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Abstract
Comprehensive sequence-function mapping involves detailing the fitness contribution of

every possible single mutation to a gene by comparing the abundance of each library vari-

ant before and after selection for the phenotype of interest. Deep sequencing of library DNA

allows frequency reconstruction for tens of thousands of variants in a single experiment, yet

short read lengths of current sequencers makes it challenging to probe genes encoding full-

length proteins. Here we extend the scope of sequence-function maps to entire protein se-

quences with a modular, universal sequence tiling method. We demonstrate the approach

with both growth-based selections and FACS screening, offer parameters and best prac-

tices that simplify design of experiments, and present analytical solutions to normalize data

across independent selections. Using this protocol, sequence-function maps covering full

sequences can be obtained in four to six weeks. Best practices introduced in this manu-

script are fully compatible with, and complementary to, other recently published sequence-

function mapping protocols.

Introduction
The amino acid sequence of a protein defines its function, yet our understanding of the contri-
bution of each amino acid to overall activity remains incomplete. As a result, current computa-
tional and experimental methods of designing functional proteins have success rates
significantly less than 10% [1]. Random directed evolution approaches provide activity im-
provements, but require high throughputs because about 98% of amino acid substitutions are
either deleterious or neutral with respect to the desired function or specific fold [2]. Traditional
methods for probing sequence-function relationships, such as alanine scanning and site-
saturation mutagenesis, are laborious and inefficient [3–6]. A systematic method to survey the
sequence-function space of large proteins would facilitate enzymatic efficiency improvements,
antibody-epitope mapping, rapid antibody-antigen maturation, and fine-tuning of computa-
tionally designed proteins [7–10].
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About a decade ago, Pal et al. introduced a quantitative scanning method to map the ener-
getic landscapes of protein-protein interactions [11]. Libraries were created using saturation
mutagenesis at multiple positions and screened with phage display to enrich the population in
mutants with enhanced function at the expense of those with impaired function. The complete
library was sequenced before and after selection, and comparisons of these frequencies gave a
measure of activity for each variant. More recently, Fowler et al. used a similar framework to
develop deep mutational scanning [12,13]. In a key step, deep sequencing is used to quantify
the frequency of each mutant in the library before and after selection, and the resulting enrich-
ment ratio provides a fitness metric. The ability to sequence millions of sequences in a library
allows quantification of thousands of protein variants in a single experiment. Independently,
Hietpas et al. developed a similar technique termed EMPIRIC, which they applied to measure
fitness effects of point mutations of regions of genes in yeast [14,15]. Since the introduction of
deep mutational scanning, similar methods have been applied to characterize protein-ligand
interactions and chaperone protein function [11,16]. In a recent report demonstrating the
power of the approach, Firnberg et al. produced a comprehensive map of nearly all possible
single mutations to a full-length protein, TEM-1β-Lactamase [17]. By combining comprehen-
sive single-site mutagenesis with selection through antibiotic resistance they were able to assess
the fitness of 5,760 different mutant protein sequences in a single experiment.

Deep mutational scanning methods were extended to protein engineering applications by
Whitehead et al., who applied the deep mutational scanning technique to enhance the affinity
and specificity of two designed influenza inhibitors [9]. Deep mutational scanning has since
been applied in many different areas of protein engineering including specificity switches and
protein stability [18,19].

Given the demonstrated utility and growing popularity of deep mutational scanning as a
tool to understand and optimize protein function, we sought to develop a standardized proto-
col for resolving the sequence determinants of function for full-length proteins. In this contri-
bution, we develop and validate experimental methods for mutant library creation, functional
selections, and sequencing library preparation. We derive equations that allow direct, quantita-
tive comparisons across different populations in growth-based selections and fluorescence acti-
vated cell sorting (FACS), enabling optimal selection criteria to be determined for these
versatile selection techniques. We introduce a gene tiling technique which splits a long gene se-
quence into several independent libraries, each of which contain a mutated region short
enough to be covered with a paired-end read [20]. This approach, combined with the equations
developed herein, allow for the unambiguous reconstruction of the sequence-function determi-
nants of full-length proteins. Key considerations for each step in the process are discussed.

Materials and Methods

Constructs
Strains. E. coli strains used in this study: XL1-Blue (Agilent, Santa Clara, CA) recA1 endA1
gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB lacI1qZΔM15 Tn10 (Tetr)]; Tuner (Novagen,
Billerica, MA) F- ompT hsdSB (rB- mB-) gal dcm lacY1; K12 CJ236 (NEB) FΔ(HindIII)::cat
(Tra+ Pil+ CamR)/ ung-1 relA1 thi-1 spoT1 mcrA.

Plasmids. The plasmid pJK_proJK1_LGK was created by inserting a codon-optimized gene
encoding levoglucosan kinase (LGK) (Genscript, Piscataway, NJ) with LEHHHHHH as 95 the
C-terminal tag into a pJK-series plasmid [20] using flanking NdeI/XhoI restriction sites.
The plasmid pJK_proJK1_kanR_LGK was created by switching the ampR with a kanR resis-
tance cassette using Gibson cloning [21]. Full sequences of both plasmids are given in S1 Note.
pJK_eGFP-series plasmids are from a previous study and are listed in S1 Table [22].
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Pfunkel Mutagenesis
Single-site saturation mutagenesis primers containing an NNN degenerate codon were designed
in one of two ways: (1.) the online QuikChange Primer Design module (Agilent, Santa Clara,
CA); or (2.) primer-design software as detailed in Firnberg et al. [23,24]. Mutagenic libraries
were generated from a ssDNA template using the Pfunkel method for comprehensive codon mu-
tagenesis [24]. A separate Pfunkel reaction was performed for each tile region. Protocols were
performed as published except the reaction cycling conditions were 95°C for 2 min, followed by
15 cycles of 95°C for 30 sec, 55°C for 45 sec, and 68°C for 15 min. Following the nuclease step
the reaction was concentrated using the Zymo Clean and Concentrate kit (Zymo Research, Ir-
vine, CA) and eluted in 6 μL of nanopure water. The entire volume was mixed with 40 μL of
electrocompetent XL1-Blue cells (Agilent, Santa Clara, CA). Cells were transformed by electro-
poration at 1200 V in a 1 mm electroporation cuvette (Eppendorf, Hauppage, NY) with an
Eppendorf Eporator. Transformed cells were grown overnight at 37°C on LB agar supplemented
with appropriate antibiotic on Nalgene BioAssay plates (245mm × 245mm × 25mm, Sigma Al-
drich, St. Louis, MO). Library plasmid DNA was recovered by scraping the BioAssay plate with
5 mL LB, centrifuging the solution to recover the cell pellet, and performing a plasmid midiprep
(Qiagen, Valencia, CA) on the cell pellet.

Cells were also plated in serial dilutions from 10–1 to 10–6 to assess transformation efficien-
cy. Transformation efficiencies ranged from 3x105–1x106 cfu/transformation.

Secondary Transformations
E. coli Tuner (Novagen, Billercia, MA) was prepared to be electrocompetent by standard
means [25]. Plasmids pJK_proJK1_LGK and pJK_proJK1_kanR_LGK were mixed at a mass
ratio of 100:1 respectively. 5–40 ng of the mixed plasmid DNA was transformed into 40 μL
of culture by electroporation at 1200 V in 0.1 cm cuvettes (Eppendorf, Hauppage, NY). The
reaction was split and plated on ampicillin, kanamycin and ampicillin/kanamycin resistant
plates in serial dilutions from 10–1 to 10–6 and grown overnight. The colonies percentage of
double transformants was calculated by dividing the number of CFU’s on the dual antibiotic
plate by the CFU’s of the kanamycin plate. This procedure was repeated with library plasmid
DNA in place of pJK_proJK1_LGK at a 100:1 ratio to determine the percentage of
double transformants.

Growth-based Selections
Library cell stocks containing mixtures of pJK-series eGFP expression plasmids were thawed
on ice and washed with M9 minimal media [22]. Cultures were inoculated to an OD600 of 0.03
in M9 minimal media supplemented with 4 g/L glucose and carbenicillin (50 μg/mL). Cultures
were grown at 37°C and 250 rpm to an OD600 of 0.6. Cell growth was monitored every 45 min-
utes by OD600 measured on a Genesys 20 spectrophotometer (Thermo Fisher Scientific, Wal-
tham, MA). Cells were washed with M9 media. The cells were used to re-inoculate 2.5 mL of
fresh media to an OD600 of 0.03. Cultures were again grown to an OD600 of 0.6 (8.6 total popu-
lation-averaged generations). Following selection cells were stored in 1mL of M9 media and
7% (v/v) DMSO at -80°C until bacterial plasmid DNA was extracted using a Qiagen miniprep
kit (Qiagen, Valencia, CA).

Primer Design
Two sets of primers were used to amplify stretches of DNA for sequencing. The inner set of
primers was designed to be complementary to the regions of DNA at the 5’ and 3’ ends of the
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gene tile of interest. Forward and reverse primers were designed to have melting temperatures
around 55°C. Sequences for the outer, universal set of primers were taken from the TruSeq
Small RNA Sample Prep Kit. The outer primers attach the Illumina barcodes and adaptors for
sequencing and are listed in S2 Table.

Gene tile amplification
Gene tiles are amplified by two-step PCR. The contiguous region containing mutations is am-
plified using tile-specific inner primers using Phusion High Fidelity Polymerase (NEB M0530).
The three different methods used to amplify the target region are described in S3 Table. 5 μl of
the PCR products were run on a 2% agarose gel and visualized with SYBR-GOLD (Invitrogen)
to ensure the presence of a single band of the expected size (~250 bp). Agencourt AMPure XP
beads (Beckman Coulter, Brea, CA) were used per the manufacturer’s protocol to purify the
PCR product. Samples were multiplexed using index sequences on the outer primers.

DNA concentrations were quantified using Quant-iT PicoGreen (Life Technologies, Carls-
bad, CA) quantification and samples were mixed in equimolar quantities for sequencing. Li-
brary DNA was sequenced on an Illumina MiSeq with 150-bp PE reads.

Data Analysis
Enrich 0.2 software was used to compute enrichment ratios of individual mutants from the raw
Illumina sequencing files [26]. Forward and reverse reads obtained for each section were used
as input. Modifications were made to Enrich 0.2 in order to accommodate shifted and short-
ened protein alignment sequences (S1 Script). Enrichment ratios that were obtained were nor-
malized as detailed below using custom scripts.

Theory

Normalization for Growth Rate Selections
When cells grow exponentially, the specific growth rate, μi, of any individual mutant i can be
written as:

mi ¼ ln
xfi
xoi

� �
1

t
ð1Þ

Where xfi is the final concentration of the mutant, xoi is the initial concentration, and t is the
time difference between the initial and final concentration of cells. In this formulation we are
explicitly neglecting the effect of lag phases for growth. The equation for calculating the enrich-
ment ratio, εi, of the same mutant is:

ei ¼ log2
ffi
foi

� �
ð2Þ

Where ffi is the final frequency of the mutant in the library population and foi is the initial fre-
quency. These frequencies can be converted to cell concentrations by the equations below:

foi ¼
xoiP
xoi

ð3Þ

ffi ¼
xfiP
xfi

ð4Þ

Where Sxoi is the initial concentration of the culture and Sxfi is the final concentration. The
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enrichment ratio can be rewritten as:

ei ¼ log2
xfi
xoi

� �
� log2

X
xfiX
xoi

 !
ð5Þ

Combining this equation with (1) leads to:

milog2e ¼
1

t
ei þ log2

X
xfiX
xoi

 ! !
ð6Þ

We can define the change in culture density between the initial and final conditions in
terms of the number of average doubling periods (gp) according to:

log2

X
xfiX
xoi

 !
¼ # of Doublings ¼ gp ð7Þ

Similarly, we can remove time from (5) by redefining it as:

t ¼ gpln2

mp

ð8Þ

where μp is equal to the bulk average growth rate of the population between the initial and
final conditions.

Combining (7) and (8) into (6) leads to a description of the growth rate of mutant i as a
function of its enrichment ratio:

mi ¼ �mp

ei
gp
þ 1

 !
ð9Þ

It is often helpful to express the fitness of mutant i, zi, normalized to the growth rate of the
starting construct (wild-type; μwt)

zi ¼ log2
mi

mwt

� �
ð10Þ

zi ¼ log2

ei
gp
þ 1

ewt
gp
þ 1

 !
ð11Þ

Since the starting construct is usually included in the population, fitness of each variant i
can be normalized across different selection experiments given only the number of doubling
periods as well as the enrichment ratios for the mutant and wild-type construct.

We can also rewrite the enrichment ratio as a function of growth rate:

ei ¼ gp
mi

�mp

� 1

 !
ð12Þ

The enrichment ratio will increase linearly with the number of doubling periods so long as a
mutant is able to exceed the population-averaged growth rate.
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Normalization for Fluorescence-Activated Cell Sorting
For comparisons of variants across different populations, we desire a method to reconstruct
mean fluorescence for each mutant, �Fi, from its enrichment ratio εi. In fluorescence-activated
cell sorting (FACS), populations are screened by collecting cells with fluorescence above a cer-
tain gating threshold. A clonal population of cells will exhibit a mean fluorescence with a cer-
tain variance according to cell size, surface density of displayed proteins, or other factors. Thus,
only a fraction of cells for each variant will exceed the fluorescence threshold needed for collec-
tion. Since fluorescence measurements of clonal population of cells are log-normally distribut-
ed in flow cytometry, �F ican be determined using regular statistical calculations:

�F 0
i ¼ lnðFgÞ � s0 ffiffiffi2p

erf �1 1� 2
xfi
xoi

� �
ð13Þ

Here, �Fi
0is the mean of the natural log of the fluorescence for variant i, σ´ is the natural log

of the standard deviation of the data, Fg is the fluorescence gating threshold for the experiment,

and the ratio
xfi
xoi
is the fraction of variant i that is collected above the gating threshold. �Fi

0can be

determined from Fwt´ by:

�F i ¼ e
�F 0
iþs02

2

� �
ð14Þ

It remains to find
xfi
xoi
in terms of experimentally measurable values. The flow cytometer used

to analyze the culture records the percentage of the total population sampled that is collected,
ϕ. This value can be written as:

�i ¼
P

xfiP
xoi

ð15Þ

From sequencing data, the enrichment ratio of each mutant, ε, is also known and can be
written as:

2ei ¼ xfi
xoi

P
xoiP
xfi

ð16Þ

Combining Equations (14–16), we end up with:

xfi
xoi

¼ �2ei ð17Þ

Finally, combining this relation into Equations (13–14) leads to:

�Fi ¼ exp
s02

2
þ lnðFgÞ � s0 ffiffiffi2p

erf �1ð1� �2eiþ1Þ
� �

ð18Þ

As with the growth-based selection, it is often helpful to express the fitness of mutant i nor-
malized to the fluorescence of the starting construct (wild-type; �Fwt)

zi ¼ log2
�F i

�Fwt

� �
ð19Þ

zi ¼ log2ðeÞ
ffiffiffi
2

p
s0½erf �1ð1� �2ðewtþ1ÞÞ � erf �1ð1� �2ðeiþ1ÞÞ� ð20Þ

To normalize fluorescence measurements, ϕ is set by the experiment, and the enrichment
ratios εi and εwt are obtained from analysis of the raw sequencing files. In this derivation we
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assume that the log-transformed standard deviation is the same between the individual variant
and the wild-type sequence. We have not rigorously tested this assumption. Note that the form
of the fitness metric used in this work has the standard deviation as a scalar which is unlikely to
vary much using the same cell type and flow cytometer; thus, ratios of fluorescence measure-
ments can be related between populations using only the enrichment ratios and the
gating threshold.

Results and Discussion
We have developed a standardized method to map the sequence-function relationships of en-
tire gene sequences encoding full-length proteins. This process is applicable to a wide variety of
proteins, including binding proteins, fluorescent proteins, and enzymes. With some modifica-
tions, the method can also be extended to membrane proteins and transcription factors. The
protein class determines the selection method: binding proteins can be screened or sorted
using phage or yeast display techniques, whereas growth-based selections are preferable for en-
zymes [9,12,17,27,28]. Regardless of the protein category, the initial sequence should encode
some level of functional activity as a basis to distinguish active and inactive proteins.

Fig. 1 outlines the basic steps covering target selection, gene tiling, library preparation, selec-
tion, deep sequencing library preparation, and data analysis and normalization. We have writ-
ten custom scripts and modified published scripts to facilitate data generation and analysis
(S1 and S2 Scripts). Additionally, we have formulated optimal selection criteria and derived
equations governing the normalization of results across different selection conditions. Practical
considerations for each step are listed in S2 Note. In the following sections we consider each
step in the overall process in detail.

Gene Tiling
A protein of 250 residues is encoded by a gene of 750 bp, which is longer than high-quality
read lengths of existing sequencing platforms. Previous approaches to map sequence to func-
tion for full-length proteins involved sequencing the entire gene as smaller amplified segments
(Fig. 2A) [9]. Because there should be only one mutation per gene, reads from amplified re-
gions other than the one containing the mutation yield no information and are wasted. Fig. 2B
shows the percentage of total sequence reads that provide information as a function of gene
length. As gene length increases, the percentage of usable sequencing data decreases and, con-
sequently, more reads are needed to ensure proper coverage. For example, using this previous
method results in usable information for only 33% of the sequencing reads in a gene of
length 450 bp.

We have improved the efficiency of scanning long genes by dividing the gene into multiple
“tiles,” each of which is effectively treated as a distinct gene. Each tile is independently muta-
genized, subjected to selection, and sequenced before our analysis pipeline normalizes and
merges the count data to generate the sequence-function map of the full gene. Tile regions are
designed to be slightly shorter than a sequencing read, and within each parallel mutagenesis re-
action, mutations are restricted to the corresponding tile. For example, tiles designed for
150-bp read lengths would consist of a central 120-bp mutated region flanked by 15-bp con-
stant regions for PCR primer annealing. Multiple, partially overlapping libraries are prepared
for each gene to ensure full coverage of the protein. This approach eliminates excess wild-type
sequencing because only the region containing the mutation is sequenced (Fig. 2C). However,
the tradeoff is that assessing the function of a full-length sequence requires multiple indepen-
dent selections. Since population dynamics may vary among selections the enrichment ratios
must be normalized to allow comparisons across tiles (see Theory section and below).
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Library Mutagenesis Preparation
Our objective is to map the function of every single nonsynonymous (NS) mutation of a
protein-encoding sequence. In an ideal system, 1) There would be exactly one NS mutation per
protein-encoding sequence; 2) The library would contain complete uniform coverage of
all possible single NS mutations; 3) The library prep method would be as reliable, fast and
inexpensive as possible; and 4) Each cell would harbor a single protein-encoding sequence.

Numerous methods have been described for the creation of mutant libraries [29–32]. Cer-
tain protocols, like QuikChange or Kunkel mutagenesis, introduce mutations at specified loca-
tions with specific primers. Because each residue targeted for mutation requires a separate
primer and a separate reaction, creation of a single-site saturation mutagenesis (SSM) library
for a 250-residue protein requires 250 unique primers and 250 separate reactions, limiting scal-
ability. A newly developed method named Pfunkel incorporates the benefits of Kunkel muta-
genesis while minimizing library preparation time by combining the individual SSM reactions
into a single-pot [24].

Fig 1. Overview of high-resolution sequence-functionmapping process. Target Selection. Proteins of interest are selected for interrogation of sequence
function relationships. A plasmid containing the gene-encoding sequence is generated.Gene tiling. Starting from this gene sequence, semi-overlapping tiles
are generated to cover the entire gene. These tiles are either 150, 250 or 300 bp in length in order to be sequenced in paired-end mode on Illumina deep
sequencing platforms. Library Preparation. The single-pot PFunkel method is used to generate a comprehensive single-site saturation mutagenesis library.
Selections. Growth-based selections and FACS screens are used to resolve library populations; these selections should not completely converge on a few
members of the population. It is important that the initial protein shows activity toward the selection method. Deep Sequencing and Library Preparation. After
selection, cells are lysed and plasmid DNA is purified. The specific mutated tile region of the gene of interest is then amplified using overhang PCR, at which
time Illumina sequencing primers and adaptors with selection-specific indexes are attached. Data analysis and normalization. Barcoded DNA is sequenced
on a standard Illumina platform, analyzed, and normalized using custom scripts. The end result of this analysis is a comprehensive portrait of the effects of
sequence on function for thousands of single point mutants in the gene of interest. These portraits can be used for various purposes such as improving
protein binding affinity and specificity or improving enzymatic catalytic efficiency.

doi:10.1371/journal.pone.0118193.g001
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To evaluate the performance of Pfunkel, we created a SSM library of the first forty residues
on a codon-optimized gene encoding levoglucosan kinase (LGK) from L. starkeyi (GenBank:
EU751287.1) [33]. A SSM library incorporating NNN codons should theoretically contain
2520 (63 codons at 40 positions) unique NS mutations. The mutagenesis primer set was manu-
ally designed using the Agilent QuikChange primer design calculator, and a Pfunkel reaction
was performed essentially as described in Firnberg et al. [23,24]. The resulting library was se-
quenced using 150-bp paired-end (PE) reads on an Illumina MiSeq. The quality of the muta-
genesis procedure was evaluated based on the percent coverage of mutations at the DNA and
amino-acid levels, the percentage of starting (wild-type) DNA sequences, and the percentage of
sequences with more than one mutation in the coding sequence.

Coverage analysis of the SSM library showed 99% of the 2520 possible codon mutations
were incorporated into the SSM library. Additionally, we observed 100% coverage of single
base mutations and coverage of two and three base substitutions higher than previously re-
ported (Table 1). The number of transformed colonies in the Pfunkel procedure did not impose
a bottleneck on library complexity since the number of transformed colonies exceeded the li-
brary size by seven-fold, corresponding to a theoretical 99.9% library coverage [34]. Based on

Fig 2. Gene tiling increased the efficiency of deep sequencing for sequence-function mapping. A. Deep sequencing without using gene tiles. Gene
sequences are represented by grey lines, mutations by red x’s, and sequencing primers by purple and green lines. Several previous methods to amplify
target DNA (left) amplify both mutated and non-mutated regions. The latter result in wasted reads and increase the sequencing capacity necessary to resolve
the entire library. B. Percent of usable reads as a function of gene length with (red line) and without (blue line) gene tiling.C. Gene tiling has the ability to
reduce the number of DNA sequencing reads necessary by targeting the region with a mutation in PCR amplification for sequencing purposes. To implement
gene tiling, separate libraries are prepared and sorted for each tile. D. Number of sequence reads required for 300-fold average coverage of nonsynonymous
mutations with (red line) or without (blue line) gene tiling. The horizontal dashed line represents the average number of DNA sequences from a single MiSeq
lane. E. In gene tiling, short contiguous stretches of DNA (tiles) are targeted for mutations. Gene tiles are indicated by the colored dashed lines and cover the
entire gene sequence among the different libraries.

doi:10.1371/journal.pone.0118193.g002
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this analysis, we independently conclude that Pfunkel can produce comprehensive SSM librar-
ies. The single-pot reaction can produce high-coverage SSM libraries in two days with minimal
hands-on time.

While Pfunkel is a simple and reliable method to create high-coverage SSM libraries, the
costs associated with primer synthesis are not trivial. For a protein of length L, the cost of the
primer set is $3.90�L ($0.10 per base and 39 bases per primer) (2014, Integrated DNA Technol-
ogies, Corralville, IA). Accordingly, we looked for ways to improve the Pfunkel method by re-
ducing method cost. 1. Shorter primer lengths would decrease cost. Our initial primer set was
designed using a QuikChange calculator that suggested longer primer lengths than the custom
primer design script provided by in the Pfunkel paper. 2. Recovering plasmid DNA in liquid
culture would reduce both cost and time. In the current procedure following transformation,
cells are plated on expensive BioAssay plates.

We hypothesized that shorter primers would produce SSM libraries with equally high cover-
age but a decreased percentage of reads containing exactly one mutation. To test this we pro-
duced a second primer set using the custom primer design script from Firnberg et al. (referred
to as scripted Pfunkel primers) [24]. This primer set averaged 27 bp in length while the Quik-
Change primers were, on average, 39 bp. We evaluated the two primer sets using three variables
that contribute to inefficient sequencing: 1) percentage of wild-type reads; 2) fractional library
coverage; and 3) the number of double mutants. In comparison to the QuikChange primer set,
libraries prepared with the scripted Pfunkel primers had a much higher rate of wild-type se-
quences (62.6%), lower library coverage (99.5%), but a lower rate of double mutants (3.3%)
(Table 1). Although for the QuikChange primer set there is a higher rate of double mutants, all
are accounted for in the sequencing and so do not influence later data analysis. Thus, the cost
of synthesizing longer QuikChange primers is more than balanced by the benefit of a high-
quality SSM library, which requires fewer DNA sequencing reads for full library coverage.

Table 1. Mutagenesis statistics for different experimental conditions. Comparisons to theoretical predictions and previous literature data are shown
as reference [24].

Theoretical Firnberg et al. results [24] QuikChange
Primers

Scripted Pfunkel
Primers

Plated Plated Culture Plated Culture

Sequences (reads) 787,488 414,410 319,179 510,126 436,135

NNN primer base composition

T 25.0% 17.1% 15.2% 16.7% 22.8% 19.2%

A 25.0% 18.3% 14.0% 15.7% 20.2% 19.7%

C 25.0% 18.3% 17.5% 18.5% 16.8% 19.8%

G 25.0% 46.3% 53.3% 49.0% 40.2% 41.4%

Percent of possible codon substitiutions observed

1-base substitution 99.6% 100.0% 100.0% 100.0% 100.0%

2-base substitutions 97.7% 99.6% 96.4% 98.6% 83.7%

3-base substitutions 95.3% 98.7% 88.3% 97.3% 54.4%

All substitutions 97.0% 99.3% 93.5% 98.3% 73.5%

Percent of reads with

No nonsynonymous mutations 1.6% 26.2% 22.4% 55.0% 62.6% 87.0%

One nonsynonymous mutation 98.4% 56.7% 70.6% 40.0% 34.1% 12.0%

Multiple nonsynonymous mutations 0.0% 17.1% 7.0% 5.0% 3.3% 1.0%

Coverage of possible single nonsynonymous mutations 99.9% 98.0% 99.5% 89.1%

doi:10.1371/journal.pone.0118193.t001
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In the original Pfunkel method, following transformation cells were plated on large BioAs-
say plates and grown at 37°C overnight. Recovering the library in solution without plating
could save cost and time. To determine whether library quality suffers without plating, two par-
allel Pfunkel reactions were performed with the QuikChange or Pfunkel Scripted primer sets.
Following transformation, half of the cells were plated on a selective plate while the other half
was grown to an OD600 of 0.1 in a liquid culture. Cells were then harvested, and plasmid was
recovered and sequenced. Cells recovered in liquid culture showed 73–93% coverage of all pos-
sible codon substitutions, much lower than the 98.3–99.3% observed for the libraries that were
plated. The liquid culture data also showed a bias against NS mutations. For example, using the
QuikChange primer set and plating the cells resulted in 70.6% of the reads containing exactly
one NS mutation, whereas growing cells in culture resulted in only 40.0% of reads containing
one NS mutation (Table 1). Based on these experiments, we conclude that plating cells follow-
ing transformation is necessary to produce high-quality SSM libraries.

Theoretically, mutational frequencies caused by saturation mutagenesis with NNN codons
should be equal across bases. However, consistent with the results presented by Firnberg et al.,
we find that guanosine (G) bases are enriched relative to theoretical predictions (Table 1) [24].
Since we see very little difference in the incorporation of single bases at the DNA level between
the two sets of mutagenic primers, the artificial enrichment of G bases is likely the result of im-
proper machine mixing of the NNNmutations in primer synthesis, as previously suggested
[24]. While hand mixing of the nucleotides during primer synthesis may reduce the bias, it
would substantially increase primer cost. Alternatively, the enrichment of G bases could be in-
troduced by a bias in primer annealing as suggested by Jain and Varadarajan [35]. Neverless,
since in our protocols the average library member is counted at least 100 times, the observed
level of bias is tolerable.

The plasmid DNA encoding the SSM library must be transformed into the host organisms
used for selections. If multiple plasmids are transformed into a single cell, gain-of-function var-
iants could potentially compensate for weaker variants. To account for this, we have derived a
correction factor for the measured enrichment ratio as a function of percentage of double
transformants (S3 Note). For libraries with less than 10% doubly transformed cells this correc-
tion can be neglected because its absolute magnitude correction is less than 0.35 (S1 Fig.),
which is comparable to the experimental error in determining enrichment ratios from sequenc-
ing data for loss-of-function variants. However, at higher percentages of doubly transformed
cells this effect may be significant (S1 Fig.) and controls must be run to minimize artifacts [36].

In our typical workflow we use E. coli for growth-based selections and S. cerevisiae for yeast
display of binding proteins [37]. The most common yeast display plasmid contains a CEN6/
ARSH4 ori maintaining a low plasmid copy number, such that co-transformed plasmids are
segregated well before FACS [38]. For many E. coli-based systems however, plasmids of medi-
um to high copy numbers do not efficiently segregate and the percentage of double transfor-
mants needs to be quantified. Goldsmith et al. suggested a strategy which we follow here [36].
The starting plasmid pJK_proJK1_kanR_LGK was modified by changing the antibiotic resis-
tance from kanamycin to ampicillin, forming the plasmid pJK_proJK1_LGK. These two plas-
mids were mixed at a mass ratio of 1:100, respectively, and 40 ng of this mix was transformed
into 40 μL of electrocompetent Tuner cells. The reaction was plated on ampicillin, kanamycin
and ampicillin/kanamycin selective plates and grown overnight. The colonies were counted
and the percentage of double transformants was calculated by taking the ratio of the number of
dual antibiotic resistant colonies over the number of solely kanamycin resistant colonies
(S4 Table). Under these conditions, the rate of double transformants is on the order of 2%, well
below the 10% threshold. Additionally, in this specific case, we found that the number of solely
ampicillin transformants is more than sufficient to support the degeneracy of a library size of
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2,560. We recommend re-running this experiment for every library, as transformation condi-
tions often vary.

Selections
Methods for selection are chosen based on protein function. Selections should be designed
such that the widest range of activity levels can be resolved. Protein binding activity is usually
screened/sorted by phage, bacterial, or yeast display platforms [39–42]. The latter two methods
resolve the population by FACS; in this section we derive equations governing the grouping
of different variants by FACS and suggest optimal experimental parameters. We also show
equations that govern the appropriate choice of experimental parameters for growth-
based selections.

To ensure proper coverage, selections are designed such that on average there is 200–500
fold coverage of each variant in the unselected population. Sequencing to this depth requires
on the order of 500,000 quality 150-bp reads. The enrichment of an individual variant is de-
scribed as the log2 ratio of its frequency in the selected population to the unselected population.
For a library containing 2,500 members and sampled at 200-fold coverage, there is a lower en-
richment limit of-7.5 for mutants counted once after selection and an upper bound of 11.3 for
a variant that completely overtakes the population. Because intrinsic error (Poisson noise) is
lowered when the counting threshold is set much higher than 1, and because allowing a single
variant to overtake the population provides no data about the remaining positions, the practical
dynamic range for the selection range spans enrichment values of-4 to 4. Selections should be
designed to best span this range of enrichment values. The dynamic range will vary minimally
with increasing library coverage: every 2-fold increase in coverage results in decreasing the
lower bound of the enrichment ratio by 1 unit. Fig. 3 shows a mutant with an enrichment ratio
of-4 and makes up 0.0024% of the selected population, while a variant with an enrichment
ratio of 4 and makes up 0.8% of the selected population. Among 500,000 sequence reads from
the selected library, the former variant is observed 12 times and the latter 3,400 times.

Fig 3. Enrichment ratio of a clone as a function of its abundance in the selected population. The
dynamic range of the method lies between enrichment ratios of-4 to 4 (indicated by horizontal dashed lines)
such that (i.) single clones do not dominate the selected population; and (ii.) loss-of-function clones are not
completely removed from the population.

doi:10.1371/journal.pone.0118193.g003
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Enzymes: Growth selections. The enrichment value (εi) of an individual variant i depends
on the average growth rate of the library population (�mp), the number of doubling times the

culture is allowed to grow (gp), and the growth rate of the individual variant (μi):

ei ¼ gp
mi

�mp

� 1

 !
ð12Þ

Growth selections should be designed such that the number of generations the culture is al-
lowed to grow fits a reasonable time frame (under 2 days) and there is high resolution of fitness
for the entire library. Fig. 4 shows the enrichment ratios for a range of specific growth rates rel-
ative to the population-averaged growth rate for different numbers of doubling times. Accord-
ing to these results, the dynamic range of protein activities is maximized between five and ten
doubling times. This range allows resolution of all variants with growth rates above 0.2 of the
population-averaged growth rate. Furthermore, limiting the number of doublings minimizes
the effect of spontaneous mutations in the background strain [43].

Protein Binders/Transcriptional Regulators/Membrane Proteins: FACS Screens. FACS
is used in many different screening scenarios including protein binding, transcriptional activa-
tion, gene silencing, and localization studies [9,10,44–46]. In each of these screens the presence
of cellular fluorescence corresponds to some underlying protein activity. In yeast display, the
binding affinity of a given protein-protein or protein-small molecule interaction is assessed by
binding of a biotinylated protein or small molecule (present at a concentration near the dissoci-
ation constant for the interaction) to a surface-displayed protein, followed by labeling with
fluorescently-conjugated streptavidin [37]. In this case, higher fluorescence indicates increased
binding affinity for the biotinylated protein.

The distribution of fluorescent intensity for individual cells is log normally distributed
(Fig. 5A) with a mean fluorescence �Fi and a clone-independent standard deviation σ´. To sort
populations, square (normal to one axis) or diagonal gates (normalizing for surface expression)
are usually drawn (Fig. 5B); these gates sort a specific fraction of the population, ϕ, that exceeds
a gating fluorescence, Fg. Sorting cells using one-color (square gate) is most common. However,
two-color sorting (diagonal gating) is often used to correct for intrinsic noise caused by distri-
butions in cell size, among other factors [47]. Similarly, two-color sorting can be used in pro-
tein display techniques to normalize for cell-to-cell variation in surface expression [48]. Two-
color sorting results in a log normal distribution for the transformed fluorescence but with a
significantly reduced standard deviation. As such, these sorts can be described by the FACS
equations derived in the Theory section. Gating the top fraction of the fluorescent distribution
enriches the sorted population in variants with enhanced activity. The enrichment ratio of a
single clone can be described by rearranging Equation (18):

ei ¼ log2
1� erf

s0
2 þln

Fg
Fi

s0
ffiffi
2

p
	 
	 

�

2
64

3
75� 1 ð21Þ

where εi is the enrichment ratio of an individual clone, σ´ is the standard deviation of the
single-clone log-normal fluorescence distribution, �F i is the mean fluorescence of an individ-
ual mutant, Fg is the gating fluorescence and ϕ is the gating percentage (Fig. 5A). σ´ can
be calculated independently for a clonal population of the starting variant using the
fluorescence distribution.

To determine optimal sorting parameters, we have plotted enrichment ratios as a function

of the ratio of individual fluorescence to the gating threshold for fluorescence �F i
�Fwt

	 

at different
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gating percentages (Fig. 5C). It should be noted that the gating threshold is dependent on the
fraction of cells that will be collected. A less-stringent gate, with ϕ equal to 10%, provides a
wide distribution of enrichment values for many of the clonal populations but will not resolve

differences in binding above �F i
Fg

	 

>1.3. A stringent gate at ϕ = 1% enriches strong binders to

Fig 4. Growth Selection Parameters. The parameters of growth-based selections should be chosen such
that the range of enrichment ratios for the population lies between-4 and 4. A. Enrichment ratios as a function
of the individual growth rate compared to the population growth rate. Following one generation of population
growth (blue) the enrichment ratios remain around zero. Increasing the number of population generations the
experiment is allowed to grow (1 generation, blue, 5 generations, red and 10 generations, green) increases
the experimental resolution in discriminating mutant growth phenotypes. B. Enrichment ratios as a function of
average population generation (gp) for various

mi
mp
. For mi

mp
values less than one (0.1, red; 0.5, blue; and 0.667,

green) the enrichment ratios decrease with increasing population generations. Variants with values mi
mp
values

above one (1.5, black) show enhanced enrichment with increasing population generations.

doi:10.1371/journal.pone.0118193.g004
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a ratio of about 6, providing little information about poor binders. We find the optimal ϕ to be
around 5%, where the enrichment ratios of both poor binders and strong binders (relative to
the original binding interaction) fall within the dynamic range of 4 to -4 (Fig. 5C). FACS selec-
tions should be designed such that the ratio of the fluorescence for the starting construct rela-
tive to the anticipated gating threshold is less than 0.5. The actual gating threshold Fg, however,
is governed by ϕ, the percentage of the cells that will be collected. Another parameter that can
be modified is the log-transformed standard deviation of the fluorescent distribution. For ex-
ample, this standard deviation can be decreased by drawing a diagonal gate so that the popula-
tions are sorted by two fluorescent parameters, which compensates for certain sources of noise.
Fig. 5D shows the enrichment ratio of clones as a function of the ratio of individual fluores-
cence to the gating fluorescence at a single gating fluorescence for different standard deviations.
Populations with a smaller standard deviation show a smaller range for collection than those
with a larger standard deviation. It is recommended that for applications where elucidation of
gain-of-function and loss-of-function variants is desired, a square gate should be used. Howev-
er, a diagonal gate should be used for enriching the population to uncover mostly
improved variants.

Fig 5. FACS Selection Parameters. A. Individual fluorescence from a clonal population of cells is log-normally distributed with a log-transformed standard
deviation σ´, log-transformed mean fluorescence F

�
i 
0 and mean fluorescence F

�
i . Cells are collected based on the gating fluorescence, Fg, which controls the

fraction of cells collected, φ. B. Sample FACS readout for yeast-surface display. The x-axis represents the fluorescence of the displayed population, whereas
the y-axis represents the fluorescence of the binding activity of interest. Both square (solid line) and diagonal (dashed line) gates can be drawn around the
population to be sorted. Diagonal gates will decrease the standard deviation of the transformed fluorescence distribution, narrowing the range of protein
activities that can be resolved.C. The enrichment values as a function of the ratio of the individual fluorescence to the gating fluorescence for different gating
percentages (1%, green; 5%, red; 10%, blue) for σ´ = 0.6. In more stringent sorts, resolution is lost in the enrichment ratios for poor binders. The dynamic
range for the fraction of cells collected is between 5 and 10%. D. The enrichment values as a function of the ratio of the individual fluorescence to the gating
fluorescence for different standard deviations (1.0, green; 0.6, red; 0.3, blue) for a gating percentage of 5%. Setting smaller standard deviations by two-color
sorting using diagonal gates narrows the dynamic range of enrichment values for the sorted populations.

doi:10.1371/journal.pone.0118193.g005
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Finally, in the specific case of yeast surface display of protein binders we label the displayed
proteins at levels approximately half of the dissociation constant for the starting protein-ligand
interaction. Optimal labeling concentrations can be calculated using parameters set by Boder
andWittrup [49]. Higher activity variants are often isolated using multiple sorts from yeast dis-
play or other display-based methods. However, our normalization equations only allow quanti-
tative comparisons between populations occurring during a single sort. Theoretically using one
sort is sufficient to resolve most of the population while minimizing time and down stream
processing for FACS. As necessary, further sorting can be done to finely discriminate among
the enhanced binding variants (Fig. 4C). In the specific case of yeast surface display, the label-
ing concentration for the second sort can be set at a much lower level than the first sort. Analy-
sis of the population frequencies after the second sort compared to the first sort can be done
using the same normalization equations as above.

Deep Sequencing Library Preparation
Deep sequencing was used to obtain count data of each variant in the population using an Illu-
mina MiSeq in 150-bp paired end mode. Plasmid DNA was extracted using a Qiagen miniprep
kit (for E. coli) or a modified smash and grab protocol (for S. cerevisiae; see S4 Note). Following
plasmid extraction, a modular two-step PCR method was used to amplify the gene tile and to
add the Illumina sequencing, adaptor, and barcode sequences (Fig. 6). The two-step PCR pro-
cedure involves two sets of primers. The first, inner, set amplifies out the gene tile using the
gene sequence up- and downstream of the tile and attaches a segment of the sequencing

Fig 6. 2-step PCRmethod for deep sequencing preparation of libraries. PCR reactions are shown for
two separate gene tiles containing single mutations (orange and green). Primers are designed to be
complementary to flanking regions (grey) of each tile, with encoded single mutations. The first set of primers
includes the flanking regions and Illumina sequencing primers (purple). In the next step, outer primers add the
Illumina adaptor (pink) and multiplexing index (teal) sequences to the gene. The PCR reaction is performed in
a single tube using a 1:2 molar ratio of inner to outer primers and bead purified to remove primer dimer
products. The purified library is ready for sequencing without further modifications. While the first set of
primers is specific to a single gene tile, the outer primer set is universal.

doi:10.1371/journal.pone.0118193.g006
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primer. Inner primers are specific to each tile and can be designed using a custom script
(S2 Script). The outer primers attach the Illumina adaptors and a barcode on the 3’ end of the
gene. These primers are a universal set and can be used across different experiments (full se-
quences listed in S2 Table).

Three different PCR methods (Methods A, B, and C, S3 Table) were used to attach both sets
of primers to an unselected library of LGK variants, and frequencies of each variant were quan-
tified by deep sequencing. If there were no differences in PCR bias among methods, the error
in calculating the normalized amount (frequency) of each variant in the population would ap-
proach the Poisson limit. Comparisons of variant frequency between Method A and Method
B show error between methods approaching this theoretical minimum (Fig. 7A). By contrast,
Method C shows much larger differences with respect to Method A (Fig. 7B) indicating a bias
in the PCR method. S2 Fig. shows the protein mutation distribution compared to the theoreti-
cal coverage for this unselected library following preparation for sequencing by each of the dif-
ferent methods. Amino acid mutations are enriched in proline (CCN), alanine (GCN),

Fig 7. Errors introduced by different PCRmethods. Identical mutant libraries were prepared for
sequencing using three different PCRmethods. The number of counts for each library member was
compared across the different methods. Each point represents a specific mutant sequence. For each panel,
dashed black lines represent the 95% confidence interval for the Poisson noise between different methods.
A. Method B v. Method A. Above 10 counts, the data fall almost completely within minimal error predicted by
Poisson noise. B. By contrast, Method C shows significant variance in counts relative to Method A.

doi:10.1371/journal.pone.0118193.g007
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histidine (CAT, CAC) and arginine (CGN) most likely because of the overrepresentation of G
bases in the NNN codons in the primer set as discussed above. While proline is grossly over-
represented in the library as a consequence (20% reads vs. 5% from theoretical expectation),
this bias is tolerable because of oversampling of population members in sequencing. From
these results we recommend Method A as it requires the least amount of hands-on and
setup time.

Normalization and Data Analysis
The frequency of individual variants in selected and unselected populations is extracted from
raw sequencing files using the Enrich software suite [26]. Briefly, the forward and reverse reads
are aligned, errors between reads are resolved, and the combined sequence is aligned to the
starting DNA sequence. Each mutation is recorded and counted, these counts are normalized
to frequencies, and the enrichment ratios are found by comparison of the frequency of a given
mutant in the selected to the unselected population. To facilitate comparisons of variants
across different selection conditions, we have derived normalization equations that transform
these enrichment ratios (εi) to an objective fitness metric. If a variant is not present in the unse-
lected library then we are unable to determine the fitness metric for that variant.

For growth-based selections, this fitness metric is defined as:

zi ¼ log2

ei
gp
þ 1

ewt
g
þ 1

 !
ð11Þ

This metric requires two additional pieces of information. First, the enrichment ratio of the
starting or reference sequence must be known (εwt). Fortunately, this reference variant is gen-
erally present in the library, regenerated at each position by the appropriate NNN primer. Sec-
ond, the number of doubling periods (gp) for the culture must be calculated from the initial
and final optical cell density.

To determine whether this relation could reproduce the fitness of individual variants in dif-
ferent populations, we grew populations of E. coli harboring plasmids expressing different lev-
els of eGFP expression [22]. Differential expression results in growth differences among
individual strains of nearly 2-fold (n = 11; range 0.46� μi � 0.76 h-1). Initially, we mixed these
variants into a single population and determined individual fitness values after 8.6 average pop-
ulation doublings. Then, we mixed subsets of these variants into two different populations and
again determined individual fitness values. Ideally, these fitness values would be exactly the
same across the different populations. A best-fit regression line of the fitness values for individ-
uals compared across the different populations gives a slope of 1.04 (R2 = 0.96), very close to
the ideal case of 1 (Fig. 8). Based on these results, we conclude that the derived relation is an ef-
fective way to normalize the fitness of individual mutants across different populations, thus al-
lowing quantitative comparisons across different selected populations.

In the case of FACS, fitness can be measured across populations according to the following
relation:

zi ¼ log2½e
ffiffiffi
2

p
s0ðerf �1ð1� �2ewtþ1Þ � erf �1ð1� �2eiþ1ÞÞ� ð20Þ

Thus, the fitness of an individual variant zi can be derived from its enrichment ratio (εi)
given the enrichment ratio of the wild type (εwt), the percentage of the entire population col-
lected under the sorting gates (ϕ), and a log2-transformed standard deviation of fluorescence

for a variant (σ0). Since this standard deviation is a scalar in the function, rank ordering of fit-
ness across different populations can be done without directly measuring this quantity. By
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contrast, the gating percentage of the library is easily measured. Thus, experimentally measured
parameters, combined with this relation, allow unambiguous comparisons of variants across
different populations.

Conclusions
In this paper we have presented a standardized method for producing the sequence function
determinants for entire protein sequences. Furthermore, we have derived equations that allow
users to identify optimal selection conditions for their target of interest and to directly compare
variants across different populations. Using this method, users can create functional landscapes
for full-length genes quickly and efficiently. These landscapes can be applied to protein engi-
neering, for antibody-epitope mapping, and for many different end uses. Additionally, these
landscapes can be integrated with computational design methods, either by highlighting exist-
ing shortcomings of computational prediction software or as experimental data to guide
computational trajectories in search algorithms [50].

The best practices and a step-by-step protocol governing each step in the process are listed
in S2 Note. These guidelines add to the body of literature for recent sequence-function map-
ping protocols [13–15,51,52]. Notably, many of the individual steps presented here are fully
compatible with, and can enhance, these other published protocols. For example, the general
fitness equations derived for growth-based selections can be used to optimize experimental set-
up for the EMPIRIC approach [15]. Additionally, the general gene tiling and primer design
strategy can be applied for assessing full-length sequences with EMPIRIC.

Because of the gene tiling approach, there is no practical upper limit on a gene sequence to
be tested. In principle, this approach can be applied to targets much larger than single gene
products like complete metabolic pathways. One downside of current approaches is that short
read lengths inherent in existing sequencing platforms limit libraries to single mutants or cou-
pled mutants that are proximal in a contiguous stretch of the gene. Resolving this limitation re-
quires new sequencing methods able to resolve long reads with very low error rates. In the near
future, perhaps sequencing-function mapping of multiple simultaneous mutations can be used

Fig 8. Experimental validation of growth rate normalization relation. E. coli harboring 11 different
plasmids driving differential eGFP levels were grown in a single population or in two separate populations.
The fitness from the separate populations (represented by blue and red open circles) and combined
populations were evaluated and compared. Error bars represent one standard deviation from two
independent experiments. The solid black line represents the theoretically ideal relationship between
individual and combined fitness.

doi:10.1371/journal.pone.0118193.g008
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as a way to fine tune cooperation effects between different beneficial mutations or neutral mu-
tations identified from a single-site saturation mutagenesis library.
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The distribution of the individual growth rates in the population was assumed to be a bimodal-
guassian with means of μi/μp = 0.2 and 0.9 and a standard deviation of 0.06, broadly consistent
with individual variant growth rates observed for a library. B. Here the assumed double trans-
formation rate is assumed to be 10% and the correction factor is plotted for different numbers
of population doubling periods. (2 red, 5 blue, 8 black,10 green). C. Here the assumed popula-
tion doubling periods is 8 and the correction factor is plotted for different double transforma-
tion rates. If the double transformation rate is less than 10% and the population doubling
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S2 Fig. Library Amino Acid Composition and PCR Bias Determination. The distribution of
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for different growth experiments are recorded. Recorded errors are listed as one standard devi-
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S2 Table. Primer Sequences. Primer sequences for deep sequencing preparation.-LGK and
GFP-named sequences are the inner primers (gene-specific primers) consisting of gene overlap
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