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Abstract
Mathematical models of the cardiovascular system and of cerebral autoregulation (CAR)

have been employed for several years in order to describe the time course of pressures and

flows changes subsequent to postural changes. The assessment of the degree of efficiency

of cerebral auto regulation has indeed importance in the prognosis of such conditions as

cerebro-vascular accidents or Alzheimer. In the quest for a simple but realistic mathematical

description of cardiovascular control, which may be fitted onto non-invasive experimental

observations after postural changes, the present work proposes a first version of an empiri-

cal Stochastic Delay Differential Equations (SDDEs) model. The model consists of a total of

four SDDEs and two ancillary algebraic equations, incorporates four distinct delayed con-

trols from the brain onto different components of the circulation, and is able to accurately

capture the time course of mean arterial pressure and cerebral blood flow velocity signals,

reproducing observed auto-correlated error around the expected drift.

Introduction
Autoregulation of blood flow denotes the intrinsic ability of an organ or a vascular bed to
maintain a constant perfusion in the face of blood pressure changes [1]}. In particular, cerebral
autoregulation (CAR) denotes the ability of the circulation to adapt to variations in hydrostatic
pressures by means of compensating changes in heart rate, peripheral vascular resistances and
venous capacitance, so as to maintain constant and adequate perfusion to the brain.

For the assessment and prognosis of the progression of some diseases, such as cerebrovascu-
lar accidents, Alzheimer and others [2–9], the evaluation of the adequacy of cerebral autoregu-
lation provides important information. Compromised cerebral hemodynamics, such as
reduced vasodilation, reaction to CO2 and other stimuli, may in fact, be related to reduced
post-stenotic perfusion pressure.

Since the early 1990’s several scholars [10–19] have analyzed mathematically the vascular
compensation mechanisms responsible for the regulation of cerebral blood flow.

A comprehensive, deterministic mechanistic model of the interplay of cerebral blood flow,
cerebral blood volume, intracranial pressures and regulatory mechanisms, had been proposed
by Ursino and Lodi [13]. This model, using measured arterial pressure (AP) as driving or input
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function, proved adequate to reproduce the observed cerebral blood flow velocity (CBFV) pro-
file in human subjects undergoing transition from sitting- to—standing [20].

The Ursino-Lodi model was subsequently used [21] to analyze non-invasive measurements
of cerebral blood flow velocity and arterial blood pressure on a healthy young subject undergo-
ing postural changes. The Ursino-Lodi model was also used [21] to study variations in cerebral
autoregulation between populations, even though the difficulty in estimating the many model
parameters from non-invasive measurements of cerebral blood flow velocity and arterial blood
pressure was underscored.

The first major limitation of this approach is that the time course of arterial pressure is sim-
ply taken as input function (thereby not explaining the determinants of the variations of arteri-
al pressure itself) and so the time course of arterial pressure is not reproduced from hypotheses
on the hemodynamic changes induced by the orthostatism. The second limitation is that the
identification of the adequacy of cerebral autoregulation is difficult in a given single patient, be-
cause a mechanistic model requires many free parameters to be estimated from data and this
limits the clinical applicability of the method. The third limitation is the inadequacy of the de-
terministic modeling of pressure and flow variables in capturing their irregular variations over
time, produced by accidental muscle contractions, station adjustments, hormonal and neuro-
logical oscillations etc.

Following the same approach of Ursino and Lodi, Olufsen et al. [22] constructed a model
that proposes to explain the morphology of both the arterial pressure signal and that of the cor-
responding cerebral blood flow velocity. The expected new (apparent) steady state reached
after standing was correctly reproduced by this model. However, these authors pointed out
that the predicted drop in cerebral blood flow velocity after standing was substantially smaller
than observed. This shortcoming was mitigated by the same authors in a subsequent work, in
which they detailed the construction of a comprehensive eleven-compartment model, based on
a reconstruction of the flows and resistances in idealized, representative segments of the circu-
lation. This improved model captured satisfactorily the behavior of the observed signals, even
in the transient phase before establishment of a new equilibrium. The three most important
model’s characteristics [18] are: the inclusion of non linear functions describing resistances of
the large systemic arteries as functions of pressure; the inclusion of autonomic regulation; and
the inclusion of an empirical model describing the dynamics of cerebral vascular resistance.

The plausible hypotheses for autonomic and cerebrovascular regulation on which the model
is based, allow a good quantitative match with physiological observations, even if this match is
obtained through a rather complex set of equations and parameters.

Chiu et al. [23] and Liau et al. [24] focused their studies on diabetic patients and applied
time-domain cross-correlation as a technique to assess the relationship between blood pressure
and cerebral blood flow velocity signals after postural changes. Liau et al. [25] extended the ap-
plication of the same techniques to stroke patients and showed that mean arterial blood pres-
sure changes in response to postural challenges were reduced in stroke patients.

The urgency of devising protocols to validate the reproducibility and ranges of the dynamic
parameters extracted from these models, and the importance of developing multivariate mod-
els that take into account time-varying parameters was stressed by Panerai et al. [26].

Very recently a new empirical model has been presented in [27]. The model aims at represent-
ing the viscoelastic response of tissues (blood vessels, cerebral arteries. . .), which exhibit a contin-
uous relaxation in response to stress and in the specific case to postural change from sitting to
standing. The presented model is a mechanical analog model for predicting the CBFV in response
to AP changes, incorporated in the model as an input function. While the strength of the model
derives from its simplicity (it has only four parameters to be estimated), its major shortcoming
lies in the lack of representing the physiological mechanisms intervening during the experiment.

Cerebral Autoregulation Modeling

PLOS ONE | DOI:10.1371/journal.pone.0118456 April 1, 2015 2 / 21



With the above considerations in mind, a simpler model (if it could correctly reproduce ob-
servations) would clearly be of interest in the quest for practical assessment of the efficiency of
CAR. At the same time, evident autocorrelated departures from the expected, smooth signal,
indicate that stochastic elements are involved (stemming in all likelihood from moment-to-
moment variations in muscle activity, hormonal concentrations, sympathetic/parasympathetic
tone and other influences). Finally, it would therefore also be of interest to consider more pro-
longed variations, such as the likely continuing, slow increase in arterial pressure, after fast
compensation, instead of assuming attainment of the Steady State within a few tens of seconds
after standing.

The goal of the present work is therefore to describe a simple stochastic delay differential
equations model of cardiovascular regulation during toilt-table or sitting-to-standing maneu-
vers. We aim to show that this model is able to reliably reproduce the time course of mean AP
and CBFV time courses after changes in posture, inclusive of some auto-correlated oscillations
around the expected signals.

Materials and Methods

Model description
In the present section a stochastic delay differential equations (SDDE’s) model for cerebral
autoregulation is proposed. The model is composed of four compartments and each one of the
four equations (1–4) represents one of the main components of overall cerebral regulation. The
stochastic component of the model appears in Equation (1).

The model equations are as follows:

dCðtÞ ¼ ðkcðCtgt � Cmax
D sinðrÞÞ � kxca~B1ðtÞCðtÞÞdt þ sdWðtÞ ð1Þ

dAðtÞ
dt

¼ karchHðtÞCðtÞRðtÞ � kxaAðtÞ ð2Þ

dHðtÞ
dt

¼ �kha~B3ðtÞHðtÞ þ kh ð3Þ

dFðtÞ
dt

¼ kmax
f

BðtÞn
Bn
50 þ BðtÞn � kxf ~FðtÞ ð4Þ

with the initial conditions C(0) = C0, A(0) = A0, H(0) = H0, F(0) = F0. C (cmH20) is central ve-
nous pressure, A (mmHg) is arterial blood pressure, H (Hz) represents heart rate (as an index
of sympathetic activity), and F (mL/sec) is cerebral blood flow velocity.

Moreover, two algebraically defined variables are introduced: the variable B (mmHg), repre-
senting brain arterial pressure, and variable R (mmHg/mL/sec), representing Peripheral Vascu-

lar Resistances as a function of brain arterial pressure ~B. R is modeled as a decreasing function

of ~B in order to represent the mechanism by which, if brain arterial pressure increases, periph-
eral arterioles dilate and peripheral resistance falls:

RðtÞ ¼ Rinf þ ðRmax � RinfÞe�l~B2 ð5Þ
Therefore, in the present formulation, Peripheral Resistance represents one of the control

mechanisms of the cerebral autoregulation system, driven, with delay, by cerebral pressure.
Brain arterial perfusion pressure B differs from arterial blood pressure A by a pressure delta

determined by the distance from the head to the heart (dist), multiplied by the sine of the tilt
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angle, that is the radians upright from the supine position:

BðtÞ ¼ AðtÞ � aðrðtÞÞ ð6Þ

and

Bð0Þ ¼ B0 ¼ Að0Þ � aðrð0ÞÞ

with

aðrÞ ¼ dist � sinðrðtÞÞ=1:36 ð7Þ

where ρ(t) is the tilt angle at time t. In the present formulation we have set:

rðtÞ ¼
(

r0; t < t0

rend; t � t0
ð8Þ

Notice that the model, as formulated, can be used to fit data from generic tilt-table maneu-
vers (with parameter ρ in eq. 1 taking values in [0, π/2], depending on the final tilt-angle) and
also sitting-to-standing maneuvers (with the parameter ρ = π /2 or, which is the same, with sin
(ρ) = 1, expressing a simple Heaviside step from one position to the other). In the following we
will describe the (continuous) geometry relative to tilt-table experiments, since sitting-to stand-
ing experiments can be simply represented as theoretically instantaneous transitions between
two positions, arbitrarily indexed by sin(ρ) = 0 and sin(ρ) = 1.

The delta pressure in cmH2O from the head to heart is converted to mmHg dividing by the
conversion factor 1.36.

The first equation (Equation 1) describes the variation of central venous pressure (CVP, in
the model indicated with C) over time. In order to allow the heart to pump sufficient blood to
maintain cerebral perfusion pressure, and hence cerebral blood flow, it is supposed that com-
pensating mechanisms act to maintain a sufficient level of CVP and ventricular filling. CVP is
at steady state when the tendencies to increase CVP, necessary to maintain cerebral perfusion
pressure, and to decrease CVP, when a sufficient level of brain perfusion pressure is
obtained, equilibrate.

For ρ = 0 the subject lies supine and the ‘elastic’ CVP target value is ctrgt, but when the sub-
ject undergoes a head-up tilt experiment, ρ increases proportionally to the tilt angle and the
central venous pressure drops by a hydrostatic factor equal to Cmax

D sinðrÞ. After the maneuver,
CVP increases again: the gain in CVP is due to both reduced loss and concurrent drop of sup-
pressing (delayed) brain perfusion pressure (the multiplicative second term). After postural
change the control mechanism restores CVP, allowing cardiac filling to be brought back to nor-
mal again. The system which drives CVP trend is subject to random fluctuations due to differ-
ent mechanisms such as muscular contraction, respiration, deglutition and other uncontrolled
factors, represented in the model by the random system noise σW(t).

The second equation (Equation 2) describes variations of arterial blood pressure. These vari-
ations depend linearly on heart rate H, on CVP (these two multiplied together determine cardi-
ac output) and on peripheral resistances R.

The third equation (Equation 3) describes the equilibrium between spontaneous increase
and (delayed) brain perfusion pressure-dependent suppression of heart rate H. In fact, when
the brain enjoys abundant perfusion, sympathetic tone may decrease, and heart rate may also
correspondingly decreases [28].

The fourth equation (Equation 4) describes variations of cerebral blood flow velocity F as
depending on current brain perfusion pressure B according to a Michaelis-Menten relation-
ship: cerebral flow increases with increasing B, reaching a maximum level kmax

f (in order to
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represent self-protecting cerebral vasoconstriction mechanisms, which may be missing in some
pathological conditions). The parameter B50 represents instead the brain perfusion pressure
level at which a half-maximal rate of flow increase is obtained. The spontaneous decay of the
flow is represented by the second term on the right hand of the equation, where the variable F

is delayed, ~F .
All the delayed variables in the model appear with a tilde hat on the top of the variable. In

the present model all the considered delays are distributed: the influence of the variable on the
dynamics of the system at a certain time t is based on previous values assumed by the variable
until time t, weighted with a delay kernel function according to the following definition (Y indi-
cates a generic variable):

~Y ¼
Z 1

0

oðsÞYðt � sÞds ð9Þ

with oðsÞ ¼ a2se�as and
Z 1

0

oðsÞds ¼ 1:

The exponential delay kernel ω(s) is parameterized by the parameter α, which is greater
than zero: for α large, recent values carry more weight. For each of the delayed variables con-

sidered in the model (~B1ðtÞ,~B2ðtÞ,~B3ðtÞ,~FðtÞ) a different parameter α of the kernel function
is considered.

Fig. 1 shows the schematic representation of the model.
The system admits a continuum of different equilibria, indexed by ρ, when the model drift

(that is the deterministic component only) is considered. Each of the equations have two steady
state conditions, before the maneuver and at infinite time after its completion:

A0 ¼ R0C0H0karch=kxa ð10Þ

Aend ¼ ðkarchHendCendRendÞ=kxa ð11Þ

B0 ¼ A0 � a r t0ð Þð Þ ¼ A0 �
dist
1:36

sin 0ð Þ ¼ A0 ð12Þ

Bend ¼ Aend � a r tendð Þð Þ ¼ Aend �
dist
1:36

sin r tendð Þð Þ ¼ Aend �
dist
1:36

ð13Þ

Hend ¼ ðA0H0Þ
�

Aend �
dist
1:36

� �
sin rendð Þ

� �
ð14Þ

F0 ¼
kmax
f

kxf

Bn
0

Bn
50 þ Bn

0

ð15Þ

Fend ¼ F0

ðBn
50 þ Bn

0ÞBend

ðBn
50 þ Bn

endÞBn
0

ð16Þ

Rend ¼ Rinf þ Rmax � Rinfð Þe�l Aend� dist
1:36ð Þsin rendð Þð Þ ð17Þ

While H0 and R0 are supposed to be assigned (fixed).
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From the steady state conditions the following parameters are also determined:

kha ¼
kh

A0H0

ð18Þ

Ctgt ¼
kxcaB0C0

kc
ð19Þ

Cmax
D ¼ Ctgt �

kxca
kc

BendCend ð20Þ

Rmax¼ ðkxaA0e
lA0Þ=ðkarchH0C0Þ � elA0Rinfð1� e�lA0Þ ð21Þ

Table 1 reports the model parameters along with their description, units of measurement
and values used in the simulations.

The model was implemented in Matlab using a fixed-step, fourth-order Runge-Kutta nu-
merical integration scheme [29].

Qualitative analysis of the model solutions
The present deterministic qualitative analysis refers to the drift part of model (1–8) only (with-
out the additional stochastic term σdW in (Eq. 1)).

The following subsections investigate the conditions for which the solutions are positive
and the model is persistent, report the proof that a unique positive equilibrium point exists and
provide asymptotic local stability analysis.

Positivity of the model solutions and model persistence.
Theorem 1. The system (1), (2), (3) and (4) admits positive solutions for any positive initial

condition.
Proof. Let C(0)>0. According to the continuity of the solution of a differential equation,

C(t) would become non-positive if there existed a t�>0 such that C(t�) = 0, C(t)>0 for any

Fig 1. Block diagram of the ESDDeCAR-02model. Blocks in continuous lines represent the model state
variables; blocks in dashed lines represent the two defined algebraic variables.

doi:10.1371/journal.pone.0118456.g001
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0�t<t�, and dC
dt

��
t¼t� � 0, which cannot be, because under these hypotheses:

dC
dt

����
t¼t�

¼ kcðCtgt � Cmax
D sinðrÞÞ � kxca~B1ðt�ÞCðt�Þ ¼ kcðCtgt � Cmax

D sinðrÞÞ ¼(
kcCtgt > 0 if t� < t0

kcðCtgt � Cmax
D Þ ¼ kxca

kc
BendCend > 0 if t� � t0

ð22Þ

This proves that C(t)>0 (it never vanishes and it is always positive). Similarly it can be prov-
en that, ifH(0)>0, also H(t) never vanishes and is always positive: let H(0)>0 and assume that

Table 1. List and description of parameters values used in the simulation.

Parameter Unit of
Measurements

Description Value

kc /sec Rate of central venous pressure increase 1

Ctgt cmH20 Central venous pressure target value determined

Cmax
D cmH20 Proportional constant drop of central venous pressure target following the tilt experiment determined

kxca /sec/mmHg Central venous pressure decrease rate per mmHg of brain arterial pressure 0.01

ρ radians tilt angle 0,π/2

dist cm Distance between head and heart 30

C0 cmH20 Central venous pressure value before the tilt experiment 8

Cend cmH20 Central venous pressure value at equilibrium after the tilt experiment 4

karch mL/cmH2O/bpm Third-order arterial pressure increase rate 0.2

kxa /sec Arterial pressure decrease rate 0.5

A0 mmHg Arterial pressure value before the tilt experiment determined

Aend mmHg Arterial pressure value at equilibrium after the tilt experiment determined

kha /sec/mmHg Heart rate decrease rate per mmHg of brain arterial pressure determined

kh bpm/sec Spontaneous increase of heart rate 0.05

H0 bpm Heart rate value before the tilt experiment 60

Hend bpm Heart rate value at equilibrium after the tilt experiment determined

kmax
f mL/sec/sec Maximal increase in cerebral blood flow velocity 28.9

kxf /sec Cerebral blood flow velocity decrease rate 0.5

F0 mL/sec Cerebral blood flow velocity value before the tilt experiment determined

Fend mL/sec Cerebral blood flow velocity value at equilibrium after the tilt experiment determined

ν # Rapidity with which cerebral blood flow velocity increase reaches its maximum with increasing B 1

B50 mmHg Brain arterial pressure level at which an half-maximal increment of cerebral blood flow velocity is
obtained

40

B0 mmHg Brain arterial pressure value before the tilt experiment determined

Bend mmHg Brain arterial pressure value at equilibrium after the tilt experiment determined

Rinf mmHg/mL/sec Minimum value obtained for peripheral vascular resistance 0

Rmax mmHg/mL/sec Maximum value obtained for peripheral vascular resistance determined

λ /mmHg Rate of decay of peripheral vascular resistance with increasing brain arterial pressure 0.035

R0 mmHg/mL/sec Peripheral vascular resistance value before the tilt experiment 0.47

Rend mmHg/mL/sec Peripheral vascular resistance value at equilibrium after the tilt experiment determined

αi /sec Delay kernel rate constant for delay kernel i 0.01,0.1,0.2,0.6

t0 sec Time of tilt maneuver 30

σ cmH20/sec
1/2 CVP volatility 0.5

doi:10.1371/journal.pone.0118456.t001
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9t�>0 such thatH(t�) = 0 andH(t)>0 for any 0� t<t�. Then it cannot be that dH
dt

��
t¼t� � 0,

because:

dH
dt

����
t¼t�

¼ �kha~B3 t�ð ÞH t�ð Þ þ kh ¼ kh > 0: ð23Þ

For (equation 2) let A(0)>0. A(t) would become non-positive if there existed a t�>0 such

that A(t�)>0, for any 0� t<t�, and dA
dt

��
t¼t� � 0, which cannot be, because in this case:

dA
dt

����
t¼t�

¼ karchH t�ð ÞC t�ð ÞR t�ð Þ � kxaA t�ð Þ ¼ karchH t�ð ÞC t�ð ÞR t�ð Þ > 0: ð24Þ

This proves that A(t)> 0.
For (equation 3) let F(0)>0. Again,F(t) would become non-positive if there existed a t�>0

such that F(t�) = 0, F(t)>0 for any 0� t<t�, and dF
dt

��
t¼t� � 0.

dF
dt

����
t¼t�

¼ kmax
f

Bðt�Þn
Bn
50 þ Bðt�Þn � kxf ~Fðt�Þ

¼
kmax
f

Aðt�Þn
Bn
50 þ Aðt�Þn � kxf ~Fðt�Þ > 0 if t� < t0

kmax
f

ðAðt�Þ � dist=1:36Þn
Bn
50 þ ðAðt�Þ � dist=1:36Þn � kxf ~Fðt�Þ > 0 if t� � t0

ð25Þ

8>>><
>>>:

At equilibrium, ~Fðt�Þ ¼ Fðt�Þ ¼ 0, from which it follows that

dF
dt

��
t¼t� ¼

kmax
f

Aðt�Þn
Bn
50 þ Aðt�Þn if t� < t0

kmax
f

ðAðt�Þ � dist=1:36Þn
Bn
50 þ ðAðt�Þ � dist=1:36Þn if t� � t0

;

8>>><
>>>:

since A(t�)–dist/1.36> 0 due to physi-

ological considerations (A(t) is larger than 29 mmHg in all humans still alive). This means that
at equilibrium F(t) is always strictly positive.

In the transient, the behavior of F(t) depends on ~Fðt�Þ. Since the analytic investigation of
the conditions, for which the positivity of F(t) always holds, is very cumbersome, a numerical
exploration of the behavior of F(t), as depending on a range of values of the parameters αF and
Ro, has been performed.

Fig. 2 show the behavior of the minimum of the cerebral blood flow velocity time course
over the duration of the experiment. A region of the plain is explored, determined by a range of
values of αF from 0.1 to 1.5 and by a range of R0 from 0.1 to 1.5 (mmHg/mL/sec). The color
coding shows with darker color smaller but positive values of themin(F), while white denotes
negative values of CBFV, which are of course physiologically unacceptable.

Theorem 2. The system of equations (1–4) is persistent.
Proof. Recall that a model is persistent if there exists a pair of positive real numbers (m, M)

such that:

9 �t : 0 < m < XiðtÞ < M < þ1; 8t � �t ; ð26Þ

Cerebral Autoregulation Modeling
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for each component Xi of the state vector. Denote:

Cm ¼ liminf t!þ1CðtÞ; CM ¼ limsupt!þ1CðtÞ;
Am ¼ liminf t!þ1AðtÞ; AM ¼ limsupt!þ1AðtÞ;
Hm ¼ liminf t!þ1HðtÞ; HM ¼ limsupt!þ1HðtÞ;
Fm ¼ liminf t!þ1FðtÞ; FM ¼ limsupt!þ1FðtÞ:

The proof is achieved by proving the following eight statements:

CM < þ1; Cm > 0;

AM < þ1; Am > 0;

HM < þ1; Hm > 0;

FM < þ1; Fm > 0:

Step 1. In order to show the boundedness of the evolution of central venous pressure, as-
sume that CM = +1

Since C is by definition differentiable and since CM = limsupt!+1, we can define a sequence
of time points {tn} such that:

i) tn!+1 as n!+1
ii) C(tn)!+1 as n!+1
iii)

dCðtÞ
dt

jt¼tn
> 0 8tn ð27Þ

Fig 2. Behavior of the minimum of the cerebral blood flow velocity (CBFV) trend over time varying
parameters αF andR0.White region represents negative (unacceptable) values of the minimum, graded
colored region represents the (positive) value of the minimum of the CBFV over the perturbation time interval.

doi:10.1371/journal.pone.0118456.g002
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If we consider (equation 1) at each of time points tn, we find that dC
dt

��
t¼tn

¼
kc Ctgt � Cmax

D sin rð Þ
� �

� kxcaB1 tnð ÞC tnð Þ ! �1 which is a contradiction, so that CM < +1.

Step 2. In order to show the boundedness of the evolution of arterial blood pressure, heart
rate, cerebral blood flow velocity, assume that AM =HM = FM = +1. From the same consider-
ations as in (27) it should be:

A(tn)! +1,H(tn)! +1,F(tn)! +1 and dA
dt

��
t¼tn

> 0; dH
dt

��
t¼tn

> 0; dF
dt

��
t¼tn

> 0 8tn.
However:

dA
dt

����
t¼tn

¼ karchHðtnÞCðtnÞRðtnÞ � kxaAðtnÞ ! �1;

dH
dt

����
t¼tn

¼ �kha~B3ðtnÞHðtnÞ þ kh ! �1;

dF
dt

����
t¼tn

¼ kmax
f

BðtnÞn
Bn
50 þ BðtnÞn

� kxf ~FðtnÞ ! �1;

which are contradictions, so that AM < +1, HM < +1,FM< +1.
Step 3. From Step 1, it follows that Cm � CM < +1. Since C is by definition differentiable

and since Cm liminft!+1C(t), we can define a sequence of time points {tn} such that:

i) tn! +1 as n! +1
ii) C(tn)!Cm as n! +1
iii) lim

n!þ1
dCðtÞ
dt jt¼tn

¼ 0 8tn

which means:

0 ¼ lim
n!1

½kcðCtgt � Cmax
D sinðrÞÞ � kxcaBðtnÞCðtnÞ� � ðkcðCtgt � Cmax

D sinðrÞÞ � kxcaðAM � aðrÞÞCmðtÞÞ )
kxcaðAM � aðrÞÞCm � kcðCtgt � Cmax

D sinðrÞÞ
ð28Þ

According to inequality (28), Cm>0 because

Cm >
kcðCtgt�Cmax

D
sinðrÞÞ

kxcaðAM�aðrÞÞ ¼ BendCend=ðAM � aðrÞÞ > 0

Step 4. From Step 2, it follows thatHm � HM <+1, Am� AM <+1 and. Fm� FM <+1
From the same considerations as in step 3 it follows that, for each state variable H, A and F, it is
possible to define a sequence of time points {tnH}{tnA} and {tnF} such that:

tnH ! þ1 as nH ! þ1HðtnH Þ ! Hm as nH ! þ1
tnA ! þ1 as nA ! þ1AðtnAÞ ! Am as nA ! þ1
tnF ! þ1 as nF ! þ1FðtnF Þ ! Fm as nF ! þ1:
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and

lim
n!þ1

dHðtÞ
dt

����
t¼tnH

¼ 0; 8tnH

lim
n!þ1

dAðtÞ
dt

����
t¼tnA

¼ 0; 8tnA

lim
n!þ1

dFðtÞ
dt

����
t¼tnF

¼ 0; 8tnF

which means:

0 ¼ lim
nH!1

ð�khaB3ðtnH ÞHðtnH Þ þ khÞ � �khaðAM � aðrÞÞHm þ kh ) Hm � kh=khaðAM � aðrÞÞ > 0;

0 ¼ lim
nA!1

ðkarchHðtnAÞCðtnAÞRðtnAÞ � kxaAðtÞÞ � karchHmCmRðtnÞ � kxaAm ) Am � karchHmCmRðtnÞ
kxa

> 0;

0 ¼ lim
nF!1

kmax
f

BðtnF Þ
n

Bn
50 þ BðtnF Þ

n � kxf FðtnF Þ
 !

� kmax
f

ðAm � aðrÞÞn
Bn
50 þ ðAm � aðrÞÞn � kxf Fm ) Fm � kmax

f

kxf

ðAm � aðrÞÞn
Bn
50 þ ðAm � aðrÞÞn :

Existence of positive equilibrium points. It is shown here that each equation of the
model (1–4) admits positive equilibrium points over a set indexed by ρ.

Theorem 3. System (1–4) has a unique positive equilibrium point for each ρ.
As derived above, for t = 0 (a(ρ(t)) = 0 the equilibrium point is given by (C0,A0,H0,F0), and

for t = tend (a(ρend) = 1) the equilibrium point is given by (Cend,Aend,Hend,Fend).
For t6¼0 and t 6¼tend the equilibrium points of (1–4) satisfy the following algebraic equations:

kcðCtgt � Cmax
D sinðrÞÞ � kxcaBeCe ¼ 0 ð29Þ

karchHeCeRe � kxaAe ¼ 0 ð30Þ

�khaBeHe þ kh ¼ 0 ð31Þ

kmax
f

Be
n

Bn
50 þ Be

n
� kxf Fe ¼ 0 ð32Þ
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from which it follows that:

Ce ¼
kcðCtgt � Cmax

D sinðrÞÞ
kxcaðAe � aðrÞÞ ð33Þ

He ¼
kh

khaðAe � aðrÞÞ ð34Þ

Fe ¼
kmax
f ðAe � aðrÞÞn

kxf ðBn
50ðAe � aðrÞÞÞn ð35Þ

Ae ¼
karch
kxa

HeCeRe ð36Þ

Be ¼ Ae � aðrÞ ð37Þ

Re ¼ Rinf þ ðRmax � RinfÞe�lðAe�aðrÞÞ ð38Þ

Substituting (33–35) and (37–38) in (36):

φ Aeð Þ ¼ �A3
e þ 2A2

e a rð Þ � AaðrÞ2 þ karchkhkcðCtgt � Cmax
D sinðrÞÞ

khakxcakxa
Rmax � Rinfð Þe�lðAe�aðrÞÞ þ Rinf

� 	 ¼ 0:

Notice that

φ 0ð Þ ¼ karchkhkcðCtgt � Cmax
D sinðrÞÞ

khakxcakxa
� Rmax � Rinfð Þe�lðAe�aðrÞÞ þ Rinf

� 	
> 0

and

dφ
dA

¼ �3A2 þ 4Aa rð Þ � aðrÞ2 þ�l
karchkhkcðCtgt � Cmax

D sinðrÞÞ
khakxcakxa

� Rmax � Rinfð Þe�lðA�aðrÞÞ < 0;

8A >
4

3
a rð Þ:

This condition is satisfied 8ρ(t), in fact

amax ¼ a rmax tð Þð Þ ¼ dist � sin p
2

� 	
=1:36 � 22 ) 4

3
amax � 29 and due again to physiological

considerations it is always A	29mmHg.
From the above it follows that φ (
) is a decreasing function for positive argument, starting

from a positive value at zero, and hence that it has at most one positive root. The existence of
such a root is ensured by the limit:

lim
A!1

φ Að Þ ¼ lim
a!1

�A3 þ 4A2a� Aa2ð Þ þ karchkhkcðCtgt � Cmax
D sinðrÞÞ

khakxcakxa
Rmax � Rinfð Þe�lðA�aðrÞÞ þ Rinf

� 	� �
¼ �1:

Asymptotic local stability analysis. In order to study the local stability of the equilibrium
points (indexed by ρ), the system (1)-(4) is linearized around its generic equilibrium point (Ce,

Ae, He, Fe)
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Adopting a change of variable, the delayed variable ~Fcan be written as:

~F ¼ a2F

Zþ1

0

sFðt � sÞe�aF sds ¼ a2F

Z t

�1

ðt � yÞFðyÞe�aF ðt�yÞdy:

Denoting:

x1ðtÞ ¼ CðtÞ
x2ðtÞ ¼ AðtÞ
x3ðtÞ ¼ HðtÞ
x4ðtÞ ¼ FðtÞ

x5ðtÞ ¼
Z t

�1

ðt � yÞFðyÞe�aF ðt�yÞdy

x6ðtÞ ¼
Z t

�1

FðyÞe�aF ðt�yÞdy

The following 6-dimentional ordinary differential system is obtained:

_x1 ¼
dC
dt

¼ kcðCtgt � Cmax
D senðrÞÞ � kxca~B1x1

_x2 ¼
dA
dt

¼ karchx1x3R� kxax2

_x3 ¼
dH
dt

¼ �kha~B3x3 þ kh

_x4 ¼
dF
dt

¼ kmax
f

Bn

Bn
50 þ Bn

� kxf a
2
Fx5

_x5 ¼ �aFx5 þ x6

_x6 ¼ x4 � aFx6

ð39Þ

Taking into account the extended system (39), the local asymptotic stability of the equilibri-
um point

Xeq ¼ Ceq Aeq Heq Feq

Feq

a2F

Feq

aF

� �T

is achieved if and only if all the roots of the characteristic polynomial associated with the Jaco-
bian

Jeq ¼

a 0 0 0 0 0

b c d 0 0 0

0 0 e 0 0 0

0 0 0 0 f 0

0 0 0 0 g 1

0 0 0 1 0 h

2
66666666664

3
77777777775

ð40Þ
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computed in Xeq have negative real part. The elements in (40) are defined as follows:

a ¼ J11 ¼ �kxcaBeq ¼ �kxcaðAeq � aðreqÞÞ
b ¼ J21 ¼ karchx3eqReq

c ¼ J22 ¼ �kxa

d ¼ J23 ¼ karchx1eqReq

e ¼ J33 ¼ �khaBeq

f ¼ J45 ¼ �kxfa
2
F

g ¼ J55 ¼ �aF

h ¼ J66 ¼ �aF

After computation, the characteristic polynomial is:

pðlÞ ¼ detðJeq � lIÞ ¼


�
Y3
i¼1

ðpi � lÞ
�
ðl3 � ðg þ hÞl2 þ ghl� f Þ ð41Þ

where p1 = a, p2 = c, p3 = e. The polynomial (41) is zero if and only if (pi – λ) = 08i and (λ3 -
(g+h)λ2 + gh λ-f) = 0.

It follows that ðpi � lÞ ¼ 0 8i , l ¼ pi 8i, where a, c and e are negative values.
For the study of the sign of the eigenvalues associated with the polynomial (λ3 -(g+h)λ2

+ gh λ-f) the Routh-Hurwitz criterion is used. The first column of the Routh-Hurwitz table is:

1 �2g
2g3 � f

2g
�f


 �T
; ð42Þ

and we have to determine for which conditions on parameters g and f the elements of (42)
assume positive values. These conditions assure that the roots of the polynomial all have nega-
tive real part:

i) -2g is always positive, since g<0.

ii) 2g3�f
2g > 0 , 2g3 � f < 0 which is true if 2g3 þ kxf g2 < 0 , g <

�kxf
2 , aF >

kxf
2

iii) -f is always positive, since f<0.

The condition in ii) translates into the standard requirement for delayed systems that, in
order to guaranteed model stability, a sufficiently small (average) delay on the considered de-
layed state variable F is necessary: in fact, the larger the parameter αF, the smaller the associated
average delay.

Results
Fig. 3 shows predicted time courses of arterial pressure (panel A) and of cerebral blood flow ve-
locity (panel B), as derived by the stochastic (dashed lines) and deterministic (continuous line)
model (1–8). These time courses are directly comparable (both in timing and in amplitudes)
with non-invasive observation data for sitting-to-standing maneuvers reported in the literature
(e.g. Fig. 2 of [20]). Predictions in Fig. 3 and Fig. 4 were in fact obtained by calibrating parame-
ter values for a sitting-to-standing experiment: parameter values are reported in Table 1.

In order to explore the behaviour of the model in medically meaningful situations, a series
of simulations have been performed (Fig. 4, Fig. 5), making some parameters vary, one at the
time, from normal to abnormal values. These simulations associate the variation of model
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parameters, as they could be physiologically postulated in relation to some dysfunction, with
the time courses of pressures and blood flow velocity predicted by the model. Some of parame-
ters affect more than others the behaviour of brain arterial pressure (BAP) or arterial pressure
(AP) and cerebral blood flow velocity, as shown in Fig. 4 and Fig. 5.

For instance, Fig. 4 displays the time courses of BAPP and CBFV after sudden orthostatism,
causing intravascular volume depletion, in correspondence of different values of the parameter
R0 (equilibrium resistance before the maneuvre). Panel A shows that decreasing R0, i.e. decreas-
ing the equilibrium Peripheral Vascular Resistance, determines lower equilibria for brain arte-
rial pressure. Panel B reports the time course of delayed brain arterial pressure for different
values of R0 and shows that, while the pattern remains substantially unchanged, the lowest R0

value determines the curve at the bottom of the graph, which fails to rise up to the considered
reference values. Panel C reports the trend of CBFV: despite lower values attained during the
transient period for smaller values of R0, once the equilibrium is achieved the trend is not
much altered, given the concurrent action of the other control mechanisms.

In panel D the greatest attainable delta in CBFV (the largest CBFV drop occurring in the
transient phase), is reported as a function of R0, showing that cerebral blood flow velocity un-
dergoes greater decrements in correspondence with smaller resistances.

Fig. 5 describes the behavior of the model corresponding to variations of the parameters kfx,

kh and kxca in panels A, B and C respectively. The term kxf ~FðtÞ represents the local vasocon-
striction, which is the fastest considered control mechanism: an increase in kfx determines a
faster decrease, but a more rapid increase (due to the introduction of the delay) in CBFV with
respect to the standard situation. Further, the achievement of the equilibrium state (panel A) is

Fig 3. Simulated model behavior in normal physiological conditions. Panel A: time course of model-
simulated arterial pressure (mmHg) (dashed line: stochastic model, continuous line: model drift). Pressure
drops of about 40 mmHg after standing, with a nadir at nearly 5–8 seconds post-maneuver, climbs back
within another 10 to 15 seconds with an overshoot of approx 20 mmHg before stabilizing. Panel B: time
course of model-simulated cerebral blood flow velocity (CBFV,mL/sec) (dashed line: stochastic model,
continuous line: model drift). CBFV drops of about 30 mL/sec after standing, with a nadir at 5 to 8 seconds
post-maneuver, climbs back within another 10–15 seconds with an overshoot of approx 5 mL/sec
before stabilizing.

doi:10.1371/journal.pone.0118456.g003
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slower (more oscillating). A decrease in the parameter, of course, produces a smaller and slower
fall of CBVF along with a slower achievement of the physiological values, but a more rapid es-
tablishment of the equilibrium, with fewer and shallower oscillations.

The other two parameters represent the other two control mechanisms: on heart rate (kh)
and on venous capacitance (kxca). Variations of these two parameters (that is variations of the
efficiency of the sympathetic system and variations of central venous pressure recovery) influ-
ence very little both AP and CBFV (see panels B and C in Fig. 5).

Fig 4. Simulated model behavior in abnormal physiological conditions obtained by varying R0. Panel A reports model-simulated Resistance (R,
mmHg/mL/sec) as an algebraic function of brain arterial pressure (mmHg) for different values of R0. Moreover for each value of R0 the equilibrium points of
brain arterial pressure (and corresponding resistance) are shown. Panel B and C report the time course of model-simulated delayed brain arterial pressure
(mmHg) and of cerebral blood flow velocity (mL/sec) respectively, in correspondence of the different values of R0. Panel D reports delta CBFV (difference
between the lowest value of CBFV over time and F0) as a function of R0.

doi:10.1371/journal.pone.0118456.g004
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Fig 5. Simulated model behavior in abnormal physiological conditions obtained by varying some parameters. Panel A reports the Time course of
model-simulated arterial pressure (mmHg), on the left, and the model-simulated cerebral blood flow velocity (CBFV, mL/sec), on the right, varying the
parameter kxf. The continuous line describes the trend in the physiological situation (kxf = 0.5), the dashed black line describes the trend with kxf = 0.7
whereas the dashed gray line describes the trend with kxf = 0.3. Panel B reports the time course of model-simulated arterial pressure (mmHg), on the left, and
model-simulated cerebral blood flow velocity (CBFV, mL/sec), on the right, varying the parameter kh. The continuous line describes the trend in the
physiological situations (kh = 0.05), the dashed black line describes the trend with kh = 0.07 and the dashed gray line describes the trend with kh = 0.02. Panel
C reports the time course of model-simulated arterial pressure (mmHg), on the left, and model-simulated cerebral blood flow velocity (CBFV, mL/sec), on the
right, varying the parameter kxca. The continuous line describes the trend in the physiological situations (kxca = 0.01), the dashed black line describes the
trend with kxca = 0.06 whereas the dashed gray line describes the trend for kxca = 0.005.

doi:10.1371/journal.pone.0118456.g005
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Discussion
Since cerebral autoregulation (CAR) indicates the ability of the circulation to adapt to varia-
tions in hydrostatic pressures in order to maintain constant and adequate perfusion to the
brain, the study of the mechanisms and of the overall adequacy of cerebral autoregulation has
meaningful implications for the assessment of the clinical severity of degenerative and cardio-
vascular diseases, such as the clinical states associated with chronic hemodynamic compromise
(e.g. obstructive carotid artery disease). In these cases detection of impaired cerebral autoregu-
lation might help to identify patients at risk, as already shown for cerebrovascular reserve ca-
pacity [4,30].

Assessing the adequacy of cerebral autoregulation is however not immediate. Empirical in-
dices of CAR efficiency such as ARI, autoregulatory index and ARMA-ARI, autoregressive-
moving average, [31] or indices derived from spectral analysis of the oscillatory pulse signal,
for instance Gr/ Gc, the ratio of respiratory gain and the gain of the first cardiac harmonic [32],
have been proposed in the past to offer semi-quantitative indications of a generically better or
worse clinical situation. These indices have however a limited interpretability and their connec-
tion with well established physiological quantities is conceptually rather labile. Mathematical
models of the response of the cerebral and systemic circulations to perturbation maneuvers
could offer the opportunity to directly identify and quantitatively describe the key regulatory
steps in the overall circulatory dynamics.

Mathematical models of the cardiovascular system and of cerebral autoregulation [10–19]
have been developed over several years in order to describe the time courses of pressure and flow
subsequent to postural changes. In general, many such models suffer from either one (or both)
of the following shortcomings: they may be very large, consisting of many state variables bound
to each other by interacting feedback loops; or, they may fail to fit available observations well.
While the second shortcoming clearly determines major problems when foreseeing a possible
clinical application of the model in question, the first shortcoming also gives rise to practical dif-
ficulties, connected with the difficult identifiability of overparameterized models from routine
clinical data sets. In fact, the need exists, according to Panerai et al. [26], to develop multivariate
models that take into account time-varying parameters with the aim to studying protocols to val-
idate the reproducibility and ranges of the dynamic parameters of cerebral autoregulation.

The combination of the above considerations makes it so that it would be desirable to have
a mathematical model, mechanistically representing accepted physiological phenomena, with
as simple a structure as possible (but no simpler [33]) hence with as few free parameters to be
estimated from data as possible, and still able to fit data well.

Attempting to respond to these requirements, the present work details a simple stochastic
delay differential equations model of cardiovascular regulation during the postural perturba-
tion maneuver (ESDeCAR-02). The model does in fact provide a realistic mathematical de-
scription of cardiovascular control, which may be fitted onto non-invasive experimental
observations after postural changes, and is shown to replicate well observations performed dur-
ing a sitting-to-standing manoeuvre.

The ESDeCAR-02 model attempts first of all to overcome the essential limitation of the first
major model in this field, the Ursino-Lodi model [13], which considered the time course of ar-
terial pressure as a forcing function, without explaining arterial pressure variations as a result
of the hemodynamic changes induced by sudden orthostatism. In this way the new model uses
the information content carried by the arterial pressure tracing in order to provide indications
about the values of the autoregulation dynamics parameters.

While previous versions of pressure-flow-capacitance models [22] had significant problems
explaining observations, the most recent Olufsen model [18] does an excellent job of
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reproducing observed arterial pressure and cerebral blood flow velocity tracings, and it is fur-
thermore based on mechanical elements directly expressing relevant physiologic quantities
(thereby making interpretation immediate). However, the Olufsen model is rather large and
complex, making its use in routine clinical applications difficult.

The ESDeCAR-02 model is relatively simple, with only four differential equations (in place
of 11) and only 7 free parameters to be estimated instead of the 62 of the Olufsen model.

An additional, relevant feature of the ESDeCAR-02 model is the stochastic modeling of
pressure and flow variables, deriving from the representation of central venous pressure with a
stochastic differential equation. This formalism is more appropriate to represent irregular vari-
ations of pressures and flows over time, produced by accidental muscle contractions, station
adjustments, hormonal and neurological oscillations, respiration and swallowing, etc. The in-
clusion of system noise may be judged irrelevant (and hence the physiological system may be
judged to be essentially deterministic), only after the volatility σ has been assessed, and it may
very well be that for some subjects, but not for others, the inclusion of system noise could be in-
dispensable to represent the evolution of the whole pressure-flow dynamics over time.

Finally, the model introduces explicitly distributed delays with respect to the four main con-
trols (fastest to slowest: on local vasoconstriction, on heart rate, on peripheral vascular resis-
tances, on venous capacitance), which may be presumed to depend on brain arterial perfusion
pressure, consistently with generally accepted neurophysiological notions.

In the present work it has been shown that the ESDeCAR-02 model is well able to reproduce
the time course of mean AP and CBFV after a sitting-to-standing change in posture, inclusive
of some auto-correlated oscillations around the expected signals. In particular the model-
simulated arterial pressure drops by approx 40 mmHg after standing, with a nadir at nearly
5–8 seconds post-maneuver, climbs back within another 10 to 15 seconds with an overshoot of
approx 20 mmHg before stabilizing (Fig. 3, Panel A) and CBFV drops by approx 30 mL/sec
after standing, with a nadir at 5 to 8 seconds post-maneuver, climbs back within another 10–15
seconds with an overshoot of approx 5 mL/sec before stabilizing (Fig. 3, Panel B). These fea-
tures correspond point-by-point to what has been reported in the literature [20].

In order to explore the behaviour of the model in medically meaningful situations, a series
of simulations has been produced, making single parameters vary in turn from normal to ab-
normal values (Fig. 4, Fig. 5). These simulations associate the variation of model parameters,
such as could be physiologically postulated in relation to some dysfunction, with the time
courses of pressures and flows which the model predicts would be observed in the presence of
those dysfunctions.

All in all, the simulations appear very plausible: what is more important, they allow future
validation or criticism of the model by comparison with experimental data sets, thereby paving
the way to a future progressive refinement and calibration of CAR models.

While the present model’s structure appears reasonable, and its predictions seem consistent
with observations, much work remains in fact to be done in assessing the possibility to use the
model in order to discriminate between observation error and system volatility, and in deter-
mining the applicability of (simplifications of) this model to reliably estimate cerebral autore-
gulation in individual subjects under standard clinical conditions, which still remains an
unsatisfied goal of biomathematical research in the neurosciences.

Conclusion
The proposed empirical SDDEmodel of cardiovascular regulation after postural change, ESDe-
CAR-02, is able to reproduce observed average arterial pressure and cerebral blood flow velocity
profiles, including autocorrelated random oscillations around the expected time courses. The
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model introduces explicitly distributed delays with respect to the four main controls (fastest to
slowest: on local vasoconstriction, on heart rate, on peripheral vascular resistances, on venous
capacitance), which may be presumed to depend on brain arterial perfusion pressure. Much
work remains to be done in assessing the possibility to use the model in order to discriminate
between observation error and system volatility, and in determining the applicability of (simpli-
fications of) this model to reliably estimate cerebral autoregulation in individual subjects.
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