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Abstract
The global invasion of Tephritidae (fruit flies) attracts a great deal of attention in the field of

plant quarantine and invasion biology because of their economic importance. Predicting

which one in hundreds of potential invasive fruit fly species is most likely to establish in a re-

gion presents a significant challenge, but can be facilitated using a self organising map

(SOM), which is able to analyse species associations to rank large numbers of species si-

multaneously with an index of establishment. A global presence/absence dataset including

180 economically significant fruit fly species in 118 countries was analysed using a SOM.

We compare and contrast ranked lists from six countries selected from each continent, and

also show that those countries geographically close were clustered together by the SOM

analysis because they have similar fruit fly assemblages. These closely clustered countries

therefore represent greater threats to each other as sources of invasive fruit fly species. Fi-

nally, we indicate how this SOMmethod could be utilized as an initial screen to support pri-

oritizing fruit fly species for further research into their potential to invade a region.

Introduction
Invasive species can have far reaching ecological and economic impacts worldwide [1–4]. One
of the best ways to reduce the likelihood of exotic species invasions is to prevent their establish-
ment, but this relies on being able to initially identify those invasive species with the highest po-
tential to establish [5]. This can be challenging given there are hundreds, or even thousands of
species that have the potential to invade and establish in any particular region or country.
Many researchers do predict where an invasive species could invade and establish and there are
a number of models and approaches used to achieve this. Bioclimatic models in particular,
such as CLIMEX, are widely used to predict the potential distribution of an invasive species
[6–11]. However, these models require a significant amount of distribution and physiological
data, and the model can often take considerable time to develop and validate. As a result, these
models usually only assess one or a few species at a time. Subsequently, there is significant need
to develop methods which can analyze the hundreds of potentially invasive species
simultaneously.
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A self-organising map (SOM) [12], which is a type of artificial neural network (ANN), has
been used previously to simultaneously rank and prioritize a large number of invasive species
by their likelihood to establish in a region. Successful establishment of a species arriving in a
new environment depends on both biotic and abiotic factors, which includes climate and,
often specific, biotic interactions [13]. The particular combination of species in a region en-
compasses these complex factors and their interactions, which can be analyzed in a SOM
model. In other words, if two regions have a similar assemblages, they are likely to have similar
characteristics, and any species present in one of these regions is likely to be able to establish in
the other [5, 14]. Thus, a SOM can analyse presence/absence data for hundreds, or even thou-
sands, of species from all regions of the world simultaneously, looking for patterns in species
associations, whereby regions with similar suites of invasive species are clustered together and
a region-specific likelihood of establishment index (a value between 0 and 1) for each species is
generated [14]. In addition, this approach has been shown to be resilient to significant errors in
the dataset, which will invariably occur [15], and can accurately rank those species that can es-
tablish in a region above those that cannot [14]. Recently, SOM has been applied to a number
of different taxa including insect pests [5, 15, 16], fungal pathogens [14], weeds [17], fish [18],
and nematodes [19]. A SOM analysis can also identify those regions that have the most similar
assemblages and hence present the greatest threat to each other [15, 20].

The family Tephritidae (fruit flies), is among the largest families of Diptera, and includes ap-
proximately 4000 species from 500 genera [21]. Currently, it is generally acknowledged that
there are probably 1500 fruit fly species relating to fruits; more than 250 species of which are of
economic significance [22]. These fruit pest tephritids are found in almost all fruit growing
areas of the world [21], where they can cause serious damage to fruit, sometimes resulting in al-
most total crop failure. Ceratitis capitata (medfly) is one species, which is one of the most im-
portant worldwide threats to fresh fruits [23], and is capable of infesting from 250 to 400 hosts.
For example, this species is estimated to cause US$242 million/year in economic losses in
Brazil alone [24]. This example illustrates that some species can become pests in regions far re-
moved from their native range, which is another reason for their economic importance and
many fruit fly species have been introduced into new areas by human activities either acciden-
tally or on purpose [25]. In view of the huge damage this group of species can cause, and the
fact many have been transported significant distances from their native ranges, many
countries focus on them in international trade and enforce quarantine regulations in order to
limit their further spread [26–27]. Given this, we generated a dataset of the worldwide distribu-
tion of 180 economically significant fruit fly species and analyzed this using a SOM in order to
generate ranked lists for each country and identify those species most likely to establish in each
region. In addition, we examined how the SOM clustered the countries in order to identify
which countries were most similar and hence presented the greatest threat for these fruit fly
species.

Materials and Methods

Data
We initially extracted the data from the Crop Protection Compendium (CABI 2012), a data-
base associated with most areas in the world encompassing a wide range of different types of
information on all aspects of crop protection [28]. The geographical areas represented in the
compendium are countries, with many of the large countries further subdivided into states or
provinces (e.g. Canada, USA, China, Australia and Brazil). There was distributional data for 55
fruit fly species in this compendium. We combined this data with the distributional data of a
further 125 fruit fly species of economic importance extracted from two monographs [21, 25].
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Since most of the fruit fly species’ distribution information was not accurate to the states or
provinces level we only used country level presence/absence data in this study. Subsequently re-
sults of the presence (1) or the absence (0) of each fruit fly species in each geographical area in
the database comprised a 118×180 matrix (180 species in 118 countries).

SOM analysis
A SOM, which is a type of artificial neural network (ANN), is composed of neurons, which
compute values from input data, and are arranged in a regular lattice structure. The SOM is
used to convert high-dimensional data into a two-dimensional map representing the similarity
between data points (in this case, geographic countries). Those data points found close together
on the SOM are more similar than those further away [29]. The SOM is therefore a clustering
method in which similar data points (in multi-dimensional space) are clustered together in the
resultant two-dimensional map [20]. The number of neurons in a SOM is partly determined by
the heuristic rule suggested by Vesanto et al. [30], which is 5√n, where n is the number of spe-
cies. In addition, the two largest eigenvalues are calculated from the data set and the ratio of
length and width of the SOM is set to those eigenvalues. Given this ratio, the final number of
neurons is set as close to Vesanto’s heuristic rule as possible. The map size used in this analysis
was 9×6 (54 neurons) with the standard hexagonal configuration and the recommended num-
ber of iterations: 27000 (500 × the number of neurons). Full details describing a SOM analysis
can be obtained from [5, 29], but essentially each of the 118 countries occupy a point in multi-
dimensional space, described by the 180-element vector that describes the presence or absence
of all 180 fruit fly species in that country. The SOM projects its 56 neurons into this space via
neuron weight vectors. As with the region vectors, these neuron weight vectors are composed
of 180 elements, which defines the neuron’s location in this multidimensional space. Each
SOM neuron therefore occupies a point in the same multidimensional space as the countries,
thereby allowing them to ‘interact’ with the country vectors [20].

When the analysis is initiated, each data point is assessed, and the neuron that is closest
to this data point in this multidimensional space is identified as the best matching unit
(BMU). The neuron weight vector of the BMU is adjusted so that it moves closer to the data
point. Because all neurons are connected together similar to a large 9×6 ‘elastic net’, the
process of one neuron moving exerts a gravitational force that drags other neurons in the SOM
with it. Each country is assessed simultaneously (batch algorithm) to complete one iteration.
With the each subsequent iteration, the SOM neurons spread out in the multidimensional
space to eventually occupy a similar area to the countries. When the analysis is completed,
each country has a BMU, which is its closest neuron. Countries that have similar fruit fly as-
semblages are located close together in the multidimensional space and will have the same
BMU [17].

In this study, the neuron weight vector comprises 180 elements with each element having a
value between (0) and (1). Each element corresponds to one of the 180 fruit fly species and in-
dicates how strongly that species is associated with other species in that neuron (BMU) and
can be interpreted as a likelihood of establishment [5].

The analysis was performed by using Matlab [31] and the SOM Toolbox (version 2.0) devel-
oped by the Laboratory of Information and Computer Science, Helsinki University of Technol-
ogy (http://www.cis.hut.fi/projects/somtoolbox/). SOM weights were then extracted and used
as indices for all fruit fly species for each country in the analysis. Only those species that are
known pests of crops grown in a country were included in that country’s list. Crop data was ob-
tained from the FAO [32].
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Results
Establishment likelihood lists of fruit fly species were generated for all 118 countries included
in the analysis. Of the 180 fruit fly species, most come from only five genera (Table 1). The top
10 ranked fruit fly species, which are currently absent from each country but have a host pres-
ent in that country, were extracted (S1) and we present the top ten ranked species for six coun-
tries (China, USA, South Africa, Argentina, Italy, and Australia) (Table 2).

China and the US are presented as they have the two largest economies in the world and
have been recently identified as central hubs in the agro-food trade network [33]. We also pres-
ent four countries from each of the four remaining continents (South Africa, Argentina, Italy,
and Australia). The top ten fruit fly species currently absent in the US were all Anastrepha spp

Table 1. Numbers of fruit fly species in each continent (except for the Antarctic).

Anastrepha Bactrocera Ceratitis Dacus Rhagoletis others Total

Asia 0 33 2 8 2 15 60

Africa 0 5 12 14 0 13 44

North Americaa 26 5 1 0 15 7 55

South America 36 0 1 0 6 1 44

Europe 0 1 1 0 4 5 11

Oceania 0 25 1 3 0 3 32

world 44 51 12 19 22 32 180

aincludes the Central America and Caribbean

doi:10.1371/journal.pone.0116424.t001

Table 2. Top ten ranked fruit fly species by establishment index for six countries. Only those species currently absent from a country and a
known pest of a host commercially grown in that country were included (for full list see S1 Table).

China SOM Index South Africa SOM Index The United States SOM Index

Bactrocera albistrigata 0.58 Bactrocera cucurbitae 0.55 Anastrepha obliqua 0.83

Bactrocera carambolae 0.48 Dacus momordicae 0.41 Anastrepha striata 0.79

Bactrocera umbrosa 0.48 Ceratitis anonae 0.39 Anastrepha bezzii 0.60

Bactrocera zonata 0.40 Acanthiophilus helianthi 0.21 Anastrepha pickeli 0.58

Bactrocera papayae 0.37 Dacus telfaireae 0.20 Anastrepha antunesi 0.52

Adrama determinata 0.37 Dacus humeralis 0.20 Anastrepha grandis 0.51

Bactrocera arecae 0.29 Bactrocera latifrons 0.11 Anastrepha leptozona 0.50

Monacrostichus citricola 0.29 Dacus vansomereni 0.10 Anastrepha macrura 0.45

Ceratitis capitata 0.20 Bactrocera zonata 0.09 Anastrepha sororcula 0.45

Bactrocera musae 0.19 Ceratitis malgassa 0.08 Anastrepha rheediae 0.38

Argentina SOM Index Italy SOM Index Australia SOM Index

Anastrepha obliqua 0.74 Rhagoletis cingulata 0.30 Bactrocera latifrons 0.75

Anastrepha serpentina 0.69 Carpomya pardalina 0.21 Bactrocera tau 0.72

Anastrepha striata 0.65 Rhagoletis indifferens 0.08 Bactrocera dorsalis 0.58

Anastrepha distincta 0.62 Dacus ciliatus 0.06 Bactrocera caudata 0.56

Anastrepha manihoti 0.47 Bactrocera invadens 0.03 Dacus longicornis 0.54

Toxotrypana curvicauda 0.43 Dacus frontalis 0.02 Bactrocera carambolae 0.48

Anastrepha sororcula 0.41 Ceratitis cosyra 0.02 Bactrocera umbrosa 0.48

Anastrepha bezzii 0.37 Ceratitis quinaria 0.02 Bactrocera zonata 0.40

Anastrepha antunesi 0.33 Ceratitis rosa 0.02 Bactrocera pedestris 0.39

Anastrepha leptozona 0.31 Bactrocera zonata 0.01 Bactrocera papayae 0.39

doi:10.1371/journal.pone.0116424.t002
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while Argentina had nine species from this genus. The US and Argentina shared the same six
Anastrepha species in their top ten, and Anastrepha obliqua was the top ranked species in both
countries. Bactrocera dominated both the China and Australia lists, and they shared three
same species. It’s noteworthy that the top five species in the Australia list are all present in
China. For both South Africa and Italy, the top ten lists were not dominated by any genera.

We also examined how the SOM clustered the countries identifying which countries
have the most similar fruit fly assemblages. All 118 countries were clustered into 35 neurons
(S2 Table). We noted that many of the countries clustered together by the SOM analysis were
also geographically close to each other (Fig. 1). This included North and South American coun-
tries clustered together, many Mediterranean countries of Europe clustered together, some
sub-Saharan African countries, Australia and Southeast Asian countries clustered with China
and India.

Discussion
While the family Tephritidae’s natural range extends to all world regions, the natural ranges
for major pest genera within this group are restricted to particular regions, which explains
some of the patterns we found in the SOM analysis. For example, Anastrepha spp. are found
throughout South and Central America as well as the West Indies, explaining their dominance
in the Argentina list as well as their presence in the geographically connected USA. Further,
Bactrocera spp. are native to tropical Asia, Australia and the South Pacific regions [21], which
explains their dominance in the China and Australia lists.

In Africa, most species which attack commercially grown fruit crops belong to Ceratitis and
Dacus, as well as some Bactrocera species[34], and as a result, these three genera were found in
the South African list (Table 2 and S1 Table). Rhagoletis spp have been found throughout the
temperate areas of Europe, and the top one in the Italy list belong to this genus. Interestingly,

Figure 1. Countries clustering based on fruit fly species assemblages.Map of world showing those countries that were allocated to the same neuron in
a SOM analysis (same colour) and hence those countries that have the most similar fruit fly species assemblages.

doi:10.1371/journal.pone.0116424.g001
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Anastrepha obliqua, the species once established in Florida, which triggered a large fruit fly sur-
vey and eradication campaign in the 1930s [28, 35], is ranked first in both lists of the US and
Argentina. The high ranking of this last species, which previously established in the US, con-
firms the SOM’s ability to identify those species most likely to establish in a region.

It is interesting to note that those countries geographically close have also been clustered to-
gether by the SOM analysis. This is not surprising, as neighbouring countries are more likely to
have similar climatic characteristics and are more likely to have shared fruit fly species because
of their proximity to each other. However, this also means that a species present in a country
will be of greater threat to the neighbouring country if they are found in the same SOM neuron.
This is because they not only are likely to have similar environmental characteristics and simi-
lar crops, but being geographically close makes it easier for a species to find a pathway. For ex-
ample, there is a significant amount of trade between India and China, but the highly ranked
species for China, Bactrocera albistrigata, B. carambolae and B. zonata, are all present in India,
where they are recognized as serious pests of tropical and subtropical fruits [28].

There are a number of points that should also be considered with this analysis. Generally,
for large countries such as Australia, China and USA it would be preferable to utilise species
distributions at their respective states and territories, but this level of data was not available.
Secondly, it is likely that a number of errors in distribution are present in our database, given
its size, but the SOM has been shown to be resilient to an error rate in species distributions of
up to 20% across all countries [15].

The SOM index is a measure of the strength of association of a species with the assemblage
of species in a country. Generally, a species that is widespread will have a high SOM index for a
particular country. This is unsurprising as this is the quantitative equivalent of asking if a spe-
cies has invaded another location [17], which is a common question in risk assessments (e.g.
[36, 37]) and can indicate the environmental tolerances of an invasive species, and/or its ability
to utilise a wide range of hosts/resources. For example, Ceratitis capitata, which is currently
found in 61 countries, was ranked in the top 5 for 29 countries in which it is not currently
found and who grow hosts that could be utilised by this species (S1 Table). Clearly, this ex-
tremely polyphagous [38] and highly invasive species represents a significant threat to those
countries in which it has not yet invaded.

The SOM is a statistical approach to predicting likelihood of establishment and can be used
to identify the most suitable ‘source’ locations for species [15], but it does not evaluate the like-
lihood of a species arriving into a country. Further, the SOM approach does not provide a mea-
sure of the impacts from a species. For fruit flies, each major pest genus has a typical pattern of
host relationships, most Rhagoletis, Dacus and Bactrocera (Zeugodacus) spp. show a strong
preference for attacking species of a single plant family, while Anastrepha, Bactrocera. (Bactro-
cera) and Ceratitis spp. are polyphagous, attacking plants belonging to a wide range of families
[21]. This SOM analysis should only be regarded as a preliminary review of biosecurity risk
[19], and an assessment of arrival likelihood as well as potential impact would augment the
rankings presented here.

A SOM analysis could be used as an initial screening process to reduce the large numbers of
potential invasive species to a more manageable number. Moreover, a SOM analysis could be
incorporated into an expert elicitation process, by providing the experts with an objective as-
sessment of each species’ establishment likelihood [14]. In this study, we have identified those
fruit fly species most likely to establish in six countries and how the world is clustered in terms
of fruit fly assemblages. The SOM indices for fruit fly species currently absent from a country
could be used to guide debate on which species should be listed for national surveillance needs
to achieve early warning. More importantly, the SOM indices could provide a first screen of the
fruit fly species prior to a more complete risk assessment [17].
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Supporting Information
S1 Table. SOM indices of fruit fly species for each country (species only included if absent
from a country and a known pest of a commercially grown host in that country).
(XLSX)

S2 Table. The countries assigned to the same neuron in the SOM analysis (i.e. those coun-
tries with the most similar assemblages).
(XLSX)

Acknowledgments
The authors would like to thank Fan Jiang, Juntao Hu and the other members of the Plant
Quarantine and Invasion Biology Laboratory of China Agricultural University (CAUPQL).

Author Contributions
Conceived and designed the experiments: YJQ DRP ZHL. Performed the experiments: YJQ
CW YF DRP. Analyzed the data: YJQ CWDRP ZHL. Contributed reagents/materials/analysis
tools: DRP. Wrote the paper: YJQ DRP ZHL.

References
1. Davis MA (2009) Invasion Biology. Oxford University Press, Oxford 74–75: 101–106.

2. LaDeau SL, Kilpatrick AM, Marra PP (2007) West Nile virus emergence and large-scale declines of
North American bird populations. Nature 447: 710–U13. doi: 10.1038/nature05829 PMID: 17507930

3. Hulme PE, Pysek P, Nentwig W, Vila M (2009) Will Threat of Biological Invasions Unite the European
Union? Science 324: 40–41. doi: 10.1126/science.1171111 PMID: 19342572

4. Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M, et al. (2000) Biotic invasions: causes, epi-
demiology, global consequences, and control. Ecological Applications 10: 689–710. doi: 10.1890/
1051-0761(2000)010%5B0689:BICEGC%5D2.0.CO;2

5. Worner SP, Gevrey M (2006) Modelling global insect pest species assemblages to determine risk of in-
vasion. Journal of Applied Ecology 43: 858–867. doi: 10.1111/j.1365-2664.2006.01202.x

6. Worner SP (1988) Ecoclimatic assessment of potential establishment of exotic pests. Journal of Eco-
nomic Entomology 81: 973–983.

7. Yonow T, Sutherst RW (1998) The geographical distribution of the Queensland fruit fly, Bactrocera
(Dacus) tryoni, in relation to climate. Australian Journal of Agricultural Research 49: 935–953. doi: 10.
1071/A97152

8. Stephens AEA, Kriticos DJ, Leriche A (2007) The current and future potential geographical distribution
of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bulletin of Entomological Research
97: 369–378. doi: 10.1017/S0007485307005044 PMID: 17645818

9. Geng J, Li ZH, Rajotte EG, Wan FH, Lu XY, et al. (2011) Potential geographical distribution of Rhagole-
tis pomonella (Diptera: Tephritidae) in China. Insect Science 18: 575–582. doi: 10.1111/j.1744-7917.
2010.01402.x

10. Ni WL, Li ZH, Chen HJ, Wan FH, QuWW, et al. (2012) Including climate change in pest risk assess-
ment: The peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Bulletin of Entomological Research
102: 173–183. doi: 10.1017/S0007485311000538 PMID: 22008216

11. Kriticos DJ, Morin L, Leriche A, Anderson RC, Caley P (2013) Combining a Climatic Niche Model of an
Invasive Fungus with Its Host Species Distributions to Identify Risks to Natural Assets: Puccinia psidii
Sensu Lato in Australia. PLoS ONE 8(5): e64479. doi: 10.1371/journal.pone.0064479 PMID:
23704988

12. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biological Cybernet-
ics 43:59–69. doi: 10.1007/BF00337288

13. Mooney HA, Drake JA (1989) Biological Invasions: A Global Perspective. Published on behalf of the
Scientific Committee on Problems of the Environment of the Interregional Council of Scientific Unions
byWiley 37: 525.

Global Establishment Risk of Fruit Fly Species (Tephritidae)

PLOS ONE | DOI:10.1371/journal.pone.0116424 January 14, 2015 7 / 8

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0116424.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0116424.s002
http://dx.doi.org/10.1038/nature05829
http://www.ncbi.nlm.nih.gov/pubmed/17507930
http://dx.doi.org/10.1126/science.1171111
http://www.ncbi.nlm.nih.gov/pubmed/19342572
http://dx.doi.org/10.1890/1051-0761(2000)010%5B0689:BICEGC%5D2.0.CO;2
http://dx.doi.org/10.1890/1051-0761(2000)010%5B0689:BICEGC%5D2.0.CO;2
http://dx.doi.org/10.1111/j.1365-2664.2006.01202.x
http://dx.doi.org/10.1071/A97152
http://dx.doi.org/10.1071/A97152
http://dx.doi.org/10.1017/S0007485307005044
http://www.ncbi.nlm.nih.gov/pubmed/17645818
http://dx.doi.org/10.1111/j.1744-7917.2010.01402.x
http://dx.doi.org/10.1111/j.1744-7917.2010.01402.x
http://dx.doi.org/10.1017/S0007485311000538
http://www.ncbi.nlm.nih.gov/pubmed/22008216
http://dx.doi.org/10.1371/journal.pone.0064479
http://www.ncbi.nlm.nih.gov/pubmed/23704988
http://dx.doi.org/10.1007/BF00337288


14. Paini DR, Bianchi FJJA, Northfield TD, De Barro PJ (2011) Predicting Invasive Fungal Pathogens
Using Invasive Pest Assemblages: Testing Model Predictions in a Virtual World. PLoS ONE 6(10):
e25695. doi: 10.1371/journal.pone.0025695 PMID: 22016773

15. Paini DR, Worner SP, Cook DC, De Barro PJ, Thomas MB (2010) Using a self-organising map to pre-
dict invasive species: sensitivity to data errors and a comparison with expert opinion. Journal of Applied
Ecology 47: 290–298. doi: 10.1111/j.1365-2664.2010.01782.x

16. Gevrey M, Worner S, Kasabovb N, Pitt J, Giraudel JL (2006) Estimating risk of events using SOMmod-
els: A case study on invasive species establishment. Ecological Modelling 197: 361–372. doi: 10.
1016/j.ecolmodel.2006.03.032

17. Morin L, Paini DR, Randall RP (2013) Can Global Weed Assemblages Be Used to Predict Future
Weeds? PLoS ONE 8(2): e55547. doi: 10.1371/journal.pone.0055547 PMID: 23393591

18. Cereghino R, Park YS, Compin A, Lek S (2003) Predicting the species richness of aquatic insects in
streams using a restricted number of environmental variables. Journal of the American Chemical Socie-
ty 22: 442–456.

19. Singh SK, Paini DR, Ash GJ, Hodda M (2013) Prioritising plant-parasitic nematode species biosecurity
risks using self organising maps. Biological Invasions 16: 1515–1530. doi: 10.1007/s10530-013-0588-7

20. Paini DR, Worner S, Cook DC, De Barro PJ, Thomas MB (2010) Threat of invasive pests from within re-
gional borders. Nature Communications 1:115. doi: 10.1038/ncomms1118 PMID: 21081913

21. White IM, Elson-Harris MM (1992) Fruit Flies of Economic Significance: Their Identification and Bio-
nomics. CABI Publishing CAB Interregional.

22. Li ZH, J F, Ma XL, F Y, S ZZ, et al. (2013) Review on prevention and control techniques of Tephritidae
invasion. Plant Quarantine 27:1–10.

23. Liang GQ (2011) Fruit flies (Diptera: Tephritidae: Dacinae: Trypetinae: Tephritinae). Beijing: China Ag-
ricultural Press. doi: 10.1603/EN10198 PMID: 22251652

24. Oliveira CM, Auad AM, Mendes SM, Frizzas MR (2013) Economic impact of exotic insect pests in Bra-
zilian agriculture. Journal of Applied Entomology 137: 1–15. doi: 10.1111/jen.12018

25. Wu JJ, Fan L, Guangqin L (2009) Atlas of Economic Fruit Flies (Diptera: Tephritidae). Guangdong Sci-
ence and Technology Press.

26. Stanaway MA, Zalucki M, Gillespie PS, Rodriguez CM, Maynard GV (2001) Pest risk assessment of in-
sects in sea cargo containers. Australian Journal of Entomology 40: 180–92. doi: 10.1046/j.1440-6055.
2001.00215.x

27. Plant Health Australia (2010) Regional Plant Biosecurity Strategy. Plant Health Australia, Deakin, Aus-
tralian Capital Territory. PMID: 18411931

28. CABI (2012) Crop Protection Compendium. CAB International, Wallingford, UK.

29. Kohonen T (2001) Self-organizing maps. Berlin: Springer.

30. Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (2000) SOM toolbox for Matlab 5. Helsinki Univer-
sity of Technology, Finland.

31. Mathworks (2007) MATLAB, version 7.4. Natick, MA: The Mathworks.

32. FAO (2012) FAOSTAT database. Food and Agriculture Organization of the United Nations.

33. Ercsey-Ravasz M, Toroczkai Z, Lakner Z, Baranyi J (2012) Complexity of the International Agro-Food
Trade Network and Its Impact on Food Safety. PLoS ONE 7(5): e37810. doi: 10.1371/journal.pone.
0037810 PMID: 22701535

34. Grove T, Beer MSD (2014) Monitoring fruit flies in Litchi orchards in South Africa and determining the
presence of alien invasive Bactrocera species. ISHS Acta Horticulturae 1029: 425–432.

35. Steck GJ (2001) Concerning the occurrence of Anastrepha oblique (Diptera: Tephritidae) in Florida.
Florida Entomologist, 84: 320–321. doi: 10.2307/3496193

36. Pheloung PC, Williams PA, Halloy SR (1999) A weed risk assessment model for use as a biosecurity
tool evaluating plant introductions. Journal of Environmental Management 57: 239–251. doi: 10.1006/
jema.1999.0297

37. Koop AL, Fowler L, Newton LP, Caton BP (2012) Development and validation of a weed screening tool
for the United States. Biological invasions 14(2): 273–294.

38. Liquido NJ, Cunnungham RT, Nakagawa S (1990) Host plants of Mediterranean fruit fly (Diptera:
Tephritidae) on the island of Hawaii (1949–1985 survey) Journal of Economic Entomology 83(5):
1863–1878.

Global Establishment Risk of Fruit Fly Species (Tephritidae)

PLOS ONE | DOI:10.1371/journal.pone.0116424 January 14, 2015 8 / 8

http://dx.doi.org/10.1371/journal.pone.0025695
http://www.ncbi.nlm.nih.gov/pubmed/22016773
http://dx.doi.org/10.1111/j.1365-2664.2010.01782.x
http://dx.doi.org/10.1016/j.ecolmodel.2006.03.032
http://dx.doi.org/10.1016/j.ecolmodel.2006.03.032
http://dx.doi.org/10.1371/journal.pone.0055547
http://www.ncbi.nlm.nih.gov/pubmed/23393591
http://dx.doi.org/10.1007/s10530-013-0588-7
http://dx.doi.org/10.1038/ncomms1118
http://www.ncbi.nlm.nih.gov/pubmed/21081913
http://dx.doi.org/10.1603/EN10198
http://www.ncbi.nlm.nih.gov/pubmed/22251652
http://dx.doi.org/10.1111/jen.12018
http://dx.doi.org/10.1046/j.1440-6055.2001.00215.x
http://dx.doi.org/10.1046/j.1440-6055.2001.00215.x
http://www.ncbi.nlm.nih.gov/pubmed/18411931
http://dx.doi.org/10.1371/journal.pone.0037810
http://dx.doi.org/10.1371/journal.pone.0037810
http://www.ncbi.nlm.nih.gov/pubmed/22701535
http://dx.doi.org/10.2307/3496193
http://dx.doi.org/10.1006/jema.1999.0297
http://dx.doi.org/10.1006/jema.1999.0297

