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Abstract

Introduction

Endurance training improves peripheral insulin sensitivity in the liver and the skeletal mus-

cle, but the mechanism for this effect is poorly understood. Recently, it was proposed that

insulin clearance plays a major role in both glucose homeostasis and insulin sensitivity.

Therefore, our goal was to determine the mechanism by which endurance training improves

insulin sensitivity and how it regulates insulin clearance in mice.

Methods

Mice were treadmill-trained for 4 weeks at 70–80% of maximal oxygen consumption (VO2

max) for 60 min, 5 days a week. The glucose tolerance and the insulin resistance were de-

termined using an IPGTT and an IPITT, respectively, and the insulin decay rate was calcu-

lated from the insulin clearance. Protein expression and phosphorylation in the liver and the

skeletal muscle were ascertained by Western blot.

Results

Trained mice exhibited an increased VO2 max, time to exhaustion, glucose tolerance and

insulin sensitivity. They had smaller fat pads and lower plasma concentrations of insulin and

glucose. Endurance training inhibited insulin clearance and reduced expression of IDE in

the liver, while also inhibiting insulin secretion by pancreatic islets. There was increased

phosphorylation of both the canonical (IR-AKT) and the non-canonical (CaMKII-AMPK-

ACC) insulin pathways in the liver of trained mice, whereas only the CaMKII-AMPK pathway

was increased in the skeletal muscle.
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Conclusion

Endurance training improved glucose homeostasis not only by increasing peripheral insulin

sensitivity but also by decreasing insulin clearance and reducing IDE expression in the liver.

Introduction
Insulin resistance is characterized by decreased insulin action on peripheral organs (primarily
the liver and the skeletal muscle) and reduced phosphorylation and activation of the insulin re-
ceptor (IR), IRSs and components of the phosphatidylinositol 3-kinase/protein kinase B (AKT)
pathway. Over time, beta cells lose their functionality, as evidenced by a reduction in glucose-
stimulated insulin secretion (GSIS) and a loss of beta cell mass [1], which results
in hyperglycemia.

Previous data indicate that the clearance of insulin predominantly depends on its degrada-
tion by the liver and that this clearance plays a critical role in glycemic control [2]. In hepato-
cytes, insulin is degraded by insulin-degrading enzyme (IDE) [3].

Exercise training protects against detrimental changes in glucose metabolism [4]. Its benefi-
cial effects include increased insulin sensitivity in peripheral organs [5, 6], increased VO2 max
[7–9], increased muscle microvascular perfusion [10] and lower body weight [11].

Nevertheless, there are no data on the effects of endurance training on insulin clearance de-
spite the pivotal importance of this process in the regulation of glycaemia and of exercise in
glucose regulation [12].

The aim of this study was to evaluate the effects of endurance training on insulin clearance
and find possible mechanisms for these effects, such as IDE expression.

Materials and Methods

Reagents and solutions
Primary antibodies used for Western blotting: anti-phospho-AMPKα2Thr172, anti-AMPKα2,
anti-phospho-acetyl-CoA carboxylaseSer79, and anti-ACC (Cell Signaling Technology, Boston,
MA, USA); antiphospho-CaMKIITyr305 and anti-CaMKII (Abcam); anti-IDE, anti-GAPDH,
anti-phospho-IR, IR, anti-phospho-AKT, and AKT (Santa Cruz Biotechnology).

Animals
8–12 weeks-old male Swiss mice (Unib:SW strain) acquired from the State University of Cam-
pinas were maintained on a 12 h light–dark cycle at 20–21°C with controlled humidity during
the entire experiment and were fed a standard CHOW diet and offered tap water ad libitum.
All experiments adhered to ACSM recommendations and were approved by State University
of Campinas Ethics Committee.

Maximal oxygen consumption (VO2 max) and the endurance training protocol. Before
measuring the VO2 max, mice underwent a one-week adaptation to the treadmill and running
procedures. During this adaptation week, animals ran at 0.3 km.h-1 for 5 min each day. The
VO2 max was measured in individual sealed treadmills at a 25° incline that were coupled to a
gas analyzer (Oxylet system, Pan Lab/Harvad Instruments, Spain) immediately before and
after the endurance training protocol was completed.

Mice warmed up for 8 min at 15 cm.sec-1. Subsequently, the treadmill speed was increased
by 10 cm.sec-1 each minute until the mice were not able to maintain the necessary effort level.
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Oxygen uptake data were recorded continuously from the warm-up until exhaustion was
reached at 1-sec intervals using the Metabolism software (Pan Lab/Harvad Instruments,
Spain). Exhaustion was assumed when the mice were not able to keep pace with the set tread-
mill speed (inability to stand still after being laid down). The VO2 max was achieved when the
oxygen uptake plateaued despite increased treadmill speed.

After measuring the baseline VO2 max, the mice were randomly assigned to a sedentary
control group (Control), which was limited to typical movement inside the cages, and the en-
durance training group (Trained). The endurance training group performed a four-week train-
ing protocol of running on the treadmill. During the four weeks, the mice ran five days per
week for 1 h each day. During the first two weeks of training, the intensity was set at 70% VO2

max, and in the last two weeks, the intensity was set at 80% VO2 max.
All of the experiments described below were performed 24 h after the last training session,

which even after considering the wide variation in exercise duration, intensity and type [13,
14], we considered enough to minimize the effects of the last session.

Citrate synthase activity
After sacrifice, samples of the skeletal muscle were quickly removed and homogenised in an ex-
traction solution buffer containing Tris–HCl (0.5 mM) and EDTA (1 mM) at a pH of 7.4. The
reaction was performed in a medium containing Tris/aminomethane (100 mM), DTNB (0.2
mM), acetyl-CoA (0.1 mM), and Triton X-100 (0.1%) at a pH of 8.1. The reaction was initiated
by the addition of 10 μL of the tissue extract and 50 μL of oxaloacetic acid (10 mM). Absor-
bance at 412 nm (25°C) was spectrophotometrically measured during 5 min as previously de-
scribed [15].

Tissue samples
Liver and muscle samples from Swiss mice were extracted at 15 min after an intraperitoneal in-
jection of 1 IU/kg of total body weight of insulin and then were snap-frozen in liquid nitrogen
and stored in -80for subsequent protein and mRNA extractions. Pancreatic islets were isolated
from mice 24 h after the end of the training period by the collagenase method as previously de-
scribed [16].

Western blot
Western blots were performed as previously described [17].

Pancreatic islet GSIS
Batches of 10 islets were pre-incubated for 1 h in Krebs-Henseleit buffer solution (KHBS) con-
taining 0.5 g/l BSA and 5.6 mmol/l glucose and equilibrated at 95% O2 and 5% CO2 at 37°C.
The medium was discarded, and the islets were incubated for an additional hour in 1 ml KHBS
containing 2.8 or 16.7 mmol/l glucose. Subsequently, the supernatant fraction was collected to
evaluate insulin secretion, and the remaining islets were homogenized in an alcohol/acid solu-
tion to measure the total insulin content by radioimmunoassay.

Intraperitoneal glucose tolerance test
Swiss mice received an intraperitoneal injection of glucose (1 g/kg in 0.9% NaCl) after fasting
for 8 h during dark cycle. Blood samples (25–50 μl) were collected from the tail immediately
before the injection and 15, 30, 45, 60, 90 and 120 min afterwards to determine the glucose and
insulin concentrations. The glucose concentration was measured using a glucose strip on an
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Accu-Chek Performa II instrument (Roche, Indianapolis, Indiana, USA), and the insulin con-
centration was determined by RIA as previously described [18].

Intraperitoneal insulin tolerance test
Non-fasted Swiss mice received an intraperitoneal injection of insulin (1 U/kg). The blood glu-
cose was measured using test strips (Accu-Chek Performa II) at baseline (0 min, before receiv-
ing insulin) and 5, 10, 15, 20, 30, 60 and 120 min after the administration of insulin. Glucose
measurements were converted to natural logarithmic (Ln) values. The slope was calculated
using linear regression (time × Ln[glucose]) and multiplied by 100 to obtain the glucose decay
rate constant during the insulin tolerance test (kITT, %/min).

Insulin Decay
We determined the plasma insulin concentration in the Swiss mice that underwent an insulin
tolerance test. The insulin decay was measured as previously described [19] using blood sam-
ples from 0, 5, 15 30 and 60 min after insulin administration. The rate constant for insulin loss
(insulin decay) was calculated by converting the insulin measurements to natural logarithmic
(Ln) values and calculating the slope using linear regression (time × Ln[insulin]); the results
were multiplied by 100 to obtain the insulin decay rate constant (%/min).

C-Peptide concentration and Insulin/C-Peptide ratio quantification
We determined the plasma C-Peptide concentration in the Swiss mice that underwent a glu-
cose tolerance test. Blood samples were collected before glucose administration (0’) as well as
15’, 30’ and 60’ after. C-Peptide and insulin were measured from the same plasma sample.
C-Peptide was evaluated using Rat/Mouse C-Peptide 2 ELISA Kit fromMilipore (Cat. #
EZRMCP2-21K) and insulin was assessed by RIA.

Statistical analyses
Point-to-point comparisons were performed using Student’s t-test. For diferrent time points
on the same animal, we applied the repeated measures anova. The groups were compared by
t-test using GraphPad Origin 9.0 software. The results were considered significant if p<0.05.

Results

Metabolic variables
We double-checked the endurance training efficiency. First, by assessing physical and metabol-
ic variables, we discovered that endurance training reduced total body weight, weight gain,
perigonadal fat, and retroperitoneal fat and increased the time to exhaustion, speed, citrate
synthase activity and VO2 max. Second, by evaluating glucose homeostasis-related parameters,
we observed that the fasting and non-fasting plasma insulin and glucose levels were lower in
the trained mice (Table 1).

Glucose tolerance and plasma insulin dynamics in Swiss mice
Endurance training improved glucose tolerance (Fig. 1A and Fig. 1B) and reduced insulin con-
centration during the glucose tolerance test (Fig. 1C), but there was not a concomitant change
in the overall (60 min) insulin concentration during this test (Fig. 1D). Therefore, endurance
training altered insulin dynamics such that there was a lower insulin secretion peak at 15 min
and a higher insulin concentration thereafter (Fig. 1C). C-Peptide (Fig. 1E) plasma
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concentrations were lower in trained mice at 15 min, but insulin concentration was higher in
trained mice at 60 min and similar in 30 min, while the C-Peptide concentration remained
lower in trained mice throughout the entire experiment (Fig. 1F), resulting in an overall re-
duced C-Peptide/insulin ratio in trained mice (Fig. 1G and Fig. 1H).

Insulin secretion and total insulin content
Our results demonstrated that endurance training improved glucose tolerance and insulin sen-
sitivity in mice. A potential mechanism for this effect is a training-induced improvement in in-
sulin signaling in the liver and the skeletal muscle, but this does not explain the observed
changes in the plasma insulin concentration and the insulin dynamics.

To determine the origin of these physiological alterations, we analyzed the GSIS in islets iso-
lated from both control and trained mice. Endurance training reduced insulin secretion at sub-
stimulatory (2.8 mmol/l) and super-stimulatory (16.7 mmol/l) glucose concentrations and low-
ered the amount of insulin in the pancreatic islets (Fig. 2).

Insulin sensitivity and decay in Swiss mice
Training-induced changes in glucose tolerance and insulin dynamics could be related to vari-
ous factors, including insulin secretion, peripheral insulin sensitivity and insulin degradation.
Insulin sensitivity was increased in trained Swiss mice as demonstrated by the lower insulin tol-
erance test (Fig. 3A and Fig. 3B) and the higher kITT (Fig. 3C). Endurance training reduced in-
sulin degradation (Fig. 3D) and the insulin decay rate (Fig. 3E), resulting in an increased AUC
of insulin during the 60 min experiment (Fig. 3F), suggesting a reduced insulin clearance in
trained mice.

Table 1. Metabolic variables of mice after endurance training.

VARIABLE CONTROL TRAINED

Fasted Insulin (pmol/l) 187.3±2.2 156.7±7.2*

Non-Fasted Insulin (pmol/l) 493.1±10.2 381.3±8.3*

Fasted Glucose (mmol/l) 7.76±0.50 6.21±0.41*

Non-Fasted Glucose (mmol/l) 10.1±0.21 8.41±0.45*

Fasted C-Peptide (pmol/l) 266.5±26.3 150.4±36.2*

Non-Fasted C-Peptide (pmol/l) 389.8±30.5 203.7±46.2*

Fasted Insulin/C-peptide ratio 0,78±0.18 1.11±0.51*

Non-Fasted Insulin/C-peptide ratio 1.04±0.14 1.79±0.24*

Body Weight (g) 39.8±1.02 36.4±0.51*

Weight Gain (g) 12±1.22 4.8±1.07*

Perigonadal Fat (% of Total Weight) 2.61±0.15 1.37±0.12*

Retroperitoneal Fat (% of Total Weight) 0.79±0.07 0.34±0.06*

Citrate Synthase Activity (μmol.min-1.μg of Protein-1) 0.28±0.06 0.41±0.06*

Training Effectiveness—Resistance (seconds) 225±14.2 390±25.1*

Training Effectiveness—Speed (km/h) 1.5±0.09 2.64±0.15*

VO2 max Pre-Training (ml.min-1.kg-1) 27.55±0.52 28.47±0.87

VO2 max Post-Training (ml.min-1.kg-1) 26.65±0.41 35.23±0.47*

The metabolic characteristics are presented for male Swiss mice after 4 weeks of endurance training. The

values are reported as the mean ± SEM and were compared using a t-test (n = 4-6/group).

*significantly different from control mice

doi:10.1371/journal.pone.0118809.t001
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Fig 1. Endurance training effects over glucose tolerance and insulin dynamics of mice. The blood
glucose (A) and plasma insulin (C) concentrations in 8 h-fasted, 28-day-old male Swiss mice 0, 15, 30, 45
and 60 min after the intraperitoneal injection of 1 g/kg glucose are presented for both the control (white
triangle) and the trained (black circle) groups. The area under the curve (AUC) for blood glucose (B) and
plasma insulin (D) is reported for 8 h-fasted, 28-day-old male Swiss mice after an intraperitoneal injection of
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Canonical (pIR and pAKT) and non-canonical (pCaMKII-pAMPK)
pathway activation in the liver and the skeletal muscle of Swiss mice
To evaluate the effects of endurance training on the canonical and non-canonical insulin path-
ways, we measured the phosphorylation of IR, AKT, CaMKII, AMPK and ACC in the liver and
the skeletal muscle of Swiss mice. Before organ extraction, mice received 1 IU/kg of insulin. In
the liver, training increased the phosphorylation of IR (Fig. 4A), AKT (Fig. 4B), CaMKII
(Fig. 4C), AMPK (Fig. 4D) and ACC (Fig. 4E). In the skeletal muscle, endurance training did
not affect the phosphorylation of IR (Fig. 4F) or AKT (Fig. 4G) but did increase the phosphory-
lation of CaMKII (Fig. 4H), AMPK (Fig. 4I) and ACC (Fig. 4J).

Liver and skeletal muscle IDE expression
We determined how endurance training reduced insulin degradation in vivo by evaluating IDE
expression in the liver and the skeletal muscle. Endurance training reduced the protein expres-
sion of IDE in the liver (Fig. 5A) and increased the amount of IDE protein in the skeletal mus-
cle (Fig. 5B).

Discussion
It is well established that three major processes control blood glucose through insulin: insulin
secretion (the ability of pancreatic islets to secrete adequate amount of insulin), insulin sensi-
tivity (the response of peripheral organs to insulin) and insulin clearance (the rate at which in-
sulin is removed from the plasma)[20].

1 g/kg glucose. The plasma concentration of C-Peptide (E) and C-Peptide AUC (F) as well as C-Peptide/
insulin ratio (G) and C-Peptide/insulin ratio AUC (H) in 8 h-fasted, 28-day-old male Swiss mice 0, 15, 30, and
60 min after the intraperitoneal injection of 1 g/kg glucose are presented for both the control (white triangle)
and the trained (black circle) groups. The values are presented as the mean ± SEM and were compared
using a repeated measures anova (n = 4-6/group). *significantly different from control mice (p<0.05)

doi:10.1371/journal.pone.0118809.g001

Fig 2. Endurance training effects over insulin secretion and content of pancreatic islets exposed to
increasing glucose concentration. The ex-vivo insulin secretion and the total insulin content were
measured in pancreatic islets that were isolated from control (white bars) and trained (black bars) 8-hour-
fasted, 28-day-old Swiss mice and then incubated for 1 h in the presence of 2.8 or 16.7 mmol/l glucose. The
values are presented as the mean ± SEM and were compared using a t-test (n = 8-12/group). *significantly
different from control mice, #significantly different from the 2.8 mmol/l glucose condition (p<0.05)

doi:10.1371/journal.pone.0118809.g002
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During and immediately after exercise, the increase in glucose uptake by the skeletal muscle
in healthy subjects is IR–AKT pathway independent [21] and involves AMPK activation [22],
the same process occurs in trained subjects, even in the rest period after the last session of exer-
cise [14]. During muscular contraction, the concentration of ATP in muscle is kept constant
whereas the AMP concentration increases and it’s related with the duration and intensity of ex-
ercise, increasing AMPK activity [23, 24]. The mechanism by which AMP may regulate AMPK
activity is not completely known. Upstream proteins as LKB1 and CAMKII might have a cru-
cial role in this context.

Here, we reported higher expression and phosphorylation of CAMKII and AMPK proteins
showing that our training protocol was effective to induce these molecular adaptations [14, 24,
25]. Despite the possible skeletal muscle and pancreas crosstalk [26, 27], the improved insulin
sensitivity does not directly justify the lower plasma insulin levels in the trained mice, so we
evaluated the insulin secretion from pancreatic islets and the hepatic insulin clearance, whose
combined effects could account for the plasma insulin dynamics observed.

Endurance training reduced GSIS in the isolated pancreatic islets, which reduced the degree
of insulinemia that was observed in the trained mice, but this effect is unlikely to completely ac-
count for the observed physiological differences. The islets from trained mice secreted ~50%
less insulin than did the control islets in response to sub- and supra-stimulatory glucose con-
centrations (Fig. 2). However, the plasma insulin concentration in fasted and non-fasted mice
was only ~25% lower (Table 1). After secretion, insulin is removed from the plasma by the liver
[20] in a process termed insulin clearance, which is altered in obesity [28] and models of type 2

Fig 3. Endurance training effects over insulin sensitivity and decay of mice. The ITT results and the blood glucose concentrations at 0, 5, 10, 15 and 30
min (A), the AUC for blood glucose (B), and the kITT (C) as well as the plasma insulin concentration at 0, 15, 30 and 60 min (D), the AUC of insulin for the
entire 60 min experiment (E) and the insulin decay over 60 min (F) after an intraperitoneal injection of 1 IU/kg insulin in non-fasted, 28-day-old male Swiss
mice are presented.

doi:10.1371/journal.pone.0118809.g003
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Fig 4. Endurance training effects over Canonical and Non-canonical insulin pathways in liver and
skeletal muscle of mice. Illustrated are the phosphorylation of IR (A), AKT (B), CaMKII (C), AMPK (D) and
ACC (E) in liver protein extracts and the phosphorylation of IR (F), AKT (G), CaMKII (H), AMPK (I) and ACC
(J) in skeletal muscle protein extracts from both control (white bars) and trained (black bars) non-fasted
28-day-old male Swiss mice after an intraperitoneal dose of 1 IU/kg insulin. The values are presented as the
mean ± SEM and were compared using a t-test (n = 4-6/group). *significantly different from control mice
(p<0.05).

doi:10.1371/journal.pone.0118809.g004
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diabetes [2, 29, 30]; the dysregulation of insulin clearance is commonly associated with obesity
[31, 32] and type 2 diabetes in humans [2, 33, 34].

It is the standard procedure in clinical practice to consider the plasma insulin levels as the
rough equivalent to insulin secreted by pancreatic islets β cells. Although this might be the
case in many instances, the two variables are hardly substitutes, because plasma insulin level is
the end result from the balance between pancreatic islets insulin secretion and liver insulin
clearance. Insulin is secreted together with a byproduct of its synthesis and processing, the
C-Peptide, in a 1:1 ratio, but despite having the same rate of secretion, C-Peptide in removed
from plasma at a severely lower rate than insulin, so that any change in the ratio of C-Peptide
to insulin in plasma is mainly subjacent to alterations in the rate of insulin removal, or insulin
clearance. Although it is not the gold standard methodology, the C-Peptide/Insulin plasma
ratio during GTT is a reliable widespread and accepted overall as an indicator of insulin clear-
ance [35–37].

The importance of insulin clearance in the exercise-induced modulation of glucose is un-
clear. In type 2 diabetes, insulin clearance is impaired and is associated with insulin resistance
and the loss of beta cell mass. However, it is not known whether this reduction is causative
and precedes the other symptoms [2, 29, 38] or is a compensatory mechanism that is activated
to ameliorate the effects of the reduced insulin secretion and the increased insulin resistance
[19, 39, 40].

Endurance training reduced insulin clearance, decay and AUC and increased peripheral in-
sulin sensitivity (Fig. 3), which were confirmed by the reduced C-Peptide/insulin ratio during
GTT (Fig. 1). This indicates that reduced insulin clearance is a compensatory mechanism that
allows the organism to overcome insulin resistance, which attenuates the beta cell overload and
increases their survival, thus delaying and/or ameliorating type 2 diabetes.

Intracellular insulin degradation depends on IDE activity [20, 41]. IDE is a 110 kDa zinc-de-
pendent metalloproteinase that is expressed in most insulin-responsive cells and is most highly
expressed in hepatocytes. Given the importance of insulin clearance in type 2 diabetes and the
role of IDE in its regulation, it is not surprising that alterations in the expression and the activi-
ty of IDE are closely related to the onset and development of type 2 diabetes [34, 41]. Therefore,

Fig 5. Endurance training effects IDE expression in liver and skeletal muscle. The expression of IDE in
protein extracts from the liver (A) and the skeletal muscle (B) of control (white bars) and trained (black bars)
non-fasted, 28-day-old male Swiss mice is depicted. The values are presented as the mean ± SEM and were
compared using a t-test (n = 8-12/group) *significantly different from control mice (p<0.05)

doi:10.1371/journal.pone.0118809.g005
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we evaluated whether endurance training controlled insulin degradation by measuring IDE ex-
pression in the liver and the skeletal muscle. In trained mice, the expression of IDE was de-
creased in the liver (Fig. 5A) and increased in the skeletal muscle (Fig. 5B). The central role of
hepatocytes in insulin degradation [20, 42, 43] and the reduced expression of IDE in the liver
contribute to the decreased insulin clearance in the trained mice. Although IDE expression can
be considered the main factor for its activity, some factors are known to affect its activity, such
as ATP levels [44] or even Redox agents [45, 46], which does not detract from our observations
about IDE expression importance to the process of insulin clearance, but are important to
note regardless.

The mechanism by which IDE expression is increased in the skeletal muscle is more com-
plex. We hypothesize that insulin degradation is elevated in skeletal muscle to maintain ade-
quate glucose uptake in an environment of increased insulin sensitivity; in this way, glucose
levels are maintained independently of other organs, where insulin remains essential for
glucose uptake.

In contrast to skeletal muscle, the canonical pathway that is responsible for the boost in glu-
cose uptake was increased in the liver. We propose that the difference in the insulin response
between the liver and the skeletal muscle of trained mice is due to the opposite effects of train-
ing on the expression of IDE in these two organs. Inhibiting IDE improves insulin sensitivity
through increased phosphorylation of IR [47]. CNTF, an anti-obesity, anti-diabetogenic cyto-
kine [16, 18, 48–50], promotes the same effects in mice: reduced IDE expression in the liver, re-
duced insulin clearance, and improved insulin sensitivity through IR-AKT phosphorylation.

Therefore, the increased expression of IDE in the skeletal muscle may compensate for any
increase in IR-AKT phosphorylation that is induced by the training exercise, thus resulting in
the unaltered state that we observed.

In the mice, exercise reduced insulin secretion and degradation, which helped maintain nor-
moglycemia without taxing the pancreatic beta cells. Inhibiting IDE expression in hepatocytes
increases IR phosphorylation and insulin sensitivity [47].

The critical role of exercise in the prevention and the management of type 2 diabetes is un-
disputed. Lifestyle interventions, including diet and physical activity, reduce the incidence of
diabetes in 60% of subjects with impaired glucose tolerance [51]. In addition to its effect on in-
sulin sensitivity, exercise improves hemoglobin A1C, maximal oxygen consumption (VO2

max) and muscle microvascular perfusion and reduces body fat [12]. The latter is particularly
important because it has been estimated that 80% of the newly diagnosed cases of type 2 diabe-
tes are due to obesity [52, 53].

In summary, our results demonstrated that endurance training reduced insulin clearance in
mice, probably by downregulating the expression of IDE in the liver, effects that were accompa-
nied by increased insulin sensitivity, thereby revealing another beneficial effect of physical ex-
ercise on glycemic control.
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