If the temporal signal is on the other hand given at some minimum temporal scale level τmin,
we can instead determine c in (38) such that τ1 = τmin

c ¼ tmax

tmin

� �
1

2ðK � 1Þ ð41Þ

and add K − 1 temporal scale levels with μk according to (40). Alternatively, if one chooses a
uniform distribution of the intermediate temporal scale levels

t k ¼
k
K

tmax
ð42Þ

implying

mk ¼ m ¼
ffiffiffiffiffiffiffiffi
tmax

K

r
; ð43Þ

then it becomes straightforward to compute the explicit expression for the composed kernel

hcomposedðt; m; kÞ ¼ L�1 1

ð1þ mqÞk
 !

¼ tk�1 e�t=m

mk GðkÞ ð44Þ

having temporal mean valuemk = k μ and variance τ = k μ2. In contrast to the primitive trun-
cated exponentials, which are discontinuous at the origin, these kernels are continuous of order
k − 1, allowing for differentiation up to order k − 1. The corresponding expressions for the
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first- and second-order derivatives are:

hcomposed;tðt; m; kÞ ¼ m�k�1tk�2
ððk� 1Þm� tÞ

GðkÞ e�t=m

¼ �ðt � ðk� 1ÞmÞ
mt

� hcomposed;tðt; m; kÞ;
ð45Þ

hcomposed;ttðt; m; kÞ ¼ m�k�2tk�3
ðk2 � 3kþ 2Þm2 � 2ðk� 1Þtmþ t2ð Þ

GðkÞ e�t=m

¼ k2 � 3kþ 2ð Þm2 � 2ðk� 1Þtmþ t2ð Þ
m2t2

� hcomposed;tðt; m; kÞ:
ð46Þ

Fig. 4 shows graphs of these kernels for two combinations of μ and K that correspond to the
same value of the composed variance τ = K μ2. Notably, these kernels are highly asymmetric
for small values of K, whereas they become gradually more symmetric as K increases. Figs. 5–6
show corresponding compositions of truncated exponential kernels for self-similar distribu-

tions of the intermediate time constants according to Equations (38), (39) and (40) for c ¼ ffiffiffi
2

p
and c = 23/4. Comparing fig. 4 and figs. 5–6, the use of a self-similar distribution of the time
constants (in figs. 5–6) allows for smoother behaviour near the origin with increasing K while
not increasing the temporal delay as much as for the kernels corresponding to a uniform distri-
bution of the intermediate temporal scale levels (in fig. 4).

Time-recursive computation of temporal derivatives. Temporal scale-space derivatives
of order r can be defined from this scale-space model according to

Ltrð�; t KÞ ¼ @tr Lð�; t KÞ ¼ ð@tr ð�Kk¼1hexpðt; mkÞÞ � f ð47Þ

Fig 4. Equivalent kernels hcomposedðt; mÞ ¼ �Kk¼1hexpðt; mÞwith temporal variance τ = 1 corresponding to the composition of K truncated exponential
kernels with equal time constants μ and their first- and second-order derivatives. (top row) k = 4 and m ¼ ffiffiffiffiffiffiffiffi

1=4
p

. (bottom row) k = 7 and m ¼ ffiffiffiffiffiffiffiffi
1=7

p
.

doi:10.1371/journal.pone.0119032.g004
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Fig 6. Equivalent kernels hcomposedðt; mÞ ¼ �Kk¼1hexpðt; mkÞwith temporal variance τ = 1 corresponding to the composition of K = 4 or K = 7 truncated
exponential kernels with different time constants defined from a self-similar distribution of the temporal scale levels according to Equations (38),
(39) and (40) and corresponding to a uniform distribution in terms of effective temporal scale τeff = log τ for c = 23/4 and with their first- and second-
order derivatives.

doi:10.1371/journal.pone.0119032.g006

Fig 5. Equivalent kernels hcomposedðt; mÞ ¼ �Kk¼1hexpðt; mkÞwith temporal variance τ = 1 corresponding to the composition of K = 4 or K = 7 truncated
exponential kernels with different time constants defined from a self-similar distribution of the temporal scale levels according to Equations (38),
(39) and (40) and corresponding to a uniform distribution in terms of effective temporal scale τeff = log τ for c ¼ ffiffiffi

2
p

and with their first- and second-
order derivatives.

doi:10.1371/journal.pone.0119032.g005
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where the Laplace transform of the composed (equivalent) derivative kernel is

HðrÞ
composedðq; t KÞ ¼ qr

YK
k¼1

1

1þ mkq
ð48Þ

For this kernel to have a net integration effect (to enable well-posed derivative operators), the
total order of differentiation must not exceed the total order of integration. Thereby, r< k is a
necessary requirement. The composed transfer function must have finite L2-norm.

A very useful observation that can be made concerning derivative computations is that tem-
poral derivatives can equivalently be computed from differences between different temporal
channels. Let us first assume that all time constants μi are different in (48). Then, a partial frac-
tion division gives

HðrÞ
composedðq; t kÞ ¼

Xk

i¼1

Ai Hprimðq; miÞ ð49Þ

where

Ai ¼
ð�1Þr
mr
i

Yk
j¼1;j 6¼i

1

ð1� mj=miÞ
ð1 � i � kÞ ð50Þ

showing that each temporal derivative can be computed as a linear combination of the represen-
tations at the different time-scales.

More realistically, the channels that we can regard as available at a certain temporal scale
with index k will not be the results of direct filtering with different time constants μi. Rather,
we would like to use the intermediate outputs from the cascade coupled recursive filters Hcompo-

sed(q; τi) for k − r� i� k. Decomposition of HðrÞ
composed into a sum of r such transfer functions

HðrÞ
composedðq; t kÞ ¼

Xk

i¼k�r

Bi Hcomposedðq; t iÞ ð51Þ

shows that the weights Bi are given as the solution of a triangular system of equations provided
that the necessary condition r< k is satisfied

ð�1Þr
mr
i

Yk
j¼iþ1

1

ð1� mj=miÞ
¼ Bi þ

Xk

n¼iþ1

Bn

Yn
j¼iþ1

1

ð1� mj=miÞ
ðk� r � i � kÞ: ð52Þ

It can be shown that the Laplace transforms of the equivalent derivative computation kernels
satisfy the following recurrence relation (Lindeberg and Fagerström [44])

HðrÞ
composedðq; t kÞ ¼

1

mk

Hðr�1Þ
composedðq; tk�1Þ � Hðr�1Þ

composedðq; t kÞ
� �

ð53Þ

implying that higher-order temporal derivatives can be computed from small-support finite
differences of lower-order derivatives, where the temporal scale-space representations at differ-
ent temporal scales serve as a sufficient temporal buffer of what has occurred in the past. Deriv-
ative computations will therefore be highly efficient. Both the temporal smoothing operation
and the computation of temporal derivatives are time-recursive.
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Multi-scale spectrograms for auditory signals
The above treatment concerning is general and can be used for modelling desirable properties
of temporal receptive fields for a variety of time-dependent sensory signals. For auditory sig-
nals, an additional structural requirement arises from the fact that the auditory information is
transferred in terms of sound waves that travel from the transmitter to the receiver and the au-
ditory information can be encoded in terms of oscillation frequencies of the air pressure that
generates the sensory signal. For this reason and from our knowledge that the variations due to
the geometry and other properties of the cochlea leads to physical resonances whose effect can
be modelled as a physical Fourier transform, spectrograms are a common tool for analyzing
auditory information.

Note that our primary aim is not to specifically model, for example, the measured response
of the nerves coming from the cochlea as typically done in previous auditory models (Patterson
et al. [36]). Instead we are following the scale-space theory using the principle of invariance as
outlined in the sections “Structural requirements on temporal receptive fields” and “Scale-
space concepts for purely temporal domains”.

Based on the two models for temporal receptive fields (non-causal in the section “Non-caus-
al Gaussian temporal scale-space” and time-causal in the section “Time-causal temporal scale-
space”), we can use the temporal smoothing functions in these two temporal scale-space mod-
els as scale-dependent window functions for defining two types of complex-valuedmulti-scale
spectrograms according to

Sgðt;o; tÞ ¼
Z 1

t0¼�1
gðt � t0; tÞ f ðt0Þ e�iot0 dt0 ð54Þ

Shðt;o; mÞ ¼
Z 1

t0¼�1
hcomposedðt � t0; mÞ f ðt0Þ e�iot0 dt0 ð55Þ

where

• g(t; τ) is a temporal Gaussian kernel of the form (26),

• hcomposed(t; μ) with μ = (μ1, . . ., μK) is the equivalent convolution kernel corresponding to a
cascade of truncated exponential filters of the form (33).

This implies that the convolution kernels in the temporal scale-spaces for a general time-vary-
ing signal are used as scale-dependent window functions for defining windowed Fourier trans-
forms of different temporal extent.

For a given value of τ, the spectrogram becomes a 2-D function. With the definition extend-
ed to all values of τ, the spectrogram based on Gaussian window functions instead becomes a
3-D volume over all temporal extents of the window function or alternatively a set of discrete
2-D slices for the window functions based on truncated exponential functions coupled in cas-
cade for vectors μ = (μ1, . . ., μK) of different length K.

Note that a priori there may be no principled reason for preferring a particular duration of
the temporal window function for the windowed Fourier transform over some other temporal
duration. Specifically, different temporal durations may be appropriate for different auditory
tasks, such as a preference for a short temporal duration for onset detection and a preference
for a longer temporal duration to separate sounds with nearby frequencies. Thereby, the scale-
space approach allows for the definition of windowed Fourier transforms for all temporal ex-
tents in such a way that any windowed Fourier transform at a coarse temporal scale can be
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related to a windowed Fourier transform at any finer scale using the cascade property

Sð�;o; t 2Þ ¼ wð�; t 2 � t 1Þ � Sð�;o; t 1Þ; ð56Þ

Sð�;o; t nÞ ¼ ðDwÞð�; m 7!nÞ � Sð�;o; t mÞ: ð57Þ

derived from the semi-group structure (15) or the Markov property (18) of the underlying
scale-space kernels. Combined with the additional scale-space properties of non-creation of
new structures with increasing scale, this guarantees well-founded theoretical properties be-
tween corresponding windowed Fourier transforms at different temporal scales.

In most other work on auditory signal processing, there is often an implicit assumption that
one chooses a scale for computing the auditory features that seems to work and on which later
stage analysis is then based. By the presented formulation of multi-scale spectrograms, we aim
at making the consequences of such assumptions explicit, and emphasizing the possibility of
computing auditory features at multiple temporal scales as an integrated part of the analysis.
Compared to the more traditional approach of computing spectrograms from local fast Fourier
transforms combined with local windowing operations, this formulation of multi-scale spectro-
grams also avoids the concatenation of such windowing operations altogether and thereby the
artifacts caused by these.

The scale-space approach for defining multi-scale auditory spectrograms implies that in-
stead of computing a scale-space representation of the original auditory signal, the auditory sig-
nal is first projected onto the two orthogonal dimensions cosωt and isinωt of a complex sine
wave e−iωt

fcosðt;oÞ ¼ f ðtÞ cosot fsinðt;oÞ ¼ f ðtÞ sinot ð58Þ

for which temporal scale-space representations are then defined, implying that the multi-scale
spectrogram can be seen as a complex-valued scale-space transform.

Invariance and covariance properties. Concerning the symmetry requirements of a
general temporal sensory front-end described in the section “Structural requirements on
temporal receptive fields”, the linearity of the scale-space operations is transferred to a linearity
in the complex multi-scale spectrograms (54)–(55). This implies that multiple sources of sound
will be combined in an additive manner in terms of their complex-valued responses and that
sound sources of different strength (sound pressure) will be handled in a similar manner up to
a multiplication of the strength of the signal.

Regarding temporal shift invariance, the magnitude maps jSgj and jShj are invariant under a
shift of the temporal axis, whereas the phase of the truly complex spectrograms Sg and Sh will
be transformed in a predictable manner between similar sound signals at different time mo-
ments or from different distances to the observer.

Under a local rescaling of the temporal axis

t 7!a t ð59Þ

the temporal receptive fields from the Gaussian scale-space model are fully scale covariant and
the corresponding complex-valued multi-scale spectrograms are transformed according to

Sðt;o; tÞ 7!S a t;
o
a
; a2t

� �
: ð60Þ

If we let the window scale s ¼ ffiffiffiffi
t

p
for any angular frequency ω be proportional to the wave-

length λ = 2π/ω corresponding to that frequency, then the corresponding spectrograms within
the same 2-D slice of the extended 3-D multi-scale spectrogram can therefore be matched by a
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corresponding frequency shift

o 7!o
a
: ð61Þ

If the temporal window functions on the other hand do not have the temporal extent propor-
tional to the wavelength, then temporal covariance does not hold within the same 2-D slice but
still holds within the 3-D multi-scale spectrogram based on Gaussian window functions be-
cause of their self-similarity over scale, whereas the corresponding scaling relations can only be
approximate for the truncated exponential functions coupled in cascade, because of the tempo-
ral scale levels being restricted to a discrete set of values.

Again there may not be any principled reason for preferring a particular temporal scale over
another. The multi-scale nature of these spectrograms makes this aspect explicit and opens up
for using different temporal scales for different auditory tasks, where different temporal scales
may have complementary advantages.

Relations to Gabor functions. By rewriting the expression (54) for the complex-valued
spectrogram based on the Gaussian temporal scale-space concept as

Sgðo; t; tÞ ¼ e�iot

Z 1

t0¼�1
gðt � t0; tÞ eioðt�t0Þ f ðt0Þ dt0; ð62Þ

it can be seen that up to a phase shift, this multi-scale spectrogram can equivalently be inter-
preted as the convolution of the original auditory signal f by Gabor functions [28] of the form

Gðt;o; tÞ ¼ gðt; tÞ eiot: ð63Þ

Such Gabor functions have been previously used for analyzing auditory signals by several au-
thors, including (Wolfe et al. [29]; Kleinschmidt et al. [49, 50]; Lobo and Loizou [30]; Qiu et al.
[31]; van de Boogart and Lienhart [51]; Ezzat et al. [52]; Domont et al. [53]; He et al. [54];
Heckmann et al. [55]; Wu et al. [32]; Schädler et al. [56]; Sameh and Lachiri [57]). Our theory
provides a new way of deriving this representation with special emphasis on the multi-scale na-
ture of the Gaussian window functions and their resulting cascade properties between spectro-
grams at different temporal scales.

Relations to Gammatone filters. In the special case when the time constants of all the K
truncated exponential filters that are coupled in cascade are all equal μk = μ, it follows from
combination of Equations (55) and (44) that the multi-scale spectrogram is given by

Shðt;o; m;KÞ ¼ e�iot

Z 1

t0¼�1

ðt � t0ÞK�1 e�ðt�t0Þ=m

mK GðKÞ eioðt�t0Þ f ðt0Þ dt0 ð64Þ

and does up to a phase shift correspond to convolution of the input signal f by filters of the
form

hcosðt;o; m;KÞ ¼ tK�1 e�t=m

mK GðKÞ cosot; ð65Þ

hsinðt;o; m;KÞ ¼ tK�1 e�t=m

mK GðKÞ sinot: ð66Þ

For comparison, the Gammatone filter with parameters a and b and frequency ϕ is defined ac-
cording to

gðtÞ ¼ a tn�1e�2pbt cos ð2pft þ aÞ: ð67Þ
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By identification of the parameters

a ¼ 1

mK GðKÞ b ¼ 1

2pm
ð68Þ

and using ω = 2π ϕ it follows that we can derive the Gammatone filter as a special case of
applying a time-causal scale-space representation with discrete scale levels to the projections
fcos(t, ω) and fsin(t, ω) of an auditory signal f(t) onto a complex sine wave e−iωt.

Gammatone filter banks are also commonly used in audio processing (Johannesma [33];
Patterson et al. [34, 36]; Hewitt and Meddis [35]; Irino and Patterson [58]; Ambikairajah [59];
Hohmann [60]; van Immerseel and Peeters [61]; Schlute et al. [62]; Ngamkham et al. [63]).
The present treatment provides a new way of deriving them in a principled and conceptually
similar way as the Gabor filters can be derived, with the differences that the temporal filtering
operations are required to be truly time-causal and that only a discrete set of temporal scale lev-
els is to be used.

Generalized Gammatone filters. In addition, by allowing for different time constants in
the primitive truncated exponential filters, this scale-space concept leads to generalized Gam-
matone filters

hcosðt;o; mÞ ¼ hcomposedðt; mÞ cosot ð69Þ

hsinðt;o; mÞ ¼ hcomposedðt; mÞ sinot ð70Þ

with hcomposed according to (34). By comparing graphs of the two classes of auditory receptive
fields based on time-causal window functions (Lindeberg and Friberg [64], fig. 6), it can be
seen that the frequency selective filters based on truncated exponential filters having a logarith-
mic distribution of the intermediate temporal scale levels allow for a faster temporal response
compared to the corresponding filters based on truncated exponential filters with equal time
constants. Thereby, these generalized Gammatone filters allow for additional degrees of free-
dom to obtain different trade-offs between the frequency selectivity and the temporal delay of
time-causal window functions by varying the number of levels K and the distribution parame-
ter c—see the appendices “Frequency selectivity of the spectrograms” and “Temporal dynamics
of the time-causal kernels” for an in-depth analysis of the frequency selectivity and the tempo-
ral delay of such kernels.

Figs. 7–8 show spectrograms computed in this way for two sound signals using the three differ-
ent types of temporal window functions and using fixed vs. frequency-dependent window scales.

Frequency-dependent window scale. To guarantee basic covariance properties of the
spectrogram under a frequency shift

o 7!ao ð71Þ

it is as earlier mentioned natural to let the temporal window scale vary with the frequency ω in
such a a way that the temporal window scale in units of s ¼ ffiffiffiffi

t
p

is proportional to the wave-
length λ = 2π/ω

t ¼ 2p n
o

� �2

ð72Þ

where n is a parameter. By such frequency dependency of the temporal window scale, the spec-
tral selectivity in the spectrogram (the width of a spectral band) will be independent of the fre-
quency ω (see the section “Frequency selectivity of the spectrograms”). This is a prerequisite
for the desirable property that a shift by one octave of a musical piece should imply that the
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Fig 7. Spectrogramswith a fixed temporal window scale st ¼
ffiffiffiffi
t

p ¼ 20 ms computed using different temporal scale-space concepts for (left
column) the first 3 seconds of “Tom’s diner” by Suzanne Vega with the lyrics “I am sitting in the morning at the . . .” and (right column) a synthetic
signal containing harmonic spectra with different fundamental frequencies over a logarithmic frequency scale from 80 Hz to 16 kHz using 48
frequency levels per octave: (top row) the discrete analogue of the Gaussian kernel, (middle row) a cascade of seven time-causal recursive filters
having a uniform distribution of the temporal scale levels and (bottom row) a cascade of seven time-causal recursive filters having a logarithmic
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corresponding spectrogram should appear similar while shifted by one octave, if the frequency
axis of the spectrogram is parameterized on a logarithmic scale.

To prevent the temporal window scale from being too short for high frequency sounds, we
have additionally chosen to add a soft lower bound such that the temporal extent is instead cho-
sen according to

t ¼ t 0 þ
2p n
o

� �2

ð73Þ

where t 0 ¼ s2
0 denotes a lower bound on the temporal window scale. Thereby, frequency co-

variance of a 2-D spectrogram will only be approximate, while being a good approximation if τ
� τ0. If we quantify τ� τ0 as τ = β2 τ0, then the soft lower bound corresponds to

o ¼ 2pnffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 1

p
s0

ð74Þ

which with σ0 = 1 ms, n = 8 and β = 2 corresponds to a frequency of about 4 600 Hz. By varying
the parameters σ0 and n, we can move the frequency where deviations from true invariance
begin to occur for a given value of the tolerance parameter β.

To prevent the temporal delay from being too long at low frequencies, one can also intro-
duce a soft upper bound on the temporal scale

t0 ¼ t

1þ t
t 1

� �p� �1=p ð75Þ

for suitable values of τ1 and p. Then, approximate frequency covariance will hold over some
subset of frequencies defined by the parameters n, τ0, τ1 and p.

In human hearing, there is different evidence that the resolution of pitch perception is the
highest in the area around 0.6-2 kHz and then decreases for both lower and higher frequencies
(see e.g. Hartmann [65]; Moore [66]). Furthermore, within the middle area 0.6-2 kHz the rela-
tive pitch sensitivity appears to be approximately constant. The synchrony in the neural firing
in the auditory nerve decreases with increasing frequency (Johnson [67]). The ability to identi-
fy the pitch of a mistuned harmonic decreases with increasing frequency exhibiting a knee at
around 2 kHz (Hartmann et al. [68]). A lower frequency boundary can also be motivated from
the size of the critical bands which according to the classic Zwicker data changes from being
proportionally constant (about a musical minor third) for frequencies above 500 Hz to being
constant (about 100 Hz) for frequencies below 500 Hz (Zwicker [69]). More recent data exhibit
a similar but less strong tendency (Moore [70], page 77). Thus, in summary, there should pre-
sumable be both an upper and a lower limit for self-similarity.

Receptive fields defined over the spectrogram
Given that a spectrogram has been computed by a first layer of auditory receptive fields, we de-
fine a second layer of receptive fields by operating on the spectrogram with 2-D spectro-tempo-
ral filters (see fig. 9) in a structurally similar way as visual receptive fields are applied to time-
varying visual input (Lindeberg [5, 27]).

distribution of the temporal scale levels with c ¼ ffiffiffi
2

p
. The vertical axis shows the logarithmic frequency expressed in semitones with 69 corresponding to

the tone A4 (440 Hz). Notice that while the different types of spectrograms largely capture similar types of spectro-temporal structures, there is a significant
difference in temporal delay and temporal response characteristics between the non-causal and the time-causal spectrograms.

doi:10.1371/journal.pone.0119032.g007

Idealized Computational Models for Auditory Receptive Fields

PLOS ONE | DOI:10.1371/journal.pone.0119032 March 30, 2015 22 / 58



Fig 8. Spectrogramswith the temporal window scale proportional to the wavelength according to Equation (73) for n = 8 and a soft lower
threshold s0 ¼ ffiffiffiffiffiffi

t 0

p ¼ 1 ms computed using different temporal scale-space concepts for (left column) the first 3 seconds of “Tom’s diner” by
Suzanne Vega with the lyrics “I am sitting in the morning at the . . .” and (right column) a synthetic signal containing harmonic spectra with
different ground tones over a logarithmic frequency range from 80 Hz to 16 kHz using 48 frequency levels per octave: (top row) the discrete
analogue of the Gaussian kernel, (middle row) a cascade of seven time-causal recursive filters having a uniform distribution of the temporal scale
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Logarithmic transformations of the spectrogram
Prior to the definition of receptive fields from the spectrogram, it is natural to allow for a self-
similar logarithmic transformation of the magnitude values

SdB ¼ 20 log 10

jSj
S0

� �
: ð76Þ

A logarithmic transformation of the magnitude of the spectrogram implies that a multiplicative
transformation of the sound pressure f 7! a f, corresponding to jSj 7! ajSj, or an inversely pro-
portional reduction in the sound pressure of the signal from a single auditory point source as
function of distance f 7! f/R, corresponding to jSj 7! jSj/R, are both transformed into a subtrac-
tion of the logarithmic magnitude by a constant

jSj7! a jSj
R

) SdB 7!SdB þ 20 log 10a� 20 log 10R: ð77Þ

levels and (bottom row) a cascade of seven time-causal recursive filters having a logarithmic distribution of the temporal scale levels with c ¼ ffiffiffi
2

p
.

The vertical axis shows the logarithmic frequency expressed in semitones with 69 corresponding to the tone A4 (440 Hz). The spectrograms computed with
time-causal kernels have been delay compensated by a temporal delay defined from the position of the first inflection point of the temporal window function.
Notice that while the different types of spectrograms to some extent capture qualitatively similar types of spectro-temporal structures, there is a significant
difference in temporal delay and temporal response characteristics between the non-causal and the time-causal spectrograms. Compared to the
spectrograms in fig. 7 that are computed with a fixed temporal scale implying that the spectral bands becomemore narrow at higher frequencies, the use of a
temporal scale proportional to the wavelength specifically implies that the widths of the spectral bands are here much more uniform over frequencies (see the
section “Frequency selectivity of the spectrogram” for a theoretical analysis).

doi:10.1371/journal.pone.0119032.g008

Fig 9. Schematic illustration of the definition of auditory features from a second layer of receptive
fields over the spectrogram, where we also allow for a logarithmic transformation of the magnitude
values jSj of the spectrogram prior to the application of the second layer of linear receptive fields and

make use of a logarithmic transformation of the frequencies n ¼ n0 þ Clog ð o
o0

� �
Þ before defining the

linear receptive fields over the spectro-temporal domain.Regarding the scale parameters, the first layer
of temporal receptive fields depends on a single temporal scale parameter τf for the frequency selective
temporal filters, whereas the second layer of auditory receptive fields also depends on an additional temporal
scale parameter τa, a logspectral scale parameter s over the logarithmic frequencies ν and a glissando
parameter v representing the rate by which the logarithmic frequencies may vary over time.

doi:10.1371/journal.pone.0119032.g009
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If we operate on the logarithmically transformed spectrogram by a receptive fieldAS that is
based on a combination of a spectro-temporal smoothing operation TS with logspectral and
temporal scale parameters as determined by a spectro-temporal covariance matrix S, temporal
and/or logspectral derivatives @tα ν

β of orders α and β with at least one of α> 0 or β> 0

AS SdB ¼ @tanbT S SdB ð78Þ
then it follows that the influence on the receptive field responses of the constants a and R

AS SdB ¼ @tanbT S ðSdB þ 20 log 10a� 20 log 10RÞ
¼ @tanbT S SdB þ 0þ 0

ð79Þ

will be eliminated by the derivative operation if the constants a and R do not depend on time t
or the logarithmic frequency ν, implying invariance of the second-layer receptive field responses
to variations in the sound pressure or the distance to a sound source.

A logarithmic transformation of the magnitude is compatible with theWeber-Fechner law,
stating that the ratio of an increment threshold ΔI of a stimulus for a just noticeable different
relative to the background intensity I is constant over large ranges of magnitude variations,
which approximately holds in both visual and auditory perception (Palmer [71]; Kandel et al.
[72]).

Furthermore, since logarithmic frequencies constitute a natural metric for relating frequen-
cies of sound (Fletscher [73]; Kandel et al. [72]; Young [74]) and there is an approximately log-
arithmic distribution of frequencies both on the basilar membrane (Greenwood [75]) and in
the organization of the auditory cortex (Romani et al. [76]), it is natural to express these de-
rived receptive fields in terms of logarithmic frequencies

n ¼ n0 þ C log
o
o0

� �
ð80Þ

for some constants C and ω0, where specifically ν0 = 69, C = 12/log2 and ω0 = 2π � 440 corre-
spond to logarithmic frequencies according to the MIDI standard.

This logarithmic parameterization of frequency implies that a shift in frequency, caused by
e.g. transposing a piece of music by one octave, or varying the fundamental frequency in sing-
ing resulting in a multiplicative transformation of the harmonics (overtones), correspond to a
mere translation in logarithmic frequency.

Structural requirements on second-layer receptive fields
Given a transformed spectrogram defined in this way, let us define a family of second layer
spectro-temporal receptive fields A(t, ω; S) that are to operate on the transformed spectrogram
SdB(t, ν;τ) and be parameterized by some multi-dimensional spectro-temporal scale parameter
S that includes smoothing over time t and logarithmic frequencies ν, and for which the corre-
sponding operatorAS is required to obey:

(i) linearity over the logarithmic spectrogram

ASða S1 þ b S2Þ ¼ aASðS1Þ þ bASðS2Þ ð81Þ
to ensure that (a) the multiplicative relations of the magnitude of the spectrogram (77)
that are mapped to linear relations by the logarithmic transformation (76) are pre-
served as linear relations over the receptive field responses and (b) the scale-space
properties imposed to ensure non-creation of new structures in smoothed
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spectrograms as defined by spectro-temporal smoothing kernels do also transfer to
spectro-temporal derivatives of these,

(ii) shift-invariance with respect to translations over time t 7! t + Δt and logarithmic fre-
quencies ν 7! ν + Δν

ASðSðDt;DnÞSÞ ¼ SðDt;DnÞðASSÞ ð82Þ

such that all temporal moments and all logarithmic frequencies are treated in a similar
manner. Temporal shift invariance implies that an auditory stimulus should be per-
ceived in a similar manner irrespective of when it occurs. Shift-invariance in the loga-
rithmic frequency domain implies that, for example, a piece of music should be
perceived in a similar manner if it is transposed by e.g. one octave.

These conditions together imply that the spectro-temporal receptive fields should be given by
convolution with some two-dimensional kernel over the spectro-temporal domain (Hirsch-
mann andWidder [41]):

ðASSdBÞðt; n; t f ;SÞ ¼
Z 1

x¼�1

Z 1

Z¼�1
Tðx; Z; SÞ SdBðt � x; n� Z; t f Þ dx dZ: ð83Þ

To characterize what types of receptive fields are compatible with scale-space properties, we
will next impose additional structural requirements, which will take different forms depending
on whether the temporal dimension is treated in a time-causal or non-causal manner:

Relations between receptive fields at different spectro-temporal scales. For pre-re-
corded sound signals, for which we can take the freedom of accessing data from the virtual fu-
ture in relation to any time moment, we impose a

(iii.a) continuous semi-group structure over spectro-temporal scales on the second layer re-
ceptive fields

Tð�; �; S2Þ ¼ Tð�; �; S2 � S1Þ � Tð�; �; S1Þ ð84Þ

corresponding to an additive structure over the multi-dimensional scale parameter S.

For time-causal signals, we require:

(iii.b) a continuous semi-group structure over logspectral scales s

Tð�; s2Þ ¼ Tð�; s2 � s1Þ � Tð�; s1Þ ð85Þ

and a Markov property between adjacent temporal scales

Tð�; tkþ1Þ ¼ ðDTÞð�; kÞ � Tð�; t kÞ: ð86Þ

These requirements are analogous to the previous treatment in the section “Structural require-
ments on temporal receptive fields”, with extensions from a purely temporal domain to a spec-
tro-temporal domain.

Non-creation of new spectro-temporal structures with increasing scale. When process-
ing the spectrogram at different spectro-temporal scales, we want to ensure that the spectro-
temporal receptive fields do not create new structures at coarser scales that do not correspond
to simplifications of corresponding structures at finer scales. Depending on whether the
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temporal dimension is treated in a time-causal or non-causal manner, we formalize this condi-
tion as:

(iv.a) For the non-causal Gaussian spectrogram (54), for which temporal causality of the
temporal smoothing kernels is disregarded, we require non-enhancement of local ex-
trema in the sense that if for some scale S0 the point (t0, ν0) is a local maximum (mini-
mum) for the mapping (t, ν) 7! (AS SdB)(t, ν; S0) then the value at this point must not
increase (decrease) with increasing scale S.

(iv.b) For the time-causal spectrogram (55) based on truncated exponential filters coupled
in cascade (33), we require: (iv.b1) the smoothing operation over the logspectral do-
main to satisfy non-enhancement of local extrema in the sense that if at some logspec-
tral scale s0 a point ν0 is a local maximum (minimum) of the mapping ν 7! (AS SdB)(ν;
s0) obtained by disregarding the temporal variations, then the value at this point must
not increase (decrease) with increasing logspectral scale s, and (iv.b2) the smoothing
operation over time to be a time-causal scale-space kernel guaranteeing non-creation
of new local extrema under an increase of the temporal scale parameter τ.

Glissando covariance. In musical performance, the frequencies may vary continuously
over time in such a way that the fundamental frequency ω1 and the harmonics (overtones) ωj

are all multiplied by the same time-varying factor ωj(t) = ψ(t)ωj. This is in particular prominent
in singing, but may occur in all instruments with continuous pitch control. In terms of loga-
rithmic frequencies, we can model a local linearization of this temporal variability as a glissando
transformation of the form

nðtÞ ¼ n0 þ v t ð87Þ

analogous to the way spatial image data may be subject to local Galilean transformations over
time. Comparing two spectrograms, one with constant frequencies over time and one with line-
arly varying logarithmic frequencies, the glissando transformation can be expressed in operator
form as

S0 ¼ Gv S corresponding to S0ðt; n0Þ ¼ Sðt; nÞ ð88Þ

for ν0 = ν + v t. In relation to receptive field responses that are computed over the two domains
with spectro-temporal scale parameters S and S0, we may require:

(v) If two local patches of two spectrograms are related by a local glissando transforma-
tion, then it should be possible to relate the local spectro-temporal receptive field re-
sponses such that

AGvðSÞ Gv S ¼ Gv AS S ð89Þ

for some transformation S0 = Gv(S) of the spectro-temporal scale parameters S.

Idealized models for spectro-temporal receptive fields
Given the structural requirements above, it can from derivations similar to those that are used
for constraining visual receptive fields given structural requirements on a visual front-end (Lin-
deberg [5]) be shown that the second layer of auditory receptive fields should be based on
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spectro-temporal receptive fields of the form

Aðt; n; SÞ ¼ @tanb gðn� vt; sÞTðt; t aÞð Þ ð90Þ

where

• @tα represents a temporal derivative operator of order α with respect to time t which could al-
ternatively be replaced by a glissando-adapted temporal derivative of the form
@�t ¼ @t þ v @n,

• @νβ represents a logspectral derivative operator of order β with respect to logarithmic frequen-
cy ν,

• T(t; τa) represents a temporal smoothing kernel with temporal scale parameter τa, which
should either be (i) a temporal Gaussian kernel g(t; τa) of the form (26) or (ii) the equivalent
time-causal kernel hcomposed(t; μ) according to (34) and corresponding to a set of truncated
exponential kernels coupled in cascade,

• g(ν − vt; s) represents a Gaussian spectral smoothing kernel over logarithmic frequencies ν
with logspectral scale parameter s and v representing a glissando parameter making it possi-
ble to adapt the receptive fields to variations in frequency ν0 = ν + vt over time, and

• the spectro-temporal covariance matrix S in the left hand side expression for spectro-tempo-
ral receptive fields comprises both the temporal scale parameter τa, the logspectral scale pa-
rameter s and the glissando parameter v.

Thereby, the spectro-temporal receptive fields according to (90) constitute a combination of
the purely temporal receptive fields according to the theory in the sections “Structural require-
ments on temporal receptive fields” and “Scale-space concepts for purely temporal domains”
with a Gaussian scale-space concept over the logspectral dimension.

The proofs concerning these spectro-temporal receptive fields are similar to those regarding
the spatio-temporal receptive fields over a 1+1-D spatio-temporal domain with the spatial di-
mension replaced by a logspectral dimension.

Fig. 10 shows examples of spectro-temporal receptive fields obtained in this way for the two
different types of underlying temporal scale-space concepts. For ν = 0, the resulting receptive
fields are separable over the spectro-temporal domain, whereas ν 6¼ 0 leads to non-separable
glissando-adapted receptive fields.

Filter parameters of auditory receptive fields. The auditory features computed from
these types of receptive fields depend on three different scale parameters:

• a temporal window scale parameter τf defining the temporal extent of the windows over
which the windowed Fourier transforms in the spectrograms are defined,

• a secondary temporal integration scale parameter τa defining the temporal extent over which
the magnitude values in the spectrogram are integrated over time and

• a logspectral scale parameter s defining the amount of smoothing over logarithmic frequen-
cies ν.

In addition, this family of spectro-temporal receptive fields comprises:

• a glissando parameter v that makes it possible to adapt the receptive fields to variations on
the logarithmic frequencies ν over time t.

Each parameterized spectro-temporal receptive field may occur for different orders of differen-
tiation α and β with respect to time and logarithmic frequencies, respectively.
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Auditory features from second layer receptive fields
In the following, we will show examples of auditory features that can be defined from a second
layer of auditory receptive fields of this form.

Spectro-temporal smoothing. Auditory receptive fields A based on convolution with a
spectro-temporal smoothing kernel T over the spectro-temporal domain:

Aðt; n; t a; s; vÞ ¼ Tðt; n; t a; s; vÞ: ð91Þ

Onset and offset detection. Computation of first-order temporal derivatives

Dtðt; n; t a; sÞ ¼ ffiffiffiffiffiffi
t a

p
@tTðt; n; t a; sÞ ð92Þ

where
ffiffiffiffiffiffi
t a

p
is a scale normalization factor to approximate scale-normalized derivatives (Linde-

berg [77]) by variance normalization (Lindeberg and Bretzner [78]).
This operation is similar to edge detection in image processing and computer vision (Canny

[79]; Lindeberg [80]) with the differences that (i) the underlying derivatives are computed in a
fixed direction and that (ii) in the case of a time-causal treatment of time, the onset detection
will also be associated with a temporal delay. The signed derivative operator responds to an in-
crease in the magnitude of the signal by a positive response and to a decrease in the magnitude
by a negative response. To select receptive field responses that correspond to onsets only, this
operation is naturally combined with the (non-linear) logical operation: Dt > 0 such that (see
fig. 11, middle row)

Aonset SdB ¼
Dt SdB if Dt SdB > 0

0 otherwise
ð93Þ

(

Fig 10. Examples of idealized spectro-temporal receptive fields as obtained from spectro-temporal derivatives of spectro-temporal smoothing
kernels based on (top row) the non-causal Gaussian scale-space concept and (bottom row) the time-causal scale-space concept corresponding to
first-order integrators coupled in cascade (here using five temporal scale levels and c ¼ ffiffiffi

2
p

). The first four columns show separable receptive fields
whereas the fifth column shows non-separable glissando-adapted receptive fields. (Horizontal dimension: time t in ms. Vertical dimension: Logarithmic
frequency: ν. Temporal scale: st ¼

ffiffiffiffi
t

p ¼ 10 ms. Logspectral scale: sn ¼
ffiffiffi
s

p ¼ 6 semitones.)

doi:10.1371/journal.pone.0119032.g010

Idealized Computational Models for Auditory Receptive Fields

PLOS ONE | DOI:10.1371/journal.pone.0119032 March 30, 2015 29 / 58



Fig 11. Second layer receptive field responses obtained by applying spectro-temporal scale-space derivatives to the logarithmic spectrogram of
(left column) the first 3 seconds of “Tom’s diner” by Suzanne Vega with the lyrics “I am sitting in the morning at the . . .” or (right column) a
synthetic signal containing of harmonic spectra with 20 partial tones and a spectral slope of 6 dB/octave at different fundamental frequencies: (top
row) Original spectrogram. (middle row)Onset detection from the positive part of the first-order temporal derivatives @tT log jSj> 0 using a cascade of four
time-recursive filters with temporal scale proportional to the temporal window scale st ¼

ffiffiffiffi
t

p ¼ 0:75sw and with logspectral smoothing scale σν = 0.5
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Analogously, offset detection can be performed using

Aoffset SdB ¼
�Dt SdB if Dt SdB < 0

0 otherwise
ð94Þ

(

Spectral sharpening. Computation of second-order Gaussian derivatives over the logspec-
tral domain

Dnnðt; n; t a; sÞ ¼ s @nnTðt; n; t a; sÞ ð95Þ

where the factor s is a scale normalization factor for scale-normalized derivatives based on the
Gaussian scale-space concept (Lindeberg [77]). Depending on the value of the logspectral scale
parameter, this operation may either enhance partial tones or formants. This operation is natu-
rally combined with the (non-linear) logical operationDνν < 0 (see fig. 11, bottom row)

Aband SdB ¼
�Dnn SdB if Dnn SdB < 0

0 otherwise
ð96Þ

(

When applied at a fine logspectral scale, this operation can be used for enhancing spectral bands
corresponding to the fundamental frequency and its overtones (see fig. 11, bottom row). When
applied at a coarser logspectral scale, corresponding spectral sharpening can be used for en-
hancing the formants of vowels (see fig. 12). A similar approach involving a combination of
Gaussian functions was used by Baer et al. [81] for enhancing spectral contrast for listeners
with hearing impairment and by Heckmann et al. [55] as a part of feature extraction for auto-
matic speech recognition.

By comparing the responses of the partial tones in the second-order logspectral derivatives
to the partial tones in the raw logarithmic spectrogram, we can note that the responses to the
partial tones are far more similar between different partial tones in the logspectral derivatives
compared to the raw spectrogram. This property can be understood from the invariance of
spectro-temporal derivatives to local multiplications of the magnitude of a signal described in
the section “Logarithmic transformations of the spectrogram”. If we model the partial tones as
self-similar copies of each other at different frequencies while having different relative strength
(sound pressure), then by combination of the invariance under multiplications of the magni-
tude in the section “Logarithmic transformations of the spectrogram” with the invariance of
the relative bandwidth under multiplicative frequency transformations in the section “Fre-
quency selectivity of the spectrograms”, it follows that the spectro-temporal derivative re-
sponses to different overtones can be expected to have a similar appearance.

Fig. 13 shows an extension of this approach, where formant enhancement is performed
using glissando-adapted receptive fields, demonstrating how formant variations for different
amounts of glissando are enhanced by glissando-adapted receptive fields for corresponding
values of the glissando parameter.

Capturing frequency variations over time. Given that local spectral bands have been en-
hanced by second-order derivatives over logarithmic frequencies (95), we can compute local

semitones. (bottom row) Spectral band detection from the negative part of the second-order temporal derivatives @ννT log jSj< 0. The vertical axis shows the
logarithmic frequency expressed in semitones with 69 corresponding to the tone A4 (440 Hz).

doi:10.1371/journal.pone.0119032.g011
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extrema over frequencies by differentiating this response

@nð�Dnn SdBÞ ¼ 0; ð97Þ

@nnð�Dnn SdBÞ < 0: ð98Þ

By interpolating for the zero-crossings of (97) that satisfy the sign constraint (98) we can obtain
subresolution curves of how the frequency of partial tones vary over time (see fig. 14).

Glissando estimation. One way to estimate explicitly how the frequencies vary over time
is by estimating the temporal variation in the above curves, corresponding to feature tracking
in the area of computer vision.

An alternative more receptive field based approach is by computing the receptive field re-
sponses for a filter bank of different glissando-receptive fieldsD(v) (e.g. second-order logspec-
tral derivativesD(v) =Dνν(v)) for different amounts of glissando v analogous to how ridge
detection methods in computer vision can be expressed in terms of second-order derivatives of
image intensity (Lindeberg [80]) and selecting the maximum response over the filter bank

AS Sdb ¼max
v

DðvÞ SdB ð99Þ

Fig 12. Spectral sharpening at a coarse logspectral scale (σν = 4 semitones) applied to the
spectrogram of the first 3 seconds of “Tom’s diner”with the lyrics “I am sitting in the morning at the
. . .” using recursive filters at composed temporal scale 20 ms.Note how this operation reveals the
formants of the vowels in the frequency range between roughly MIDI 70 and MIDI 110, corresponding to
frequencies beween roughly 450 Hz and 4.7 kHz. The vertical axis shows the logarithmic frequency
expressed in semitones with 69 corresponding to the tone A4 (440 Hz).

doi:10.1371/journal.pone.0119032.g012
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Fig 13. Enhancement of the formants using glissando-adapted receptive fields corresponding to second-order derivatives with respect to
logarithmic frequency ν for different glissando values v = +80, +40, 20, -20, -40 and -80 and applied to the first 3 seconds of “Tom’s diner”
computed with time-causal receptive fields at temporal scale σt = 20ms and logspectral scale σν = 4 semitones (compare with fig. 12 that shows
corresponding results for non-adapted separable receptive fields). Note how the formant variations for different amounts of glissando are enhanced by
glissando-adapted receptive fields for corresponding values of the glissando parameter. Such a set of glissando-adapted receptive fields for a logarithmic

Idealized Computational Models for Auditory Receptive Fields

PLOS ONE | DOI:10.1371/journal.pone.0119032 March 30, 2015 33 / 58



as the glissando estimate

v̂ ¼ argmaxv DðvÞ Sdb ð100Þ

preferably complemented by interpolation to estimate the amount of glissando by higher accu-
racy than the actual sampling (compare with Laptev and Lindeberg [82] and Lindeberg [27] for
corresponding filter-based approaches for estimating image velocities using a filter bank ap-
proach over different Galilean transformations).

Yet a more direct approach can be obtained by computing a spectro-temporal second-mo-
ment matrix

Uðx; y; t; sÞ ¼
Utt Utn

Utn Unn

 !

¼
Z
ðx;ZÞ2R2

L2
t Lt Ln

Lt Ln L2
n

 !
Tðt � x; n� Z; t; sÞ dx dZ ð101Þ

distribution of the glissando values v can serve as a filter bank for algorithms that operate on these receptive field responses as input. (Horizontal dimension:
time t, Vertical dimension: logarithmic frequency ν.)

doi:10.1371/journal.pone.0119032.g013

Fig 14. Spectro-temporal curves that make explicit how the frequencies of partial tones vary over
time, computed as the zero-crossing curves of the logspectral derivative @ν(−Dνν log jSj) = 0 that
satisfy @νν(−Dνν log jSj)< 0 and which thereby become continuous curves over time (drawn in black,
thresholded on −Dνν log jSj �C forC = 3 and overlaid on −Dνν log jSj). (Horizontal dimension: time t,
Vertical dimension: logarithmic frequency ν.)

doi:10.1371/journal.pone.0119032.g014
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by a third layer of spectro-temporal smoothing applied to the products L2
t , Lt Lν and L

2
n of the

spectro-temporal derivatives Lt = @tTS Sdb and Lν = @νTS Sdb and then computing the glissando
estimate as the value

v ¼ � Utn

Unn

ð102Þ

that transforms the spectro-temporal moment matrix to diagonal form with the mixed U0
tn

being zero and corresponding to estimation of optic flow and Galilean invariant image descrip-
tors in the area of computer vision (Lukas and Kanade [83]; Laptev et al. [84]; Lindeberg [27]).
Specifically, by computing receptive field responses using a glissando estimate according to
(100) alternatively for a glissando value that corresponds to a fixed-point of (102), it can be
shown that the resulting glissando-adapted receptive field responses will be invariant under glis-
sando transformations, which would not be fully possibly based on separable spectro-temporal
receptive fields only (see also Lindeberg [5, 27] for analogous results regarding Galilean invari-
ance in vision).

Relations to biological receptive fields
In the central nucleus of the inferior colliculus (ICC) of cats, Qiu et al. [31] report that about
60% of the neurons can be described as separable in the time-frequency domain (see fig. 15),
whereas the remaining neurons are either obliquely oriented (see fig. 16) or contain multiple
excitatory/inhibitory subfields. Glissando-adapted receptive fields have also been reported in
the inferior colliculus of bats (see fig. 17). This overall structure is nicely compatible with the
treatment in the section “Idealized models for spectro-temporal receptive fields”, where the
second-layer receptive fields are expressed in terms of spectro-temporal derivatives of either
time-frequency separable spectro-temporal smoothing operations or corresponding glissando-
adapted features as motivated by the structural requirements in the section “Structural require-
ments on second-layer receptive fields”.

Qualitatively similar shapes of receptive fields can be measured from neurons in the primary
auditory cortex (see figs. 18 and 19 as well as Miller et al. [3] regarding binaural receptive
fields). Specifically, the use of multiple temporal and spectral scales as a main component in
the model is in good agreement with biological receptive fields having different degrees of spec-
tral tuning ranging from narrow to broad (see fig. 20) and different temporal extent (see
fig. 18). Corresponding tradeoffs between spectral and temporal tuning occur in the inferior

Fig 15. (left) A separable monaural spectro-temporal receptive field in the central nucleus of the inferior colliculus (ICC) of cat as reported by Qiu
et al. [31] (schematic simplification only, see fig. 2(a) in [31] or fig. 16 in [64] for the original data). (middle and right) Idealized receptive fields models (90)
corresponding to a first-order derivative with respect to time and a second-order derivative with respect to logarithmic frequency centered at ν = 4.7 octave,
temporal scale σt = 7 ms, logspectral scale σν = 0.17 octave for both models and additionally temporal delay δ = 17 ms for the Gaussian model.

doi:10.1371/journal.pone.0119032.g015
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colliculus (Rodriguez et al. [85]). The distribution of latencies is, however, towards somewhat
shorter latencies in the thalamus than in the auditory cortex (Miller et al. [3]) consistent with
larger temporal scales in the auditory cortex than in the inferior colliculus.

Whereas spatio-temporal receptive fields estimated from neurons in the auditory cortex
have been reported to reasonably well predict the neural responses for subsets of natural sti-
muli, Machens et al. [37] report that for many natural stimuli the responses of the auditory
neurons in the primary auditory cortex cannot be predicted by the estimated linear receptive
fields. Atencio et al. [86] also report that the dimensionality and thereby the variability of the
receptive fields in the auditory cortex is significantly richer compared to the receptive fields in
the inferior colliculus in the midbrain. Thus, the neurons in the primary auditory cortex appear
to contain non-linearities whose functionality remains to be understood. In the inferior collicu-
lus in the midbrain, Escabi and Schreiner [87] report that about 60% of the receptive fields can
be well described in terms of linearly integrating neurons.

In the work by Qiu et al. [31], the measured biological receptive fields were fitted to Gabor
functions as motivated by previous use of Gabor functions for modelling visual receptive fields
(Marcelja [88]; Jones and Palmer [89, 90]). In vision, the use of Gabor functions for modelling
visual receptive fields can, however, be questioned both on theoretical and empirical grounds
(Stork and Wilson [91]; Lindeberg [5, 27]).

Fig 16. (left) A non-separable spectro-temporal receptive field in the central nucleus of the inferior colliculus (ICC) of cat as reported by Qiu et al.
[31] (schematic simplification only, see fig. 3(a) in [31] or fig. 17 in [64] for the original data). (middle and right) First-order temporal derivative of idealized
glissando-adapted receptive fields models (90) centered at ν = 4.3 octave, temporal scale σt = 7 ms, logspectral scale σν = 0.20 octave and glissando v =
−0.02 octave/ms for both models and additionally temporal delay δ = 23 ms for the Gaussian model.

doi:10.1371/journal.pone.0119032.g016

Fig 17. (left) A non-separable spectro-temporal receptive fields in the inferior colliculus (ICC) of Mexican free-tailed bat as reported by Andoni
et al. [38] (schematic simplification only, see fig. 6(c) in [38] or fig. 18 in [64] for the original data). (middle and right) Second-order temporal derivative of
idealized glissando-adapted receptive fields models (90) centered at semitone ν = 138, temporal scale σt = 2 ms, logspectral scale σν = 3 semitones and
glissando v = 1.5 semitones/ms for both models and additionally temporal delay δ = 4.7 ms for the Gaussian model.

doi:10.1371/journal.pone.0119032.g017
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Fig 18. (left column) Separable spectro-temporal receptive fields in the primary auditory cortex (A1) of Sprague Dawley rat as reported by
Machens et al. [37] (schematic simplification only, see figs. 5(a) and 5(c) in [37] or fig. 19 in [64] for the original data). (middle and right columns) Idealized
receptive fields models (90) corresponding to first-order derivatives with respect to time, in the top row centered at semitone ν = 91, temporal scale σt = 45
ms, logspectral scale σν = 6 semitones for both models and additionally temporal delay δ = 60 ms for the Gaussian model and in the bottom row centered at
semitone ν = 84, temporal scale σt = 60 ms, logspectral scale σν = 6 semitones for both models and additionally temporal delay δ = 100 ms for the
Gaussian model

doi:10.1371/journal.pone.0119032.g018

Fig 19. (left) A separable spectro-temporal receptive fields in the primary auditory cortex (A1) of ferret as reported by Elhilali et al. [39] (schematic
simplification only, see fig. 6(a) in [39] or fig. 20 in [64] for the original data). (middle and right) Idealized receptive fields models (90) corresponding to second-
order derivatives with respect to logarithmic frequency centered at semitone ν = 116, temporal scale σt = 17 ms, logspectral scale σν = 5 semitones for both
models and additionally temporal delay δ = 25 ms for the Gaussian model.

doi:10.1371/journal.pone.0119032.g019
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Stork and Wilson [91] argue that (i) only complex-valued Gabor functions, which cannot
be described by single-unit receptive fields, minimize the uncertainty relation, (ii) the real func-
tions that minimize this relation are Gaussian derivatives rather than Gabor functions and (iii)
comparisons among Gabor and alternative fits to both psychophysical and physiological data
have shown that in many cases other functions (including Gaussian derivatives) provide better
fits than Gabor functions do.

Lindeberg [5, 27] argues that in relation to invariance properties the family of affine Gauss-
ian kernels is closed under affine image deformations, whereas the family of Gabor functions
obtained by multiplying rotationally symmetric Gaussians with sine and cosine waves is not
closed under affine deformations. Therefore, it is not possibly to compute truly affine invariant
representations from such Gabor functions. Instead, given a pair of images that are related by
an affine image deformation, the lack of affine covariance implies that there will be a systematic
bias in representations derived from such Gabor functions, corresponding to the difference be-
tween the backprojected Gabor functions in the two domains (compare with fig. 3 in [5] for an
illustration). Using receptive profiles defined from directional derivatives of affine Gaussian
kernels, it will on the other hand be possible to compute affine invariant representations. Simi-
lar arguments about Galilean invariance hold regarding theoretical modelling of spatio-tempo-
ral receptive fields.

In the visual domain, such affine transformations constitute a natural first-order model for
image deformations caused by changing the viewing direction relative to an object or seeing an
object that moves relative to the observer. In the auditory domain, affine transformations in
terms of glissando transformations constitute a natural first-order model for frequencies that
vary over time, such as in singing, melodic speech or sound from instruments having continu-
ous pitch control.

Fig 20. (left column) Spectro-temporal receptive fields of broadly and narrowly tuned neurons in the primary auditory cortex (A1) of cats as
reported by Atencio and Schreiner [40]. In terms of the idealized models of receptive fields, such broad or narrowly tuned receptive fields correspond to
different values of the logspectral scale parameter s. (middle and right columns) Idealized receptive fields models (90) corresponding to first-order derivatives
with respect to time, in the left column centered at semitone ν = 119, temporal scale σt = 12 ms, logspectral scale σν = 8 semitones for both models and
additionally temporal delay δ = 20 ms for the Gaussian model and in the bottom column centered at semitone ν = 122, temporal scale σt = 45 ms, logspectral
scale σν = 0.5 semitones for both models and additionally temporal delay δ = 60 ms for the Gaussian model.

doi:10.1371/journal.pone.0119032.g020
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Applied to the auditory domain, this means that invariance under glissando transforma-
tions cannot be accomplished with the regular family of Gabor functions, whereas glissando in-
variance is possible based on the presented theory for glissando-adapted receptive fields.

In addition, Gaussian receptive fiels as well as the derivatives of these can be modelled by
diffusion equations, and can therefore be implemented by computations between neighbouring
computational units, which is biologically plausible in terms of connections between neigh-
bouring neurons and of minimizing the wiring length between them.

Specifically, biological spectro-temporal receptive fields show a marked temporal asymme-
try that cannot be captured by Gabor functions for which the locations of excitatory and inhibi-
tory subregions are uniformly spaced. Therefore, Qiu et al. [31] performed additional non-
linear time warping to be able to fit the model to the data. Then, they modelled oblique recep-
tive fields over the time-frequency domain using singular value decomposition to express any
oblique receptive field as a sum of separable Gabor-based receptive fields.

By modelling the spatio-temporal receptive fields by a combination of time-causal scale-
space kernels over time and Gaussian receptive fields over logarithmic frequencies, the tempo-
ral asymmetry of the kernels constitutes an integrated part of the theory, which cannot be ac-
complished by temporally symmetric smoothing operations as used in the Gabor model of
receptive fields. Furthermore, oblique receptive fields in the time-frequency domain do also
constitute an integrated part of the theory in terms of glissando transformations, and there is
no need to decompose a glissando-receptive field as a sum of a possibly rather large number of
spectro-temporal receptive fields, to be able to model the spectro-temporal receptive field in a
quantitative manner. In addition, the model has been derived in a mathematically principled
way from a set of structural requirements and the idealized receptive fields can be computed by
a combination of diffusion equations and first-order integrators, and therefore by a biologically
plausible neural architecture.

Relations to previous work in audio processing
Previous auditory models of human hearing have to a large extent focused on the first stages of
processing including the acoustical response of the cochlea and the following neurological re-
sponses in the auditory nerve. The auditory periphery is also the stage at which it was possible
to collect the first physiological and neurological data. Recently, partly due to the fast techno-
logical progress in measurement techniques, models of more high-level functions in the audito-
ry cortex begin to emerge (Meddis et al. [92]). Thus, the purpose has been to convert the
incoming audio into a frequency-time representation in a similar way as is done in the physi-
cal-neural system in the cochlea. This is typically done in several stages taking into account
both biological measurements and psychoacoustic listening test data.

The main stage is to simulate the physical resonance system in the cochlea. It is often imple-
mented as filter bank in which the bandwidth and frequency position of each band is separated
in a similar way as the cochlear nerves. A gammatone filter is often used since it has been show
to be a reasonable approximation of the acoustic properties in the cochlea leading to the first
neural input (Patterson et al. [93, 94]). Many other types of filters have been proposed, such as
the gammachirp providing better fit to non-linearities with regard to the asymmetric frequency
response at loud sound pressures (Irino and Patterson [58]; see also Chen et al. [95] and
Lopez-Poveda and Meddis [96]). In a second stage, the response of the auditory nerves arriving
from the inner hair cells in the cochlea are modelled. A common approach is to make a half-
wave rectification, compression (square-root or logarithmic) and low-pass filtering (Patterson
et al. [36]). In addition the local contrast can be enhanced both in time and frequency using an
adaptive procedure (Patterson and Holdsworth [97]).
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Previous computational toolboxes include the auditory image model (Aim-mat) by Bleek
et al. [98]; see also Patterson et al. [99] which include all of the different parts above as well as
some additional parts and the auditory model by Slaney [100].

Thus, these auditory image models are quite advanced and take into account a number of
biological and perceptual phenomena. However, the biological data supporting these stages
seems rather scarce in particular for complex sound signals such as music. The nerve responses
have often been measured in animals rather than humans and with rather simple stimuli such
as stationary sinusoids (Ruggero [101]). Many of the parts are modelled after psychoacoustic
data again with simple stimuli and thus involving the whole auditory cortex and brain. A limi-
tation is that advanced perceptual models can be adapted to closely model a certain type of per-
ceptual data but will typically not extrapolate to other perceptual conditions. The recent
loudness model by Chen et al. [95] closely approximates perceptual data concerning several as-
pects of loudness but applies only to steady-state sounds. This is an indication that the formula-
tion of the underlying model(s) is still potentially open to alternative solutions. This is not
surprising giving the complexity of the task and difficulties in obtaining biological data.

The traditional auditory models are not necessarily the best choice as a front-end for model-
ling more high-level perceptual aspects of music and speech. These models are often very de-
manding in terms of computer power and memory. In addition, the resulting data may not be
suitable for further processing. Therefore, in practical applications, a front-end used for analyz-
ing perceptual phenomena is often a simplification of the complete model. Recently, alternative
models have been suggested which apply general principles of auditory perception but leaving
out the detailed aspects. Such a model can be a good compromise between biological/perceptu-
al reality and computational clarity and efficiency. For example, Chi et al. [102] used for the
first stage 128 overlapping constant-Q bandpass filters with 24 filters/octave, a hair cell model
with a high-pass filter, a non-linear compression, a membrane leakage low-pass filter, and a
simplification of a lateral inhibitory network. In addition, they also modelled a second stage of
cortical processing using spectro-temporal receptive fields (STRFs) applied on the spectrogram
derived in the first stage (Chi et al. [102]). Another example of such a simplified two-stage
model including an auditory spectrogram with STRFs applied to speech recognition was pre-
sented by Heckmanns et al. [55].

Traditionally, the short-time Fourier transform (STFT) has been used extensively for con-
verting the signal to a time-frequency representation, presumably due to its efficient computer
implementation, the fast Fourier transform (FFT). One of the major drawbacks with the STFT
is the frequency resolution, which is constant in terms of Hertz. Since the ear is approximately
logarithmic with regard to the frequency band distribution, a major part of the frequency data
in the upper treble region is less relevant for a perceptual analysis. Similarly the resolution in
the bass range is not enough for example for determining the musical pitch using a time win-
dow that can capture the onsets of fast notes (Muller et al. [103]).

One possibility to achieve a log-frequency spectrum is to use a bank of individual bandpass
filters as discussed above and also in line with the currently proposed model. This can, howev-
er, be rather time consuming. An interesting computationally efficient compromise is therefore
the constant-Q transform which uses traditional STFTs applied in a combination of downsam-
pling and different time resolutions for different octaves (Brown and Puckette [104]). A
computational toolbox was recently presented by Schörkhuber and Klapuri [105]. Using the
constant-Q method, the frequency resolution will be the same across the spectrum. The time
resolution will, however, vary significantly across the spectrum and still exhibit poor time reso-
lution in the bass region.

Similar approaches using a second layer of receptive fields applied on the spectrogram have
been used in particular in speech research using Gabor functions (Kleinschmidt [49]; Ezzat
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et al. [52]; Meyer and Kollmeier [106]; Heckmann et al. [55]; Wu et al. [32]). Heckmann et al.
[55] used Gabor-based receptive fields of different orientations in the time-frequency plane of
the spectrogram in combination with different transformations inspired by visual object recog-
nition to capture the formant trajectories over time. The resulting features were shown to im-
prove the performance of a speech recognition system in combination with traditional features
such as mel frequency cepstral components (MFCC). In this article, we show how such and re-
lated auditory operations can be derived in principled manner.

Summary and discussion
We have presented a theory for how idealized models of auditory receptive fields can be formu-
lated based on structural constraints on the first stages of auditory processing. The theory in-
cludes (i) the definition of multi-scale spectrograms at different temporal scales in such a way
that a spectrogram at any coarser temporal scale can be related to a corresponding spectrogram
at any finer temporal scale using theoretically well-defined scale-space operations, and addi-
tionally (ii) how a second-layer of spectro-temporal receptive fields can be defined over a loga-
rithmically transformed spectrogram in such a way that the resulting spectro-temporal
receptive fields obey invariance or covariance properties under natural sound transformations
including temporal shifts, variations in the sound pressure, the distance between the sound
source and the observer, a shift in the frequencies of auditory stimuli or glissando transforma-
tions. Specifically, theoretical arguments have been presented showing how these idealized re-
ceptive fields are constrained to the presented forms from symmetry properties of the
environment in combination with assumptions about the internal structure of auditory opera-
tions as motivated from requirements of handling different temporal and spectral scales in a
theoretically well-founded manner.

By combining the scale-space approach with a local frequency analysis, we obtain a new
way of deriving the Gabor filters as a complex-valued scale-space transform resulting from the
Gaussian scale-space concept being applied to a temporal signal multiplied by a complex sine
wave. We can also derive the Gamma-tone filters in a corresponding manner, as a time-causal
complex scale-space transform obtained by applying a set of time-causal scale-space kernels
based on first-order integrators with equal time constants coupled in cascade and applied to a
temporal signal multiplied by a complex sine wave. In addition, the scale-space approach to
multi-scale spectrograms leads to a new family of generalized Gamma-tone filters obtained
from a logarithmic distribution of the intermediate temporal scales, and allowing for different
trade-offs between filter characteristics such as frequency selectivity and temporal delay.

Then, given that a multi-scale spectrogram has been defined and transformed by taking the
logarithm of the magnitude values and expressing the frequencies on a logarithmic frequency
scale to ensure natural covariance properties under variations of the sound pressure or a fre-
quency shift in the stimulus, the theory provides a second layer of receptive fields applied to
the spectrogram, based on spectro-temporal derivatives of spectro-temporal scale-space ker-
nels. We have shown how the derived models of idealized spectro-temporal receptive fields are
uniquely determined given natural symmetry properties (scale-space axioms) and we have
shown examples of how basic auditory features can be computed in this way.

Thus, the presented scale-space theory for auditory signals can be both related to existing
models for auditory analysis and additionally leads to the formulation of a set of new models.
Specifically, the presented theory provides a coherent framework by which auditory receptive
fields at the first levels of processing in the auditory hierarchy can be expressed within the
same theoretical framework. Moreover, the theory allows for provable invariance properties
under temporal shifts, variations in sound pressure and logarithmic frequency shifts.

Idealized Computational Models for Auditory Receptive Fields

PLOS ONE | DOI:10.1371/journal.pone.0119032 March 30, 2015 41 / 58



In relation to biology, the theoretical framework thus shows that idealized receptive field
profiles can be derived by necessity given a set of idealized assumptions that reflect structural
properties of the environment, and lead to predictions about receptive field profiles that are
qualitatively very similar to receptive fields found by cell recordings in the inferior colliculus
(ICC) and the primary auditory cortex (A1) of mammals. From this theoretical background,
the auditory receptive fields in these auditory areas can therefore be seen as highly adapted to
the structure of the environment and enabling the computation of invariant representations of
the auditory input.

In relation to audio processing, the paper shows how one can derive three types of temporal
filters for defining spectrograms, which provides a new way to derive Gabor filters and Gam-
matone filters in conceptually similar ways, and also to derive a new family of generalized
Gammatone filters with additional degrees of freedom to obtain different trade-offs between
the spectral selectivity and the temporal delay of time-causal filters. The paper also presents a
theory for defining a second layer of receptive fields on such spectrograms and gives examples
of how basic auditory features can be computed in this way. These results are derived by math-
ematical necessity from the assumptions. It is furthermore shown how such audio processing
operations can be related to biological receptive fields in auditory perception as well as to a cor-
responding theory for visual receptive fields.

We propose that this theory should be of wide general interest for researchers in the audio
processing community by providing theoretically well-founded and provably invariant/covari-
ant audio operations for processing sound signals and to researchers working with computa-
tional modelling or measurements of receptive fields, auditory invariances, theoretical biology
and psychophysics, by serving as a general theoretical foundation and understanding of how
receptive fields in ICC and A1 support invariant visual processes at higher levels in the
auditory hierarchy.

Implications of the theory
Conceptually, the presented normative theory of auditory receptive fields based on axiomatic
scale-space theory for auditory signals provides a coherent and unified model for how auditory
receptive field profiles can be determined by necessity from structural properties of the envi-
ronment and a synthesis of how invariance properties with respect to basic sound transforma-
tions is made possible by such receptive fields. Specifically, the theory explains how the basic
types of linear receptive fields found in ICC and the linear component of receptive fields in A1
are constrained to their forms from the requirement that they (i) should have the ability to han-
dle auditory structures at different temporal and spectral scales and (ii) enable the computation
of invariant auditory representations under frequency shifts, temporal shifts, variations in
sound pressure or the distance between the sound source and the observer as well as
glissando transformations.

In relation to previous literature on measurements of auditory receptive fields in the inferior
colliculus (ICC) and the primary auditory cortex (A1), as investigated by Miller et al. [3], Qiu
et al. [31], Machens et al. [37], Andoni et al. [38], Elhilali et al. [39], Atencio and Schreiner [40]
and others, the paper presents a theoretical model by which qualitatively similar types of recep-
tive fields can be derived by necessity, based on a set of mathematical assumptions that reflect
structural properties of the environment in combination with assumptions regarding the inter-
nal consistency between auditory receptive fields at different temporal and spectral scales.

In relation to the Gammatone (Johannesmaa [33]; Patterson et al. [34, 36]; Hewitt and Med-
dis [35]; Irino and Patterson [58]; Hohmann [60]; Schlute et al. [62]; Ngamkham et al. [63] and
Gabor (Gabor [28]; Ezzat et al. [52]) approaches for defining spectrograms in audio processing,
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the paper shows how such filters can be derived by necessity from a small set of principled as-
sumptions (scale-space axioms) and as well as how a new family of generalized Gammatone fil-
ters can be derived with larger flexibility between temporal and spectral properties.

In relation to Gabor approaches for defining a second layer of receptive fields on from the
spectrogram (Kleinschmidt [49]; Ezzat et al. [52]; Meyer and Kollmeier [106]; Heckmann et al.
[55]; Wu et al. [32]), the paper shows that there are theoretical arguments for preferring a com-
bination of Gaussian and generalized Gammatone filters as a second layer of receptive fields.
Specifically, such second-layer receptive fields ensure temporal causality and appropriate trans-
formation properties under natural sound transformations.

Future work
A scientifically highly interesting question would be to investigate quantitatively which one of
the three families of idealized receptive fields leads to the best fit with biological data, the
Gaussian model or either of the time-causal models based on either equal time constants in the
first-order integrators or a self-similar distribution. To answer this question properly, one
needs access to data from a sufficiently large and representative set of neurons, which we as au-
thors do currently not have access to. For this paper, we have therefore instead made compari-
sons with receptive fields profiles as published in the open literature. The results reported in
the section “Relations to biological receptive fields” show that our theory leads to predictions
that are in good qualitative agreement with biological receptive fields as reported by several au-
thors and for several animal species. To answer which one of the models agrees best with bio-
logical data, quantitative comparisons to raw data would be needed.

Such a quantitative investigation could also allow for empirical determination of the param-
eters in the parameterized receptive fields (temporal and spectral scale parameters, order of
smoothing for the time-causal filters, glissando parameters and orders of temporal and spectral
differentiation) as well as the distribution of these parameters over families of receptive fields.

Concerning limitations of the presented approach, we have in the present treatment defined
the second layer of receptive fields from the magnitude values of the spectrogram only, thus ig-
noring the local phase information. A natural extension would be to extend the formulation of
the second layer of receptive fields to include the local phase of the spectrogram, which for exam-
ple may provide important cues to judge if partial tones may constitute components of a har-
monic spectrum belonging to the same physical source, and to formulate binaural receptive fields
that are sensitive to the three-dimensional volumes in auditory space where a stimulus occurs.

It should also be stressed that the present approach constitutes a linear and pure feed-for-
ward model for local receptive fields, corresponding to constant values of the filter parameters
in the local diffusion equations and recurrence relations that determine the formation of the re-
ceptive fields. An interesting extension would be to adapt these filter parameters to the local
input data or using top-down information, which could then provide computational mecha-
nisms to express stimulus- and/or task-dependent receptive fields as reported by Fritz et al. [4],
Machens et al. [37], Elhilali et al. [39], Eggermont [107], David et al. [108] and Laudanski et al.
[109] and furthermore to extend the use of local receptive fields centered around a single fre-
quency to multi-local operations that combine information from several distinct frequencies
(Pienkowski and Harrison [110]).

In relation to such more complex non-linear mechanisms, the presented linear theory can
be seen as a first principled starting point that (i) enables the computation of basic auditory fea-
tures for audio processing and (ii) generates predictions about basic receptive field profiles that
are qualitatively similar to biological receptive fields as measured by cell recordings in the infe-
rior colliculus (ICC) and the primary auditory cortex (A1).
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Frequency selectivity of the spectrograms
Consider a sine wave signal with angular frequency ω0:

f ðtÞ ¼ sino0t ð103Þ

When computing the windowed spectrogram, we multiply this signal by sine and cosine waves
of different angular frequencies ω and integrate by a window function h(t; τ) with temporal ex-
tent τ:

cðtÞ ¼ hðt; tÞ � f ðtÞ cosotÞð Þ ð104Þ

sðtÞ ¼ hðt; tÞ � f ðtÞ sinotÞð Þ ð105Þ

By the use of basic rules for trigonometric functions

f ðtÞ cosot ¼ sino0t cosot ¼
1

2
� sin ðo� o0Þt þ sin ðoþ o0Þtð Þ ð106Þ

f ðtÞ sinot ¼ sino0t sinot ¼
1

2
cos ðo� o0Þt � cos ðoþ o0Þtð Þ ð107Þ

the result of convolving these components with the window function h(t; τ) can be expressed

by multiplication with the Fourier transform ĥðo; t Þ:

cðtÞ ¼ 1

2
�ĥðo� o0; tÞ sin ðo� o0Þt þ ĥðoþ o0; tÞ sin ðoþ o0Þt
� �

ð108Þ

sðtÞ ¼ 1

2
ĥðo� o0; tÞ cos ðo� o0Þt � ĥðoþ o0; tÞ cos ðoþ o0Þt
� �

ð109Þ

Concerning the magnitude of the spectrogram

SðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðtÞ2 þ sðtÞ2

q
ð110Þ

it follows that

SðtÞ2 ¼ 1

4

�
ĥðo� o0; tÞ2 þ ĥðoþ o0; tÞ2

� 2 cos ð2o0tÞ ĥðo� o0; tÞ ĥðoþ o0; tÞ
�

ð111Þ

Assuming that the window function h should be a low-pass filter, then for ω close to ω0 let us
assume

jĥðo� o0; tÞj � jĥðoþ o0; tÞj ð112Þ

Thereby, the dominant component of the spectrogram near ω0 will be given by

Smagnðo; tÞ 	
jĥðo� o0; tÞj

2
ð113Þ

By normalizing this entity such that the maximum value at ω = ω0 equals one, we quantify the
frequency selectivity for a frequency dependent window scale τ(ω) as

RðoÞ ¼ jĥðo� o0; tðoÞÞj ð114Þ
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which on a logarithmic dB scale assumes the form

RdBðoÞ ¼ 20 log 10jĥðo� o0; tðoÞÞj ð115Þ

where we would ideally choose the temporal extent of the kernel in units of s ¼ ffiffiffiffi
t

p
propor-

tional to the wavelength λ = 2π/ω for any angular frequency ω:

tðoÞ ¼ s2 ¼ ðn � lÞ2 ¼ 2pn
o

� �2

ð116Þ

Gaussian window functions. For a Gaussian window function we have

ĝðo; tÞ ¼
Z 1

t¼�1
gðt; tÞ e�iotdt ¼ e�o2t=2 ð117Þ

With the temporal extent of the window function proportional to the wavelength for any
frequency according to (116), the frequency selectivity is given by

RgaussðoÞ ¼ e
�
2p2n2ðo� o0Þ2

o2
ð118Þ

or in dB

RdB;gaussðoÞ ¼ � 40p2n2ðo� o0Þ2
log 10o2

ð119Þ

Window functions defined from cascade of truncated exponential functions. For the
truncated exponential filters coupled in cascade, the Laplace transform is

Hcomposedðq; mÞ ¼
Z 1

t¼�1
ð�Kk¼1hexpðt; mkÞÞ e�qt dt ¼

YK
k¼1

1

1þ mkq
ð120Þ

implying that the Fourier transform is given by

ĥcomposedðo; mÞ ¼ Hcomposedðio; mÞ ¼
YK
k¼1

1

1þ i mk o
ð121Þ

In the special case when all time constants μk are equal

mk ¼
ffiffiffiffi
t
K

r
ð122Þ

and with the temporal extent of the window function proportional to the wavelength according
to (116), the frequency selectivity is given by

Rrec�uniðoÞ ¼ jĥcomposedðo� o0; tðoÞ;KÞj ¼
1

1þ 4p2n2ðo� o0Þ2
Ko2

� �K=2 ð123Þ

or in dB

RdB;rec�uniðoÞ ¼ � K
2 log 10

log 1þ 4p2n2ðo� o0Þ2
Ko2

� �
ð124Þ
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In the special case when the intermediate temporal scale levels τk are instead distributed ac-
cording to a logarithmic distribution with τk = c2(k − K) τ and μk according to (39) and (40), and
with the temporal extent of the window function proportional to the wavelength according to
(116), we obtain

Rrec�logðoÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4p2c2ð1�KÞn2ðo� o0Þ2
o2

r

� 1

QK
k¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2c2ðk�K�1Þðc2 � 1Þn2ðo� o0Þ2

o2

r ð125Þ

or in dB

RdB;rec�logðoÞ ¼ � 10

log 10
log 1þ 4p2 c2ð1�KÞ n2ðo� o0Þ2

o2

� �

� 10

log 10

XK
k¼2

log 1þ 4p2c2ðk�K�1Þ ðc2 � 1Þ n2ðo� o0Þ2
o2

� � ð126Þ

Fig. 21 shows graphs of the frequency selectivity for the different types of temporal window
functions and a few combinations of the underlying filter parameters. The non-causal Gaussian
kernel has sharper frequency selectivity compared to the time-causal kernels. Within the class
of time-causal kernels, the frequency selectivity increases with the number of truncated expo-
nential kernels that are coupled in cascade. For the logarithmic distribution of the intermediate
temporal scale levels, the frequency selectivity also increases with decreasing values of the dis-
tribution parameter c.

Fig 21. Graphs of the frequency selectivities of Gaussian and time-causal window functionswith the temporal extent proportional to the
corresponding wavelength of the spectrogramwith n = 8. For the time-causal filters, K = 4 or K = 7 filters have been coupled in cascade. For the
logarithmic distribution, the ratio between successive temporal scale levels τk = c2(k − K) τ has been determined from c ¼ ffiffiffi

2
p

or c = 2. (Horizontal axis: Angular
frequencyω in units ofω0. Vertical axis: dB values down to -60 dB.)

doi:10.1371/journal.pone.0119032.g021
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Dependency of the relative bandwidth on n. Notably all these expressions are functions
of the ratio

n2ðo� o0Þ2
o2

¼ y2 ð127Þ

By for a fixed value of θ solving for ω and assuming θ> 0

o1 ¼
o0

1þ y
n

o2 ¼
o0

1� y
n

ð128Þ

we get explicit expressions for how the relative bandwidth of the spectrogram corresponding to
that specific value of θ

o2 � o1

o0

¼ 1

1� y
n

� 1

1þ y
n

0
B@

1
CA ¼

2y
n

1� y
n

� �2 	
2y
n
þO

y
n

� �3
 !

ð129Þ

alternatively in logarithmic MIDI units

12 log 2

o2

o1

� �
¼ 12 log 2

1þ y
n

1� y
n

0
B@

1
CA 	 24

log 2
y
n
þO

y
n

� �3
 !

ð130Þ

depends on n for any θ, implying that the relative bandwidth decreases approximately inversely
proportional to n, where θ is related to the dB level RdB < 0 according to

ygauss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
log 10

p
2p

ffiffiffiffiffiffiffiffiffiffi
�RdB

10

r
ð131Þ

for the Gaussian window functions and according to

yrec�uni ¼
ffiffiffiffi
K

p

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�RdB

10K � 1

q
ð132Þ

for the time-causal kernels having a uniform distribution of the intermediate temporal scale
levels. For the time-causal kernels having a logarithmic distribution of the intermediate scale
levels, the parameter θ can be determined by solving the following equation

RdB ¼ � 10 log 4p2y2c2�2K þ 1
� �
log ð10Þ

�
20
PK

k¼2

1

2
log 4p2 c2 � 1ð Þy2c2k�2K�2 þ 1
� �

log ð10Þ

ð133Þ

numerically for specific values of K and c. Table 1 shows such values for K = 4 and K = 7 for

c ¼ ffiffiffi
2

p
and c = 2 as well as corresponding values for a uniform distribution of the intermediate

scale levels and a Gaussian window function.
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Frequency invariance. From the invariance of the expressions (118), (123) and (125)
under frequency transformations of the form

o 7!ao ð134Þ

o0 7!ao0 ð135Þ

for any α> 0, it follows that the relative bandwidth of the spectrogram will be independent of
the angular frequency ω. Thereby, over the range of frequencies for which the temporal extent
of the window function is proportional to the wavelength, the spectral sensitivity will be invari-
ant under a shift in frequency ω 7! α ω, providing a foundation for frequency covariant recep-
tive fields at higher levels in the auditory hierarchy.

Temporal dynamics of the time-causal kernels
For the time-causal filters obtained by coupling truncated exponential kernels in cascade, there
will be an inevitable temporal delay depending on the time constants μk of the
individual filters.

A most straightforward way of estimating this delay is by using the additive property of
mean values under convolution

m ¼
XK
k¼1

mk ð136Þ

In the special case of all the time constants being equal mk ¼
ffiffiffiffiffiffiffiffi
t=K

p
, this measure is given by

muni ¼
ffiffiffiffiffiffiffiffi
Kt

p ¼ 2p
ffiffiffiffi
K

p
n

o
ð137Þ

showing that the temporal delay increases if the temporal smoothing operation is divided into
a larger number of smaller individual smoothing steps.

In the special case when the intermediate temporal scale levels are instead distributed loga-
rithmically according to (38), with the individual time constants given by (39) and (40), this

Table 1.Numerical values of the parameter θ determining the relative bandwidth 2y
n
of the spectrogram according to (129), for a Gaussian function

and K truncated exponential kernels in cascade with a uniform distribution of the intermediate temporal scale levels τk = τ/K or a logarithmic distri-
bution τk = c2(k − K) τwith c> 1.

Relative bandwidth of temporal window functions

-3 dB -10 dB -20 dB -30 dB

θgauss 0.132 0.242 0.342 0.418

θrec − uni (K = 4) 0.138 0.281 0.468 0.684

θrec − log (K ¼ 4; c ¼ ffiffiffi
2

p
) 0.140 0.292 0.498 0.736

θrec − log (K = 4, c = 23/4) 0.143 0.312 0.553 0.838

θrec − log (K = 4, c = 2) 0.146 0.332 0.619 0.971

θrec − uni (K = 7) 0.136 0.263 0.406 0.546

θrec − log (K ¼ 7; c ¼ ffiffiffi
2

p
) 0.140 0.289 0.478 0.678

θrec − log (K = 7, c = 23/4) 0.143 0.311 0.547 0.816

θrec − log (K = 7, c = 2) 0.146 0.332 0.617 0.963

doi:10.1371/journal.pone.0119032.t001
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measure for the temporal delay is given by

mlog ¼ c�K c2 � ffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p þ 1
� �

cþ ffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
cK

� �
c� 1

ffiffiffiffi
t

p

¼ 2pn c�K c2 � ffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p þ 1
� �

cþ ffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
cK

� �
ðc� 1Þo

ð138Þ

with the limit value

mlog�limit ¼ lim
K!1

mlog ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p

c� 1

ffiffiffiffi
t

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p

c� 1

2pn
o

ð139Þ

when the number of filters tends to infinity.
By comparing Equations (137), (138) and (139), we can specifically note that with increas-

ing number of intermediate temporal scale levels, a logarithmic distribution of the intermediate
scale levels implies shorter temporal delays than a uniform distribution of the intermediate
scale levels.

Table 2 shows numerical values of these measures for different values of K and c. As can be
seen from the table, the logarithmic distribution of the intermediate scales allows for signifi-
cantly faster temporal dynamics than a uniform distribution.

Additional temporal characteristics. Because of the asymmetric tails of the time-causal
temporal smoothing kernels, temporal delay estimation by the mean value may however lead
to substantial overestimates compared to e.g. the position of the local maximum. To provide
more precise characteristics in the case of a uniform distribution of the intermediate temporal
scale levels, for which a compact closed form expression is available for the composed kernel

hcomposedðt; m;KÞ ¼
tK�1 e�t=m

mK GðKÞ ð140Þ

Table 2.Numerical values of the temporal delay in terms of the temporal meanm ¼PK
k¼1 mk in units of

s ¼ ffiffiffiffi
t

p
for time-causal kernels obtained by coupling K truncated exponential kernels in cascade in

the cases of a uniform distribution of the intermediate temporal scale levels τk = kτ/K or a logarithmic
distribution τk = c2(k − K) τwith c> 1.

Temporal mean values of time-causal kernels

K muni mlog (c ¼ ffiffiffi
2

p
) mlog (c = 23/4) mlog (c = 2)

2 1.414 1.414 1.399 1.366

3 1.732 1.707 1.636 1.549

4 2.000 1.914 1.777 1.641

5 2.236 2.061 1.860 1.686

6 2.449 2.164 1.910 1.709

7 2.646 2.237 1.940 1.721

8 2.828 2.289 1.957 1.732

doi:10.1371/journal.pone.0119032.t002
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let us differentiate this function

@t hcomposedðt; m;KÞ
� �

¼
e�

t
mððK � 1Þm� tÞ t

m

� �Kþ1

t3 GðKÞ

@tt hcomposedðt; m;KÞ
� �

¼
e�

t
m

t
m

� �K

K2 � 3K þ 2ð Þm2 � 2ðK � 1Þmt þ t2ð Þ
m2 t3 GðKÞ

ð141Þ

and solve for the positions of the local maximum and the inflection points

tmax;uni ¼ ðK � 1Þm ¼ ðK � 1Þffiffiffiffi
K

p ffiffiffiffi
t

p ¼ 2pðK � 1Þ nffiffiffiffi
K

p
o

ð142Þ

tinfl1;uni ¼ K � ffiffiffiffiffiffiffiffiffiffiffiffi
K � 1

p � 1
� �

m

¼ K � ffiffiffiffiffiffiffiffiffiffiffiffi
K � 1

p � 1
� � ffiffiffiffi

t
pffiffiffiffi

K
p

¼ 2p K � ffiffiffiffiffiffiffiffiffiffiffiffi
K � 1

p � 1
� �

nffiffiffiffi
K

p
o

ð143Þ

tinfl2;uni ¼ K þ ffiffiffiffiffiffiffiffiffiffiffiffi
K � 1

p � 1
� �

m

¼ K þ ffiffiffiffiffiffiffiffiffiffiffiffi
K � 1

p � 1
� � ffiffiffiffi

t
pffiffiffiffi

K
p

¼ 2p K þ ffiffiffiffiffiffiffiffiffiffiffiffi
K � 1

p � 1
� �

nffiffiffiffi
K

p
o

ð144Þ

Table 3 shows numerical values for the position of the local maximum for both types of time-
causal kernels. As can be seen from the table, the temporal response properties are significantly
faster for a logarithmic distribution of the intermediate scale levels compared to a uniform dis-
tribution, and the difference increases rapidly with K. These temporal delay estimates are also
significantly shorter than the temporal mean values, in particular for the logarithmic distribu-
tion of the intermediate scale levels.

Table 3.Numerical values for the temporal delay of the local maximum in units of
ffiffiffiffi
t

p
for time-causal

kernels obtained by couplingK truncated exponential kernels in cascade in the cases of a uniform
distribution of the intermediate temporal scale levels τk = kτ/K or a logarithmic distribution τk = c2(k − K)

τwith c> 1.

Temporal delays from the maxima of time-causal kernels

K tmax, uni tmax, log (c ¼ ffiffiffi
2

p
) tmax, log (c = 23/4) tmax, log (c = 2)

2 0.707 0.707 0.688 0.640

3 1.154 1.122 1.027 0.909

4 1.500 1.385 1.199 1.014

5 1.789 1.556 1.289 1.060

6 2.041 1.669 1.340 1.083

7 2.268 1.745 1.370 1.095

8 2.475 1.797 1.388 1.100

doi:10.1371/journal.pone.0119032.t003
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If we consider a temporal event that occurs as a step function over time (e.g. an onset in the
magnitude of the spectrogram which is then processed by a second layer of spectro-temporal
receptive fields) and if the temporal position of this onset is estimated from the local maximum
over time in the first-order temporal derivative response, then the temporal variation in the re-
sponse over time will be given by shape of the temporal smoothing kernel. The local maximum
over time will occur at a time delay equal to the time at which the temporal kernel has its maxi-
mum over time. Thus, the position of the maximum over time of the temporal smoothing ker-
nel is highly relevant for quantifying the temporal responses characteristics of time-
causal filters.

Computational implementation
The computational model for auditory receptive fields presented in this paper is based on audi-
tory signals that are assumed to be continuous over time and with frequencies that are also as-
sumed to take values over a continuous frequency domain. When implementing this model on
sampled sound signals, the continuous theory must be transferred to discrete time and be re-
stricted to a finite set of discrete frequencies.

In this section we describe how the temporal and spectro-temporal receptive fields can be
implemented in terms of corresponding discrete scale-space kernels that possess scale-space
properties over discrete temporal and spectro-temporal domains.

Discrete temporal scale-space kernels based on recursive filters. Given a temporal signal
that has been sampled for some temporal sampling density ϕ0, the temporal scale τ in the con-
tinuous model in units of seconds is first transferred to a temporal scale relative to a unit time
sampling according to

tsampl ¼ f2

0 t ð145Þ

where we have here usually used sound signals with ϕ0 = 44.1 kHz in the experiments. Then, a
discrete set of intermediate temporal scale levels is defined according to (38)

t k ¼ c2ðk�KÞtsampl ð1 � k � KÞ ð146Þ

or (42)

t k ¼
k
K

tsampl
ð147Þ

with the difference between successive scale levels according to (and with τ0 = 0)

Dt k ¼ t k � tk�1 ð148Þ
For implementing the temporal smoothing operation between two such adjacent scale levels,
we make use of a first-order recursive filter

foutðtÞ � foutðt � 1Þ ¼ 1

1þ mk

ðfinðtÞ � foutðt � 1ÞÞ ð149Þ

with generating function

HgeomðzÞ ¼
1

1� m ðz � 1Þ ; ð150Þ

Idealized Computational Models for Auditory Receptive Fields

PLOS ONE | DOI:10.1371/journal.pone.0119032 March 30, 2015 51 / 58



which is a time-causal kernel and satisfies discrete scale-space properties of guaranteeing that
the number of local extrema or zero-crossings in the signal will not increase (Lindeberg [42];
Lindeberg and Fagerström [44]). Each such filter has temporal mean valuemk = μk and tempo-
ral variance Dt k ¼ m2

k þ mk, and we compute μk from Δτk according to

mk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Dt k

p � 1

2
ð151Þ

By the additive property of variances under convolution for a non-negative kernel, the discrete
variances of the discrete temporal scale-space kernels will perfectly match those of the continu-
ous model, whereas the mean values and the temporal delays may be somewhat different. If the
temporal scale τk is large relative to the temporal sampling density, the discrete model can how-
ever be seen as a good approximation also in this respect.

By the time-recursive formulation of this temporal scale-space concept, the computations
can be performed based on a compact temporal buffer over time, which contains the temporal
scale-space representations at temporal scales τk and with no need for storing any additional
temporal buffer of what has occurred in the past to perform the corresponding
temporal operations.

Discrete implementation of Gaussian smoothing. In our model, Gaussian smoothing is
used both for smoothing over the spectral domain and non-causal smoothing over the tempo-
ral domain. To implement this operation on discrete sampled data, we do first (i) in the case of
purely temporal smoothing transform a temporal variance τ in units of seconds to a temporal
variance relative to a unit sampling density ssampl according to

ssampl ¼ f2
0 t ð152Þ

or (ii) in the case of purely spectral smoothing transform a spectral smoothing scale σ in units
of semitones to a spectral smoothing scale relative to the logspectral sampling distance Δν and
in units of variance according to

ssampl ¼
s
Dn

� �2 ð153Þ

Then, we perform convolution with the discrete analogue of the Gaussian kernel (Lindeberg [42])

Tðn; ssamplÞ ¼ e�ssampl InðssamplÞ ð154Þ

where In denotes the modified Bessel functions of integer order and which corresponds to the so-
lution of the semi-discrete diffusion equation

@sLðn; sÞ ¼
1

2
dxxL ¼ 1

2
Lðn� 1; sÞ � 2Lðn; sÞ þ Lðnþ 1; sÞð Þ ð155Þ

where x denotes the variable over the domain, which can either be time t or logarithmic frequen-
cy ν.

These kernels constitute the natural way to define a scale-space concept for discrete signals
corresponding to the Gaussian scale-space over a symmetric domain in the sense of guarantee-
ing that the number of local extrema or zero-crossings must not increase with scale, while also
ensuring a semi-group property

Tð�; s1Þ � Tð�; s2Þ ¼ Tð�; s1 þ s2Þ ð156Þ

over the discrete domain which implies that representations at coarser scales can be computed
from representations at finer scales using the cascade property (17).
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Based on the (exact) relation
P1

n¼�1 Tðn; sÞ ¼ 1, we truncate the infinite discrete kernel at
the tails

XN
n¼�N

Tðn; sÞ > 1� " ð157Þ

for some small value of � of the order 10−6. A coarse estimate of this bound can be obtained by
estimating the corresponding tails of the continuous Gaussian kernel

2

Z 1

x¼N

gðx; sÞ dx < " ð158Þ

using the error function and then adjusting this estimate to match (157).
For points where some part of the kernel stretches outside the domain of available data, we

mirror the data at the boundaries, equivalent to solving the diffusion equation with adiabatic
boundary conditions—i.e. no heat transfer across the boundaries of the domain where data
are available.

Discrete implementation of spectro-temporal receptive fields. For separable spectro-
temporal receptive fields, we implement the spectro-temporal smoothing operation by separa-
ble combination of the temporal and spectral scale-space concepts in the appendices “Discrete
temporal scale-space kernels based on recursive filters” and “Discrete implementation of
Gaussian smoothing”. From this representation, separable spectro-temporal derivative approx-
imations are then computed from difference operators of the following types:

dt ¼ ð�1;þ1Þ ð159Þ

dtt ¼ ð1;�2; 1Þ ð160Þ

dv ¼ � 1

2
; 0;þ 1

2

� �T

ð161Þ

dvv ¼ ð1;�2; 1ÞT ð162Þ

with the difference operators expressed over the appropriate dimensions, here with the implicit
convention that time corresponds to the horizontal dimension in an auditory signal or a spec-
trogram and logarithmic frequency ν to the vertical (transposed) dimension.

From the general theory in (Lindeberg [11, 111]) it follows that the scale-space properties
for the original zero-order signal will be transferred to such derivative approximations, thereby
implying theoretically well-founded implementation of derivative receptive fields.

For non-separable receptive fields corresponding to logarithmic frequencies ν that vary with
time t by glissando v, we implement the spectro-temporal smoothing operation by first warping
the spectro-temporal data locally

n0 ¼ n� v t ð163Þ

using spline interpolation. Then, we apply separable spectro-temporal smoothing in the trans-
formed domain and unwarp the result back to the original domain. Over a continuous domain,
such an operation is equivalent to convolution with corresponding glissando-adapted spectro-
temporal receptive fields, while being significantly faster in a discrete implementation than cor-
responding explicit convolution with non-separable receptive fields over two dimensions.
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In addition to a transfer of the scale-space properties from the continuous model to the dis-
crete implementation, all the components in this discretization, the discrete Gaussian kernel,
the time-recursive filters and the discrete derivative approximations, can be seen asmathemati-
cal approximations of the corresponding continuous counterparts. Thereby, the behaviour of the
discrete implementation will approach the behaviour of the corresponding continuous model
as the temporal sampling rate and the sampling rate in the logarithmic frequency domain in-
crease. Choosing appropriate sampling rates in an actual implementation is a trade-off between
computational accuracy and computational efficiency.
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