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Abstract
Tiger sharks (Galeocerdo cuvier) are apex predators occurring in most tropical and warm

temperate marine ecosystems, but we know relatively little of their patterns of residency and

movement over large spatial and temporal scales. We deployed satellite tags on eleven tiger

sharks off the north-western coast of Western Australia and used the Brownian Bridge kernel

method to calculate home ranges and analyse movement behaviour. One individual recorded

one of the largest geographical ranges of movement ever reported for the species, travelling

over 4000 km during 517 days of monitoring. Tags on the remainder of the sharks reported

for shorter periods (7-191 days). Most of these sharks had restricted movements and long-

term (30-188 days) residency in coastal waters in the vicinity of the area where they were

tagged. Core home range areas of sharks varied greatly from 1166.9 to 634,944 km2. Tiger

sharks spent most of their time in water temperatures between 23°-26°C but experienced

temperatures ranging from 6°C to 33°C. One shark displayed seasonal movements among

three distinct home range cores spread along most of the coast of Western Australia and gen-

eralized linear models showed that this individual had different patterns of temperature and

depth occupancy in each region of the coast, with the highest probability of residency occur-

ring in the shallowest areas of the coast with water temperatures above 23°C. These results

suggest that tiger sharks can migrate over very large distances and across latitudes ranging

from tropical to the cool temperate waters. Such extensive long-termmovements may be

a key element influencing the connectivity of populations within and among ocean basins.

Introduction
Throughout human history, top-order predators have been disproportionately and negatively af-
fected by anthropogenic activities, both directly through human behaviour such as hunting and
indirectly by alteration of habitat and depletion of their food resources [1–4]. We now know that
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the ecological impacts of our elimination of top-order predators can be severe, leading to shifts
in the composition and resilience of ecosystems through processes such as mesopredator release
and trophic cascades [3,5,6]. Globally, the removal of sharks due to fishing has accelerated rapid-
ly in recent decades, with the result that many species are now threatened with or vulnerable to
extinction in many regions [7–12]. There is a growing recognition of the importance of sharks as
keystone species in the structuring of marine ecosystems through their influence on species com-
position, biomass and the trophic roles of prey assemblages [10,13–15]. However, we remain
largely unaware of some of the most basic aspects of the ecology of many species, including
movement patterns and habitat requirements. As top-order predators, sharks tend to have large
body sizes [16] and thus generally require large areas in which to forage. For this reason, they are
likely to undergo long distance (10–1000s km) movements that could bring them into contact
with multiple habitats, ecosystems and anthropogenic threats [16–18].

Tiger sharks (Galeocerdo cuvier) are one of the largest sharks, growing to over 5 m [19–21]
and the species is both an apex predator and scavenger that occurs in most tropical and warm-
temperate marine ecosystems. They feed on a wide array of prey [20,22–29], on which they
exert both lethal and behavioural risk effects [30]. Globally, anthropogenic threats to popula-
tions of tiger sharks include commercial fisheries [7,31–34] and illegal, unreported and unregu-
lated (IUU) fishing [9]. Moreover, they have been targeted by shark control programs as
a species potentially dangerous to humans [35–40] and evidence of declines in populations of
tiger sharks have been reported by beach meshing programs in some areas of Australia [21,41].
However, while the species is classified as “Near Threatened” by the International Union for
the Conservation of Nature (IUCN) due to evidence of declines in some populations [42],
broad-scale trends in abundances are still unknown.

Given the anthropogenic threats to these apex predators, information on their movement
behaviour, particularly over large spatial and temporal scales (100s—1000s of km, months to
years) is essential for the development of appropriate management and conservation strategies
[43–46]. To date, most information on the horizontal movements of tiger sharks is available
from SPOT and PAT satellite tracking studies conducted at relatively small temporal scales
(<1 year; e.g. [47–51]). The information provided by SPOT transmitters is usually limited by
the relatively short intervals that sharks spend on the surface, which results in low numbers of
location estimates, obtained at irregular intervals and typically with low spatial resolution
[47,49]. Additionally, physical damage, biofouling and premature shedding of tracking devices
are also widely reported [47,48,52,53], resulting in short and sparse location data sets. For PAT
tags in particular, deployment periods are commonly much shorter than programmed due
to tag damage and biofouling that may cause premature release of the tag. Longer-term track-
ing studies have used passive acoustic telemetry to monitor movements of tiger sharks
(e.g. [51,54–56]), but these are limited by the detection range of receivers and the number and
scale of receiver arrays [57]. Overall, these studies have shown high individual variability in
movement patterns of tiger sharks, with some degree of residency in particular habitats inter-
spersed with occasional forays into the open ocean [47,48,51].

Due to the short duration of most tracking datasets it is unclear whether the wider move-
ments across scales of 1000s of km, typical of other large sharks such as basking (Cetorhinus
maximus), white (Carcharodon carcharias) and whale sharks (Rhincodon typus) [58–64] might
also exist for tiger sharks. Our study reports on the results of the deployment of eleven satellite
transmitters on tiger sharks, one of which produced one of the longest duration tracks ever re-
corded for the species (517 days). In combination with the results from the other deployments,
we examined horizontal and vertical movements of tiger sharks and quantified habitats of high
and low use. We hypothesise that tiger sharks display a mix of both restricted and transient
movement, and that residency patterns will be driven by water temperature and bathymetry.
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Material and Methods

Ethics statement
This project was conducted under permit number SF6104, WA Fisheries permit 2007–30–32, and
ethics approvals A07035 (Charles Darwin University Ethics Committee) and DPIW 7/2007–08.

Tiger sharks were caught using longlines off Ningaloo Reef, Western Australia, in June
2007, August 2008 and May-June 2010. Between 118 and 350 hooks were set at approximately
10 m intervals along one to five demersal longlines deployed on the seaward side of the reef
each day. Longlines were usually deployed at dawn, with a few deployments at dusk. Short soak
times of between 2.2 h to 5.2 h were used to maximise the survival rates of captured sharks.
One shark (Shark 7) was caught by rod and reel between longline sets. Hooked sharks were
brought on deck or restrained in a stretcher at the stern of the vessel, measured and sexed. Elev-
en tiger sharks were instrumented with fin-mounted satellite-linked transmitters (SPOT4,
SPOT5 or SPLASH tags, Wildlife Computers, Redmond, Washington, USA), however, three
did not report any data after they were deployed (Table 1). All reporting transmitters relayed
satellite positions via the ARGOS satellite network and time-at-temperature histograms in
14 user-defined temperature ranges from 0°C to 60° (± 0.2°C). Two SPLASH tags (Table 1)
also relayed summaries of time-at-depth with user-defined depth ranges of 0–600 m and
0–800 m (± 0.5 m).

Position estimates were provided by ARGOS with an associated error (Location Class (LC)
of 3 (<250 m), 2 (250–500 m), 1 (500–1500 m), 0 (>1500 m), A and B (not specified), www.
argos-system.org). A small amount (0.5%) of location points were excluded or substituted by
the secondary location estimate reported by ARGOS because they were obviously erroneous,
i.e. they were well beyond the bounds of possible distances the shark could have travelled based
on both earlier and later location estimates for the track. An analysis of the travel speed found
that these erroneous locations required a travel speed of>1000 km per day. More advanced fil-
tering methods were attempted, such as a Bayesian state-space model, however, the models did
not converge, probably due to the sparseness of the data.

We calculated the home range of tiger sharks using the Brownian Bridge kernel method using
the adehabitatHR package in R software V2.15.3 [65,66]. This method takes into account not
only the shark locations, but also the path travelled by the animal between successive locations
[67,68] by applying a conditional random walk to model the expected path between locations.
Two smoothing parameters were set: sig1, which controlled the width of the “bridge" connecting
successive positions (this is the Brownian Bridge motion variance parameter—BMV); and sig2,

Table 1. Details of satellite transmitter deployments on tiger sharks.

ID Fork length (cm) Sex Date deployed Location Type Duration of transmissions (days) Locations day-1 (mean ± sd)

1 145 F 19/06/2007 23.32°S 113.71°E SPOT 7 0.75 (±1.16)

2 276 F 21/06/2007 22.97°S 113.76°E SPLASH 14 0.92 (±1.50)

3 179 F 17/08/2008 21.86°S 113.96°E SPOT 105 0.18 (±0.43)

4 214 F 19/08/2008 22.38°S 113.73°E SPOT 70 0.54 (±0.83)

5 222 F 19/08/2008 22.42°S 113.71°E SPOT 517 0.43 (±0.95)

6 333 M 27/05/2010 23.07°S 113.70°E SPOT 191 1.86 (±1.66)

7 224 M 2/06/2010 21.58°S 114.52°E SPOT 38 0.60 (±0.72)

8 240 F 30/05/2010 22.27°S 113.72°E SPLASH 154 0.04 (±0.19)

9 155 F 19/06/2007 23.35°S 113.72°E SPOT Did not report

10 252 F 21/06/2007 22.97°S 113.76°E SPLASH Did not report

11 254 F 20/08/2008 22.66°S 113.60°E SPLASH Did not report

doi:10.1371/journal.pone.0116916.t001
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which was related to the imprecision of the positions. Values of sig1 were chosen using the func-
tion liker that implemented the maximum likelihood approach developed by Horne [68] and
sig2 was set at 1.9 km, the median ARGOS location error across pooled position classes [69].
Tracks from Sharks 1 and 2 were removed from the analysis due to their very short length (7 and
14 days respectively). Because of the possibility of effects of tagging on behaviour, we assumed
that the first two weeks might not be representative of the shark’s natural behaviour [70]. Loca-
tion estimates from Sharks 3 and 8 were particularly sparse (0.18 and 0.04 locations per day re-
spectively), and Shark 3 had a very high Brownian Bridge motion variance parameter compared
to the scale of the shark’s movements (sig1 = 822.5). Consequently, these tracks were not includ-
ed in further analyses of home range.

The proportion of observations in each temperature and depth bin was calculated from
time-at-temperature and time-at-depth histograms provided by the tag to determine thermal
and depth range of all sharks. For one shark (Shark 5), time-at-temperature histograms associ-
ated with latitude/longitude information were used to assess variation in the proportion of
time at temperature. Water temperature profiles were constructed from data downloaded from
IMOS floats (IMOS, http://imos.aodn.org.au/imos/) located in the vicinity of position uplinks
within a week of the time the uplinks were recorded (South coast of WA: 35.378°S, 119.531°E;
North coast of WA: 17.604°S, 117.657°E). Maximum possible diving depth of Shark 5 was esti-
mated by comparing the minimum temperature registered by the shark’s tag with profiles of
water temperature from IMOS floats in the same region where the shark was resident. The
maximum depth of descent was assumed to be the greatest depth in the water temperature pro-
file where the minimum temperatures reported by the tag and those of the water temperature
profile were the same. For the track with multiple home range cores (Shark 5), movement pat-
terns were categorised as within and outside the 25% utilisation distribution. We then used
generalised linear models with a binomial distribution and a logit link function to assess the re-
lationship between the probability of the shark being in a home range core and water tempera-
ture, bathymetry and region of the WA coast (north—latitude< 24°S and south—latitude
>24°S). We were not able to fit all three explanatory variables in one model as there was no
overlap of the temperature ranges between the two regions. Consequently, we fitted a model to
examine the probability of being in a home range core in relation to bathymetry and region
and two separate models (using the data from north and south coasts, respectively) to examine
the probability of the shark being in a home range core in relation to sea surface temperature.
To address the autocorrelation present in the data we used a matched-block bootstrap sam-
pling for all models with replacement procedure [71,72] that resampled blocks of data random-
ly and then recombined them in a random order, creating a bootstrapped dataset that
minimized the effect of autocorrelation [71–73]. Model fitting was applied to 100 bootstrapped
samples and model selection used the sample-corrected Akaike’s information criterion (AICc),
AICc weight (wAICc), and percent deviance explained (%DE) [74,75]. Bathymetry data with
a grid resolution of 2’ from ETOPO1 database hosted by the NOAA was obtained by the R soft-
ware packagemarmap [76]. Daily Sea Surface Temperature was obtained through the daily
Optimum Interpolation Sea Surface Temperature (OISST) analysis [77] on a 0.25 degree
latitude/longitude grid from NOAA’s National Climatic Data Centre (ftp://eclipse.ncdc.noaa.
gov/pub/OI-daily-v2/NetCDF).

Results
The time that data was received from the tagged sharks varied greatly among individuals
(7 to 517 days; Table 1). 49% of locations were fromARGOS Location Class B, 20%were from Loca-
tion Class A and only 31% of locations were within Location Classes 3–0. Four satellite transmitters
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provided data for less than 100 days but even the longest deployments had long periods of no trans-
mission. For example, Shark 5 had a period of 118 days betweenMay and September 2009 when no
location data were transmitted, while Shark 8 did not transmit data between July and October 2010.

Transmitters deployed on three sharks (1, 2 and 7) provided data for only 7, 14 and 38 days
respectively. During this time they occupied waters with average depths of 42.2 m (± 26.8 m sd)
and their movements were restricted to the vicinity of where they were initially tagged (Fig. 1A)
on the shelf. Three sharks (3, 4 and 6; Fig. 1B–C) stayed within shelf waters that averaged
117.5 m deep (± 113.0 m sd). Shark 6’s movements were restricted to a relatively small area
(1166.9 km2) off the Ningaloo Reef for six months (Fig. 1C). Shark 8 moved 303.4 km from the
point of first capture and tagging into waters over 5000 m deep, where the last data transmission
was received (Fig. 1B). There were six position estimates in this area and the data were very limit-
ed for the duration of tracking (154 days between tagging and the last uplink). One shark
(Shark 5) ranged over 4000 km and apart from one period of approximately three and a half
months, provided relatively frequent transmissions over 517 days of monitoring (Fig. 1D).

The kernel utilisation distributions of all sharks indicated movement between coastal re-
gions and islands or atolls off the north coast of Western Australia, with predominant use of
coastal waters (Fig. 2). The 50% kernel utilisation distributions varied greatly in area from
1166.9 km2 to 634,944 km2 among sharks (Fig. 2). Overall, a total of 56.7% of all locations re-
ceived from the satellite transmitters were within the Commonwealth Marine Reserve network.
All sharks had some locations inside marine reserves and six of the sharks had 50% or more lo-
cations inside reserves (Fig. 1).

Fig 1. Movement patterns of tiger sharks in Western Australia.Maps show location uplinks of 8 tiger sharks. Triangles indicate tagging location and grey
polygons indicate Commonwealth Marine Reserves.

doi:10.1371/journal.pone.0116916.g001

Tracking of an Apex Predator

PLOS ONE | DOI:10.1371/journal.pone.0116916 February 11, 2015 5 / 17



Shark 5, a 222 cm female, was monitored for 517 days and ranged from 10.4°S to 35.8°S of lat-
itude and from 113.0°E to 124.1°E of longitude (Fig. 1D). The transmitter was deployed on this
shark at Ningaloo Reef and the shark then moved along the 500 m bathymetric contour to the
Rowley Shoals and Kimberley region. It then made a path to Sumba Island, Indonesia, and re-
turned, crossing ocean depths of 5 km and covering a distance of more than 1000 km in 2 weeks.
In December 2008 the shark moved south, traveling to waters off Jurien Bay and Perth between
January-February 2009. Between April and May 2009 the shark rounded Cape Leeuwin with
transmissions clustering off Albany. After a period of no transmissions (118 days), the tag then
started to transmit again in September when the shark moved towards the north, returning again
to Perth/Jurien Bay in January 2010. The shark had three distinct areas of 50% Brownian Bridge
kernel utilisation that included a large area off the north coast of Western Australia, another off
Jurien Bay and Perth and a smaller one off the coast of Albany (Fig. 2).

Temperatures experienced by sharks ranged from 6°C to 33°C. Overall, tiger sharks spent most
of their time in temperatures between 23°-26°C (Fig. 3). The shark with the widest latitudinal range
of movements (Shark 5) also experienced the greatest range of temperatures (from 10°-33°C), but
spent approximately 78% of time in temperatures between 23°-29°C. It also experienced different
ranges of temperature in each home range (Fig. 4). Off the Kimberley and Pilbara coasts (10°-24°S
of latitude) the temperature range experienced by the shark was much greater (10°-33°C) than
when the shark visited the south coast off Albany (35°S of latitude; 18°-23°C).

Fig 2. Home range of tiger sharks. The utilisation distribution calculated using the Brownian Bridge kernel method. Black line represents the 50% Brownian
Bridge home range distribution.

doi:10.1371/journal.pone.0116916.g002
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Time-at-depth histograms of the two sharks with SPLASH tags showed that these individu-
als differed greatly in depth range (Fig. 5). The first (Shark 2) did not dive deeper than 150 m,
with 27% of observations between the surface and 5 m and 97% in water depths up to 75 m. Lo-
cations for this shark were all close to the coast in areas around the 100 m isobath. The second
(Shark 8), which moved to pelagic waters experienced a greater range of depths. Though this
shark spent 57% of time between the surface and 10 m, it had a maximum recorded depth of
400 m, with approximately 20% of time spent at 150 m.

Water temperatures reported by Shark 5, which was tracked for 517 days, were used to esti-
mate diving depths. Analyses of the vertical profiles of water temperature in each region where
location data were recorded indicated that the shark was diving up to 380 m in tropical lati-
tudes, but not descending below 100 m in temperate latitudes (Fig. 6). Sea surface temperatures
were consistent with a strong Leeuwin Current that supplied a warm mass of water around the
Cape Leeuwin and Albany coasts with temperatures of 19°-23°C during the time locations
were registered in this region (S1 Fig.). Here, the shark spent 82% of time in waters between
21–23°C (Fig. 4), indicating that it remained relatively close to the surface.

The highest ranking model describing whether the shark remained in a 25% home range core
(i.e. remained resident and did not switch to transit behaviour), included water depth only, and ex-
plained 34.5% of the deviance in the data set (Table 2). There was a negative relationship between
the probability of the shark being in a 25% home range core and water depth, meaning the shark
was more likely to be resident (in a home range core) in the shallower areas and less likely to remain
resident in deeper waters (Fig. 7). Even though the tiger shark crossed areas over 5000 m deep while
migrating, it had low probability of being in a home range core in deeper water (> 1000 m).

Temperature explained 9.7% of the deviance in the probability of Shark 5 being in a home
range core on the north coast and 44.5% in the south (Table 3). In both regions, the shark had
a greater than 80% chance of being in a home range core in temperatures of 23–24°C, suggest-
ing that this was a preferred temperature in both regions (Fig. 7).

Discussion
Tiger sharks are typically considered to be residents of tropical and warm temperate habitats
[20], but individuals appear on a seasonal basis in temperate or cool temperate waters [78].
The most extreme examples of this pattern are the occasional records of tiger shark catches in
the waters of countries such as Iceland [79] and far off the south coast of New South Wales in
Australia [80]. Such occurrences seem to be related to the influx of warm waters brought by
western boundary currents such as the Gulf Stream and the East Australian Current [81–83].
Similarly, in Western Australia the Leeuwin Current flows southward bringing warm, low sa-
linity water along the shelf into the cool temperate environments off Albany (35°S) [84]. In our
study, one shark moved into temperate waters twice, both times during the summer months of
January-February. This implies that such behaviour is most likely to be the result of directed
and seasonal migrations, rather than simply a haphazard event. Other evidence to support this
idea of regular southward movements of tiger sharks during the austral summer comes from
data from beach protection programs, which show that tiger sharks are more common off the
coast of New South Wales, a temperate region in the southeast of Australia, during summer
[41,85], when the warm East Australian Current flows southward. A recent tagging study
found that a tiger shark moved to warmer waters off Queensland during winter and went south
to 37°S latitude during the austral summer [86]. Similarly, the abundance of tiger sharks in the
Aliwal Shoals off South Africa increases during summer months [87].

The shark we tracked for 517 days had home range core areas in both the tropics (15°-20°S)
and the cool-temperate coast off Albany (35°S). The movement of this shark to temperate
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Fig 3. Time spent in each temperature bin. Plots show the percentage of time spent within the specified temperature bins for each tiger shark (ID number
in the top right hand corner of each plot).

doi:10.1371/journal.pone.0116916.g003
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waters off Perth occurred twice in consecutive years, both times during January. Overall, this
track was the longest and covered one of the greatest range of latitudes recorded by satellite te-
lemetry for the species. However, such movements are not entirely without precedent. For ex-
ample, a fisheries tagging study recorded tiger sharks travelling more than 3,400 km in the
Atlantic [88] and recent satellite tagging studies have shown tiger sharks swimming distances
of over 1000 km in the South Pacific [51,86], and as far as 3500 km from the tagging site in the
North Atlantic [89]. A study by Heithaus et al. [47] recorded a potential movement of a tiger
shark of 8000 km from the point where it was tagged in Shark Bay, WA to the coast of South
Africa. However, this result was inferred from a single low-quality position fix that could not
confirm if the tag was still attached to the shark or determine if the position estimate was sim-
ply an artefact of the position estimation algorithm. In our study, associated water temperature
data reported by the tag and multiple position fixes showed that the track of the shark was both
reliable and that the tag remained deployed on the shark. In terms of geographic scale, the
movements of this tiger shark were comparable to those of white sharks (Carcharodon carchar-
ias), which in certain regions appear to display seasonal residency at cool temperate coastal lo-
cations, mostly in areas with high abundances of pinnipeds [90–93], interspersed with long
oceanic migrations into the tropics [60–62,94].

Fig 4. Latitudinal variation of temperature profiles for Shark 5. Percentage of time spent in each
temperature bin at each region of Western Australia for Shark 5.

doi:10.1371/journal.pone.0116916.g004

Fig 5. Time spent in each depth bin. Percentage of time spent in each depth bin for two tiger sharks tagged with SPLASH tags.

doi:10.1371/journal.pone.0116916.g005
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The durations of residency and distances of migration of tiger sharks recorded by our study
appear to be at least partly related to the length of tag deployment. When tags reported for
a short time, movements of sharks tended to be restricted to one home range core within a rela-
tively small area. However, longer-term tag deployments revealed a very different pattern,
where periods of residency were interspersed with long distance (100–1000s km) movements
that appeared both directed and predictable. However, some individuals appeared highly resi-
dent despite relatively long tagging records (up to 6 months) suggesting that two forms of
movement may be present. In our study, home range cores (averaging 4,474.1 km2, excluding
Shark 5) were consistent with earlier work that has shown movement patterns of tiger sharks
off the east coast of Australia [86] and the Florida coast [89].

Similar to our results, most other studies of tiger sharks have also shown that the degree of
residency varies greatly among individuals. Fitzpatrick et al. [55] found that some sharks re-
mained in the area of Raine Island on the Great Barrier Reef throughout the year, while others
ventured into the Coral Sea and to the Torres Strait and northern Great Barrier Reef. Werry
et al [51] found that tiger sharks could reside year-round at the atolls of the Chesterfield Reefs,

Fig 6. Vertical profiles of water temperature. Plots show temperature profiles recorded by Argo floats of the north (17.6°S 117.6°E) and south (35.78°S
119.5°E) sections of the WA coast. Vertical lines represent the minimum temperature reported by the shark’s satellite transmitter and horizontal lines
represent the estimated diving depth.

doi:10.1371/journal.pone.0116916.g006

Table 2. Ranked Generalised Linear Models with bootstrap sampling of the probability of a shark being in a 25% utilisation distribution
explained by bathymetry (Depth) and region of the coast (Region).

Model LL df AICc wAICc %DE LL.25 LL.75 wAICc.25 wAICc.75 AICc.25 AICc.75 %DE.25 %DE.75

Home ˜ Depth -82.456 2 168.967 0.508 34.49 -124.637 -101.77 0.001 0.317 207.595 253.328 5.75E+00 20.347

Home ˜ Depth +
Region

-82.010 3 170.131 0.284 34.84 -122.153 -97.006 0.167 0.5143 200.125 250.417 6.85E+00 23.756

Home ˜

Depth*Region
-81.283 4 170.751 0.208 35.42 -117.994 -95.781 0.221 0.649 199.749 244.173 9.53E+00 25.453

Home ˜ Region -125.803 2 255.661 0.000 0.05 -134.792 -118.812 0 0.001 241.678 273.639 2.98E-01 4.687

Home ˜ 1 (Null) -125.863 1 253.744 0.000 0.00 -137.028 -124.8 0 0 251.619 276.075 -1.91E-14 0

Maximum log-likelihood (LL), degrees of freedom (df), Akaike’s information criterion corrected for small samples (AICc), AICc weight (wAICc), the %

deviation explained (%DE), lower quantile LCI (25th quantile) (25%) for LL.25, wAICc.25, AICc.25 and %DE.25 and upper quantile (75th quantile) for LL.75,

wAICc.75, AICc.75 and %DE.75.

doi:10.1371/journal.pone.0116916.t002
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with other sharks venturing over 1000 km into the open ocean. Meyer et al. [48] found that
some tiger sharks were resident on the French Frigate Shoals of Hawaii throughout the year,
while others were recorded at this locality only when fledging seabirds were available as a food
source during summer. It has been suggested that variations in movement behaviour of tiger

Fig 7. Generalised linear model for Shark 5.Generalised linear model (GLM) predicted probabilities (solid line) of a shark being in a 25% utilisation
distribution in relation to (a) water depth, (b) water temperature in the north and (c) in the south. Dotted lines show the standard error.

doi:10.1371/journal.pone.0116916.g007

Table 3. Ranked Generalised Linear Models with bootstrap sampling of the probability of a shark being in a 25% utilisation distribution
explained by sea surface temperature (Temperature) at the north and south coast separately.

Model LL df AICc wAICc %DE LL.25 LL.75 wAICc.25 wAICc.75 AICc.25 AICc.75 %DE.25 %DE.75

North

Home ˜

Temperature
-94.845 2 193.756 0.999 9.67 -101.645 -80.5813 0.748725 1 165.2297 207.3572 0 0

Home ˜ 1 (Null) -111.514 1 212.024 0.000 0.00 -111.514 -91.553 0 0.251 185.128 225.05 2.184 25.802

South

Home ˜

Temperature
-16.535 2 37.337 1 44.54 -13.75475 0 1 1 4.267 31.7765 0 0

Home ˜ 1 (Null) -29.812 1 61.711 0.000 0.00 -32.895 -29.812 0 0 61.711 67.877 30.254 57.026

Maximum log-likelihood (LL), degrees of freedom (df), Akaike’s information criterion corrected for small samples (AICc), AICc weight (wAICc), and the

% deviation explained (%DE), lower quantile LCI (25th quantile) (25%) for LL.25, wAICc.25, AICc.25 and %DE.25 and upper quantile (75th quantile) for

LL.75, wAICc.75, AICc.75 and %DE.75.

doi:10.1371/journal.pone.0116916.t003

Tracking of an Apex Predator

PLOS ONE | DOI:10.1371/journal.pone.0116916 February 11, 2015 11 / 17



sharks might be due to partial migrations, where only a part of the population would be tran-
sient and perform large scale movements while the other part would show resident behaviour
[51,56]. Although our study was comprised of a small sample size, recent tagging studies in
Florida, Bahamas, Australia and New Caledonia have consistently demonstrated that a few in-
dividuals can move over large distances while most of the remainder sharks show more restrict-
ed residency patterns [51,86,89]. Analyses involving larger datasets are needed to understand
the characteristics of individuals that show these partial and/or complete migrations, to deter-
mine their prevalence and to identify the drivers that lead to differential patterns of movement.

Despite the number of satellite and acoustic telemetry studies now describing the horizontal
movements of tiger sharks (approximately 10 to date) it is difficult to determine if there are
consistent patterns in the life stage or sex of individuals that are likely to remain resident or mi-
grate. Meyer et al [55] suggested that juveniles were more likely to display broad-scale patterns
of movement than other components of the population, a pattern also recorded in Northeast
Brazil [50]. The individual that we recorded moving the greatest distance on the WA coast was
also a sub-adult (female). In contrast, Papastamatiou et al. [56] found that adult females were
the most likely to migrate among the islands of Hawaiian Archipelago, a pattern they attributed
to the movement of females to pupping sites. However, these researchers mostly relied on rec-
ords generated from acoustic tracking and a receiver array in coastal waters, limiting the possi-
bility of recording movements of sharks into the open ocean.

The tiger sharks we tagged showed preferences for temperatures between 23° and 26°C,
consistent with surface waters off Ningaloo Reef [95], although the sharks experienced temper-
atures as low as 6°C. These lower temperatures suggest that sharks were descending below
the thermocline (± 100–200 m depths at Ningaloo Reef; [96]). Data from a SPLASH tag de-
ployed on Shark 8 recorded occasional transits to depths of 400 m, although time-at-depth his-
tograms showed a preference by this shark for shallow waters (65% of time in depths< 50 m)
within the mixed layer of the water column, similar to patterns reported by other studies
[48–51,54,97,98]. For five sharks, location estimates at Ningaloo Reef with depths<15 m sug-
gested that some sharks spent time in the shallow lagoon.

Shark 5 experienced a wide range of temperatures within a home range in the tropics, sug-
gesting that it used the water column to depths of 380 m, well below the thermocline in this re-
gion [96]. When the shark moved to the south coast off Albany, it remained in waters above
100 m deep, implying that its vertical movements may have been constrained by water temper-
atures when in the cooler waters at more southern latitudes.

The long-term residency of tiger sharks in limited areas implies that they may have strong
structuring effects on those ecosystems. A study conducted for 15 years [99] found that the
presence of tiger sharks at Shark Bay had major influences on the behaviour, movement and
feeding of prey such as dolphins, turtles and dugongs, but beyond this largely seagrass habitat,
we have little idea of the role of these predators in environments such as coral or temperate reef
systems. In addition to quantifying the residency patterns of tiger sharks, our study showed
large-scale movements that have implications for conservation, since this behaviour may take
them across management and national boundaries. In our study, more than half of the loca-
tions provided by satellite transmitters were within the Commonwealth Marine Reserves net-
work, although our results also support the suggestion that such regional scale management
zones are likely to only provide temporary protection for some parts of the population or life
history stages [16,51,100,101]. The movement of sharks from Australia to Indonesian waters
also shows that conservation of these animals will also depend on international cooperation to
mitigate anthropogenic threats to the resilience of the species, such as the large IUU shark
fishery in Australia’s northern waters and small-scale shark fishing industry in Indonesia to
the north [9].
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Future research efforts will be aided by technological developments of satellite transmitters
and attachment methods. One such development, the Fastloc GPS, already exists, however is
unavailable on fin-mounted devices. Fastloc tags are capable of acquiring the data required for
a location fix in a much shorter period of time and with greater location accuracy than other
types of satellite tags, improving both the frequency of location estimates and the accuracy of
position fixes. Ultimately, there are two key goals that must be achieved in order to obtain
a better understanding of the movement ecology of tiger sharks: firstly, improved attachment
techniques for tags that allow both frequent uploads of position data and long deployments
(> 1 year) and secondly, tagging of a larger number of animals and a wider range of life history
stages of both sexes. Our study shows that these advances will be necessary to gain a better ap-
preciation of the role of these animals in the ecology of marine ecosystems.

Supporting Information
S1 Fig. Sea Surface Temperature map for 16th May 2009 with location uplinks for Shark 5.
(TIF)
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