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Abstract

Listening habits are strongly influenced by two opposing aspects, the desire for

variety and the demand for uniformity in music. In this work we quantify these two

notions in terms of instrumentation and production technologies that are typically

involved in crafting popular music. We assign an ‘instrumentational complexity

value’ to each music style. Styles of low instrumentational complexity tend to have

generic instrumentations that can also be found in many other styles. Styles of high

complexity, on the other hand, are characterized by a large variety of instruments

that can only be found in a small number of other styles. To model these results we

propose a simple stochastic model that explicitly takes the capabilities of artists into

account. We find empirical evidence that individual styles show dramatic changes

in their instrumentational complexity over the last fifty years. ‘New wave’ or ‘disco’

quickly climbed towards higher complexity in the 70s and fell back to low complexity

levels shortly afterwards, whereas styles like ‘folk rock’ remained at constant high

instrumentational complexity levels. We show that changes in the instrumentational

complexity of a style are related to its number of sales and to the number of artists

contributing to that style. As a style attracts a growing number of artists, its

instrumentational variety usually increases. At the same time the instrumentational

uniformity of a style decreases, i.e. a unique stylistic and increasingly complex

expression pattern emerges. In contrast, album sales of a given style typically

increase with decreasing instrumentational complexity. This can be interpreted as

music becoming increasingly formulaic in terms of instrumentation once

commercial or mainstream success sets in.
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Introduction

The composer Arnold Schönberg held that joy or excitement in listening to music

originates from the struggle between two opposing impulses, ‘the demand for

repetition of pleasant stimuli, and the opposing desire for variety, for change, for a

new stimulus.’ [1]. These two driving forces – the demand for repetition or

uniformity and the desire for variety – influence not only how we perceive

popular music, but also how it is produced. This can be seen e.g. in one of last

year’s critically most acclaimed albums, Daft Punk’s Random Access Memories. At

the beginning of the production process of the album the duo behind Daft Punk

felt that the electronic music genre was in its ‘comfort zone and not moving one

inch’ [2]. They attributed this ‘identity crisis’ to the fact that artists in this genre

mostly miss the tools to create original sounds and rely too heavily on computers

with the same libraries of sounds and preset banks [3]. Random Access Memories

was finally produced with the help of 27 other featured artists or exceptional

session musicians, who were asked to play riffs and individual patterns to give the

duo a vast library to select from [4]. The percussionist stated that he used ‘every

drum he owns’ on the album; there is also a track composed of over 250 different

elements. The record was awarded the ‘Album of the Year 2013’ Grammy and

received a Metacritic review of ‘universal acclaim’ for, e.g. ‘breath[ing] life into the

safe music that dominates today’s charts’ [5]. However, the best-selling album of

2013 in the US was not from Daft Punk, but The 20/20 Experience by Justin

Timberlake. The producer of this album, Timothy Mosley, contributed 25

Billboard Top 40 singles between 2005–2010, more than any other producer [6].

All these records featured a unique production style consisting of ‘vocal sounds

imitating turntable scratching, quick keyboard arabesques, grunts as percussion’

[7]. Asked about his target audience, Mosley said ‘I know where my bread and

butter is at. […] I did this research. It’s the women who watch Sex and the City’

[8]. These two anecdotes illustrate how Schönberg’s two opposing forces, the

demand for both uniformity and variety, influence the crafting of popular music.

The Daft Punk example suggests that innovation and increased variety is closely

linked to the involved musicians’ skills and thereby to novel production tools and

technologies. The example of Mosley shows how uniformity in stylistic

expressions can satisfy listener demands and produce large sales numbers over an

extended period of time. There is indeed substantial evidence now that it is the

delicate balance between repetitiveness and surprise that shapes our emotional

responses to music [9, 10].

The complexity of music is a multi-faceted concept [11]. Aspects of this

complexity that are amenable to a quantitative evaluation include acoustics (the

dynamic range and the rate of change in dynamic levels of audio tracks), timbre

(the source of the sound and the way that this source is excited), as well as

complexity measures for the melodic, harmonic, and rhythmic content of music

(that are often based on time-frequency analyses) [12]. The so-called ‘optimal

complexity hypothesis’ suggests that audiences prefer music of intermediate

perceived complexity [13], as has recently been experimentally confirmed for

Instrumentational Complexity of Music Genres and Why Simplicity Sells

PLOS ONE | DOI:10.1371/journal.pone.0115255 December 31, 2014 2 / 16



modern jazz piano improvisations [14]. It is worth to note that commercial

success or popularity of music (as measured by the numbers of sales or listeners,

respectively) is not determined by quality or complexity of music alone [15]. The

number of record sales of a given artist is in general also not correlated with the

record sales of similar artists [16]. In an ‘artificial music market’ it has been shown

that success is determined by social influence, i.e. people showed the tendency to

prefer music that they perceived was also preferred by many other listeners [15].

Music preferences are also shaped by nationality, language, and geographic

location [17]. Interestingly, a geographic flow of music has been detected between

cities, where some of them consistently act as early adopters of new music [17].

Over the last fifty years popular music experienced growing homogenization over

time with respect to timbre [18], which is the fingerprint of musical instruments

and was found to exhibit similar statistical properties as speech [19]. Another

important application of a quantitative evaluation of trends in the music industry

is the development of music recommendation systems that are based on the

similarity of artists [20], or on collective listening habits of users of online music

databases [21–24].

Here we assume that instrumentational complexity of a style is related to the set

of specialized skills that are typically required of musicians to play that style.

Instrumentational complexity of a style increases with (i) the number of skills

required for the style and (ii) the degree of specialization of these skills. A highly

complex music style, in terms of instrumentation, requires a diverse set of skills

that are only relevant for a small number of other styles. A style of low

instrumentational complexity requires only a small set of generic and ubiquitous

skills, that can be found in a large number of other styles. If a music style requires

a highly diverse set of skills, this will to some degree also be reflected in a higher

number of different instruments and production technologies. In general, demand

for variety translates into a larger number of instruments used in the production

process. Desire for uniformity favors a limited variability in instrumentation in a

production. Music styles with high instrumentational complexity therefore have

large instrumentational variety and at the same time low instrumentational

uniformity. It follows that the desire for variety and uniformity are not only

relevant for the perception of musical patterns. The notions of variety and

uniformity also apply to the instrumentations that musicians use for their pieces.

Note that instrumentational complexity can be regarded as a timbral complexity

measure and is not informative about, for example, rhythmic, tonal, melodic, or

acoustic complexity [12].

In this work we quantify the variety and uniformity of music styles in terms of

instrumentation that is typically used for their production. We employ a user-

generated music taxonomy where albums are classified as belonging to one of

fifteen different music genres that contain 374 different music styles as

subcategories. Styles belonging to the same music genre are characterized by

similar instrumentation, a fact that has already been exploited in the context of

automatic genre detection [25]. We construct a similarity network of styles, whose

branches are identified as music genres. We characterize the instrumentational
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complexity of each music style by its instrumentational variety and uniformity

and show (i) that there is a remarkable relationship between instrumentational

varieties and uniformities of music styles, (ii) that the instrumentational

complexity of individual styles may exhibit dramatic changes across the past fifty

years, and (iii) that these changes in instrumentational complexity are related to

the typical sales numbers of the music style.

Results

Music styles and genres are characterized by their use of

instruments

We introduce a time-dependent bipartite network connecting music styles to the

instruments that are typically used in that style. The dataset is extracted from the

online music database Discogs and contains music albums and information on

which artists are featured in the album, which instruments these artists play, the

release date of the album, and the classifications of music genres and styles of the

album. For more information see the methods section and S1 Table in S1 File.

We use the following notation. If an album is released in a year from a given

time period t, if it is classified as music style s, and it contains the instrument i,
this is captured in the time-dependent music production network M(t), by setting

the corresponding matrix element to one, Msi(t)~1. If instrument i does not

occur in any of the albums assigned to style s released in time t, the matrix

element is zero, Msi(t)~0. Fig. 1A shows a schematic representation of the

relations between several instruments and styles, and Fig. 1B shows the music

production network M(t) for the years 2004–2010. Let N(s,t) be the number of

albums of style s released at time t. We only include styles with at least h albums

released within a given time window, N(s,t)§h. If not indicated otherwise, we

choose h~50. The music production network M(t) can be visualized as a dynamic

bipartite network connecting music styles with instruments. Fig. 1C shows a

snapshot of this bipartite network for five different music styles and their

instruments. Vocals, lead guitar, and drums appear in each of these styles, whereas

for example bones used as percussion element only appear in ‘Black Metal’.

The similarity of two styles s1 and s2 can be computed by the overlap in

instruments which characterize both styles at time t, as measured by the similarity

network As1,s2(t) that is defined in Methods. A(t) is related to the conditional

probability that an instrument that is relevant for one style is also associated to the

other style. Fig. 2 shows the maximum spanning tree (MST) of the style similarity

network A(t) computed for the last time period in the data, t52004–2010. The

size of nodes (styles) is proportional to the number of albums N(s,t) of style s
released in that period. The data categorizes styles into genres, see Methods and

supporting information S1 Fig. in S1 File. Node colors indicate music genres, the

strength of links is proportional to the value of A(t). The MST shows several

groups of closely related styles that belong to the same genres, such as ‘rock’,

‘electronic music’, or ‘jazz’. Let d(s1,s2) be the shortest path length between two
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styles s1 and s2 in the MST. The average value of d(s1,s2) between two styles that

belong to the same genre is significantly smaller than the average d(s1,s2) for two

styles that do not belong to the same genre. To show this we consider two groups

of values of d(s1,s2) given by whether s1 and s2 belong or do not belong to the

same genre. A t-test rejects the null hypothesis that the values in both groups are

sampled from distributions with equal means up to a p-value of pv10{19, with a

smaller average d(s1,s2) for styles of the same genre. The identified clusters of

similar styles can be related to characteristic sets of instruments that define these

genres. ‘Jazz’ is mostly influenced by music instruments such as saxophone,

trumpet and drums. ‘Rock’ typically involves electric guitars, synthesizer, drums

and keyboards, whereas ‘electronic music’ is characterized by synthesizer,

turntables, samplers, drum programming, and computers.

Fig. 1. A bipartite network that connects music styles with instruments is constructed. (A) Schematic representation of the data containing the
relations between styles and instruments. (B) Visualization of the matrix describing the music production network, M(t). A black (white) field for style s and
instrument i indicates that Msi(t)~1(0). (C) Part of the bipartite network M(t) that connects music styles with instruments for a given year t. Large nodes
represent music styles, small ones instruments. It is apparent that some instruments occur in almost every style while others are used by a substantially
smaller number of styles. For instance, there are only two instruments appearing exclusively in ‘hip hop’ among these five styles (for example the flageolet)
whereas dozens of instruments are only related to ‘experimental’ (such as countertenor vocals). Vocals, lead guitar, and drums, on the other hand, appear in
each of the five styles, whereas bones used as percussion elements only appear in ‘Black Metal’.

doi:10.1371/journal.pone.0115255.g001
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Fig. 2. Maximum spanning tree for the style-similarity network, A, for the years 2004–2010. Nodes represent styles, colors correspond to the genre to
which the style belongs, the node size is proportional to the number of albums released for each style, the link strength between two music styles s1 and s2 is
proportional to As1 ,s2 (t). Several clusters are visible. They are identified as styles belonging to ‘rock’, ‘jazz’, or ‘electronic music’ genres.

doi:10.1371/journal.pone.0115255.g002
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From instrumentational variety and uniformity to complexity

The instrumentational variety V(s,t) of style s at time t is the number of

instruments appearing in those albums that are assigned to s,

V(s,t)~
X

i

Msi(t) : ð1Þ

V(s,t) depends on how many different skills or capabilities of musicians (such

as playing an instrument) are typically found within a music style.

Instrumentational uniformity U(s,t) of style s at time t is the average number of

styles that are related to an instrument that is linked to style s, or explicitly

U(s,t)~
1P

i Msi(t)

X
i

Msi(t)
X

s’

Ms’i(t)

 !
: ð2Þ

To put it differently, the instrumentational uniformity of a given style s is the

average number of styles in which an instrument linked to s is typically used. Low

(high) values of U(s,t) indicate that the instruments characterizing style s tend to

be used in a small (large) number of other styles.

V(s,t) and U(s,t) measure different aspects of instrumentational complexity. The

instrumentational variety V(s,t) is the degree of style s in the bipartite network

Msi(t) shown in Fig. 1A. V(s,t) is therefore a local network property of a single

node. Instrumentational uniformity U(s,t) can be interpreted as the average

degree of all nodes that represent instruments that are linked to style s in Msi(t).
U(s,t) is a global network property that can only be computed with the knowledge

of the entire network. The indicators V(s,t) and U(s,t) are reminiscent of

measures proposed to quantify the complexity of economies of countries by the

analysis of bipartite networks that connect countries to their exports of goods

[26]. It was shown that changes in indicators resembling V(s,t) and U(s,t) are

predictive for changes of national income.

As a measure for the number of sales of an album we use its Amazon

‘SalesRank’, see Methods. The average sales of a given music style s, S(s), is given

by the average SalesRank of albums assigned to style s,

S(s)~hSalesRank(r)ir[I(s) , ð3Þ

where I(s) is the index set of all albums r that are assigned to style s. S(s) is the

average SalesRank of these albums.

Instrumentational complexity of a music style can be expressed as the property

of having high variety and low uniformity in terms of instrumentation, i.e. the

music is produced with a large number of different instruments which only
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appear in a small number of other styles. Such production processes require

musicians with a diverse and highly specialized set of skills. As a complexity index

C(s,t) of a style s at time t we use

C(s,t)~
V(s,t)
U(s,t)

: ð4Þ

Fig. 3 shows each style (containing at least 50 albums) at time t in the V(s,t)-
U(s,t) plane for the time window t~2004{2010. The styles follow a particular

regularity: the higher the instrumentational variety V(s,t) of a music style, the

lower its instrumentational uniformity U(s,t). The style with the highest variety is

‘experimental’, a style that categorizes music that goes beyond the frontiers of well

established stylistic expressions. Most of the 20 styles with highest variety

(V(s,t)w230) belong to the ‘rock’ genre. Styles with low variety (V(s,t)v75)

mostly belong to the ‘electronic’ and ‘hip hop’ genres. Interestingly, styles that

deviate most from the curved line in Fig. 3 by having a comparably low

uniformity correspond to styles such as ‘Medieval’, ‘Renaissance’, ‘Baroque’,

‘Religious’, and ‘Celtic’. These styles are played using unique instruments that

require musicians with special training. In Fig. 3 the styles with high complexity

can be found in the lower right quadrant of the plot, whereas styles with low

complexity populate the upper left quadrant. The negative relation between the

local network property V(s,t) and the global property U(s,t) hints at a specific

global organization of the music production network M(t). In particular this

relation suggests that those music styles with low instrumentational variety V(s,t)
are characterized by instruments that are typically related to a large number of

other styles. This finding is consistent with the ’triangular arrangement’ of non-

zero matrix elements of M(t) that is apparent in Fig. 1B, where styles and

instruments are ordered by their degrees in M(t), respectively. The non-zero

elements in M(t) are not evenly spread out over instruments and styles, but

instead styles with low degree (low instrumentational variety) are typically related

to instruments with a high degree.

Complexity-lifecycles of music styles

The relationship between instrumental variety and uniformity of styles is

remarkably stable over time. Variety V(s,t) and uniformity U(s,t) have been

computed for six time-windows of seven years, starting with t51969–1975. For

each time period V(s,t) and U(s,t) show a negative relation in Fig. 4. Values of

V(s,t) are normalized by V(s,t)
max (V(s,t)) to make them comparable across time.

Although this relation is stable over time, the position of individual styles within

the plane can change dramatically, as can be seen in the highlighted trajectories of

several styles. The evolution of music styles is also shown in the S2 Fig. in S1 File

where the trajectory of C(s,t) is shown for each style that ranks among the top 20

high instrumentational complexity styles. For example, the style ‘new wave’

sharply increased in complexity rapidly and was popular from the mid-70’s to the
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mid-80’s, after which it decreased again. Similar patterns of rise and fall in

complexity are found for ‘disco’ and ‘synth-pop’ music. ‘Indie rock’ gained

complexity steadily from the 60s to the 80s and remained on high complexity

levels ever since. Styles losing instrumentational complexity over time include

‘soul’, ‘funk’, ‘classic rock’, and ‘jazz-funk’. However, other styles such as ‘folk’,

‘folk rock’, ‘folk world’, or ‘country music’ remain practically at the same level of

complexity.

To understand the mechanisms leading to an increase or decrease in

instrumentational variety and uniformity we compute the change in the number

of albums for each style between two seven-year windows, ti51997–2003 and

tf 52004–2010. The change in number of albums is compared with changes in

instrumentational complexity DC(s,t)~C(s,tf ){C(s,ti), see Fig. 5A. We find that

increasing complexity is typically related to an increasing number of albums

within that time-span with a correlation coefficient r~0:54 and p-value

p~0:014. This suggests that styles with increasing complexity attract an increasing

number of artists that release albums within that style.

There exists a remarkable relation between changes in instrumentational

complexity of a style and its average number of sales. Fig. 5B shows that DC(s,t)
has a negative trend when compared to the average number of sales S(s) as defined

in Equation (3), with correlation coefficient r~{0:69 and p-value, p~0:001.

This negative trend is also significant if we define the average number of sales by

using the geometric mean in Equation (3), i.e. by taking the average of the

Fig. 3. Instrumentational variety V(s,t) and uniformity U(s,t) for music styles within the time period
t52004–2010. Music styles collapse onto a line where V(s,t) and U(s,t) are inversely related. ‘Experimental’ is
the music style with the highest instrumentational variety, styles with the lowest levels of variety and highest
uniformity values belong to the ‘electronic’ and ‘hip hop’ genres. Inset: The values for V(s,t) and U(s,t) are
similar to results from the model.

doi:10.1371/journal.pone.0115255.g003
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logarithmic numbers of sales (r~{0:63, p~0:003). Naively, one could assume

that styles with increasing sales numbers show increasing numbers of albums,

since they offer more prospect for generating economic revenue. However, the

opposite is true, S(s) and the change in albums N(s,tf ){N(s,ti) have a significantly

negative correlation coefficient, r~{0:46 and p-value p~0:04. S3 Fig. in S1 File

shows a version of Fig. 5 where each data point is labeled by its style. Note that

here we take into account only styles s that have at least 1,500 albums in periods ti

and tf since only for those the average SalesRank can be estimated reliably. Note

that there are no significant correlations between the number of albums per style

N(s,t) and the indicators V(s,t) (correlation coefficient r~0:29 and p-value

p~0:22), U(s,t) (r~{0:29, p~0:22), C(s,t) (r~0:26, p~0:28), and S(s)
(r~{0:17, p~0:5). It can therefore be ruled out that the results for changes in

the complexity of styles over time, see Fig. 4, and their relation to the average

number of sales, shown in Fig. 5A and B, are driven by changes in the number of

albums for each style. It is also ruled out that the negative correlation between

Fig. 4. The arrangement of styles in the V-U plane remains robust over more than fifty years of music
history. However, the position of individual styles can change dramatically over time, as it is shown for ‘indie
rock’, ‘new wave’, ‘disco’ and ‘synth-pop’. Some styles, such as ‘folk’, show almost no change in their position.

doi:10.1371/journal.pone.0115255.g004
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instrumentational variety and uniformity shown in Fig. 3 (and in S4 Fig. in S1

File for h~1500) can be explained by a confounding correlation with the number

of albums per style.

A simple model

High instrumentational complexity typically requires musicians with a diverse and

highly specialized set of skills. We now show that the results for instrumentational

variety and uniformity can be understood with a simple model that explicitly

takes the capabilities of artists into account. Therefore we introduce two bipartite

networks that can be extracted from the data: the style-artist network P(t) and the

artist-instrument network Q(t). Entries in P(t) and Q(t) are zero by default. If a

given artist a is listed in the credits of an album released at time t and assigned to

style s, we set Psa(t)~1. If the artist a plays instrument i on an album released at t,

we set Qai(t)~1. In the model we assume that instrument i is associated to style s
if there are at least m artists which are both related to instrument i and to style s.

The model music production network bM(m,t) is given by

Fig. 5. Changes in instrumentational complexity of a style are related to its number of sales and to the
number of artists contributing to that style. (A) Changes in number of albums Ns versus changes in
instrumentational complexity of music styles DC(s,t). We find a positive trend between N(s,tf ){Ns(ti) and
DC(s,t) with correlation coefficient r~0:54 and p-value p~0:014. (B) Sales S(s) show a negative trend when
compared to the change of complexity of music styles with correlation coefficient r~{0:69 and p-value
p~0:001.

doi:10.1371/journal.pone.0115255.g005
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bM(m,t)~
1 if

P
a Psa(t)Qai(t)§m

0 otherwise :

�
ð5Þ

The parameter m allows to investigate whether the results are driven by

spurious connections in M(t), that is by style-instrument relations that are

constituted by a very small number of artists. If such spurious connections matter

we would expect to find different results for the relations between instrumenta-

tional uniformity and diversity, and between instrumentational complexity and

number of sales S(s) for large values of m. From bM(m,t) we compute the model

variety bV(s,t) and model uniformity bU(s,t). The optimal choice of the threshold m
is found by maximizing the goodness-of-fit between data and model, see Methods.

The model explains the data best if one assumes that an instrument i can be

associated with a style s, given that there are at least m~3 artists that are both

related to style s and instrument i. The results for model variety and uniformity

for m~3 are shown in the inset of Fig. 3. For the bulk of styles, data and model

are practically indistinguishable. S4 Fig. in S1 File shows a comparison of data and

model for various choices of m and h. By increasing m the model

instrumentational variety bV(s,t) and uniformity bU(s,t) typically decrease. There is

a negative trend between bV(s,t) and bU(s,t) that tends to become steeper with

higher values of m.

Note that the results shown in Figs. 3 and 5 can not be explained by trivial

features of the data such as numbers of instruments or artists per style alone. This

is shown by introducing randomized versions of M and bM. A randomization of M
is obtained by replacing each row in M by a random permutation of its elements,

we call it Mrand. The varieties of each style are the same for M and Mrand, but

uniformities will change. Results for the relationship between instrumentational

variety and uniformity when computed from Mrand are shown in S5 Fig. in S1 File

for two different choices of the threshold h (50 and 1,500, respectively). S5 Fig. in

S1 File shows that in these cases there is no inverse relation between

instrumentational variety and uniformity for either choice of h, and that the data

can not be reproduced. The non-trivial relation between V(s,t) and U(s,t) in

Fig. 3 is therefore driven by the differing uniformities of music styles and can not

be explained by variety alone.

A randomized version of the model music production network bM, bMrand, is

obtained by replacing both the style-artist network P(t) and the artist-instrument

network Q(t) by randomizations. In these randomizations P(t) (Q(t)) is replaced

by a random matrix that has the same size and number of zeros and ones as P(t)
(Q(t)), and where each entry is nonzero with equal probability. That is, each artist

is assigned a randomly chosen set of instruments and styles while the total number

of associations is fixed. S6 Fig. in S1 File shows that in this case we recover an

inverse relation between instrumentational variety and uniformity, but the high

overlap between data and model disappears under this randomization. There is
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also no significant correlation between sales S(s) and the change in complexity for

the randomized music production network bMrand. The relationships between

instrumentational variety, uniformity, and sales numbers for the various music

styles can only be explained by taking the skills of musicians into account, i.e. who

is able to play which instrument under which stylistic requirements.

Discussion

We quantified instrumentational variety and uniformity of music styles over time

in terms of the instruments that are typically involved in crafting popular music.

We construct a bipartite network that connects styles to the instruments they are

typically associated with, the so-called music production network M(t).
Instrumentational variety is a local network property of M(t), given by the degree

of a style in this bipartite network. Instrumentational uniformity of a style is a

global network property of M(t) that is related to the average number of styles in

which instruments that are connected to this style appear. From the music

production network we construct a style-similarity network where styles are

linked if they are associated with similar sets of instruments. Clusters of styles in

this network correspond to music genres such as ‘rock’ or ‘electronic music’.

Instrumentational complexity of a music style is the property of having both, high

instrumentational variety, and low instrumentational uniformity. We found a

negative correlation between variety and uniformity of music styles that was

remarkably stable over the last fifty years. This finding reveals an intriguing

relation between local and global properties of the music production network.

Styles with low instrumentational variety are characterized by instruments that are

typically associated with a large number of other styles. While the overall

distribution of instrumentational complexity over music styles is robust, the

complexity of individual styles showed dramatic changes during that period. Some

styles like ‘new wave’ or ‘disco’ quickly climbed towards higher complexity and

shortly afterwards fell back, other styles like ‘folk rock’ stayed highly complex over

the entire time period. We finally showed that these changes in the

instrumentational complexity of a style are typically linked to the sales numbers of

the style and to how many artists the style attracts. As a style increases its number

of albums, i.e. attracts a growing number of artists, its variety also increases. At the

same time the style’s uniformity becomes smaller, i.e. a unique stylistic and

complex expression pattern emerges. Album sales numbers of a style, however,

typically increase with decreasing complexity, see Fig. 5B. This can be interpreted

as music becoming increasingly formulaic in terms of instrumentation under

increasing sales numbers due to a tendency to popularize music styles with low

variety and musicians with similar skills. Only a small number of styles in popular

music manage to sustain a high level of instrumentational complexity over an

extended period of time.
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Materials and Methods

Data

The Discogs database is one of the largest online user-built music database

specialized on music albums or discographies. Users can upload information

about music albums. A group of moderators assures correctness of the

information. Discogs is an open source database and publicly accessible via API or

XML dump file released every month. We use the dump file of November 2011

containing more than 500,000 artist and more than 500,000 albums assigned to

374 styles. The data spans more than fifty years of music history, from 1955–2011.

Discogs uses a music taxonomy based on two levels, music genres and styles.

There are fifteen different genres, such as ‘rock’, ‘blues’, or ‘Latin’. On the second

level genres are divided into styles, for instance ‘rock’ has 57 styles including ‘art

rock’, ‘classic rock‘, ‘grunge’, etc. ‘Latin’ contains 44 different music styles such as

‘cumbia’, ‘cubano’, ‘danzon’, etc. S1 Fig. in S1 File shows the histogram of the

distribution of music styles per genres. For each music album we extract

information on the instruments played by artists, the release date of the record,

and the music genres and styles assigned to the album. The data is grouped into

time windows of seven years, e.g. the last time-step contains data on albums

released between 2004–2010, and so on. S1 Table in S1 File provides some

descriptive statistics of the dataset.

To measure the average sales numbers of music styles we use a dataset that

contains information on the Amazon SalesRank of music albums as of 2006 [27].

The Amazon SalesRank can be thought of as a ranking of all records by the time-

span since an item last sold [28]. Albums in the Discogs dataset are assigned their

Amazon SalesRank by matching album titles between the two datasets. As the

Amazon SalesRank dataset only contains information on album titles, it was

matched to entries in the Discogs dataset by choosing only albums whose title

appears only once in both datasets.

Style similarity network

The style similarity network A quantifies how similar two music styles are in terms

of their instrumentation. A weighted link in matrix A connects two music styles,

s1 and s2, and is defined as the number of instruments they have in common,

divided by the maximum value of their respective varieties V(s1=2,t). At a given

time t, the entries in A are given by

As1,s2(t)~

P
i Ms1i(t)Ms2i(t)

max½V(s1,t),V(s2,t)� : ð6Þ

The value of As1,s2(t) is the minimum of the two conditional probabilities that

an instrument related to style s1 (s2) is also related to style s2. The smaller of the

two conditional probabilities is used to avoid spurious results from styles with low

instrumentational variety. To visualize the network of music styles we compute
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the maximum spanning tree (MST) for A. This visualization strategy is similar to

the one presented in [29].

Goodness-of-fit between data and model

We use n data bins xi for the instrumentational variety with intervals of size one,

xi{xi{1~1. We define the binned uniformity ui (bui) for the data (model) as the

average uniformity of all styles s with variety V(s,t) (bV(s,t)) [ xi,xiz1½ Þ. The

average squared residuals R(m)~
1
n

Pn
i~1 (ui{bui)

2 are then calculated for

m~1, . . . ,10. For m~3 the value of R(m) assumes its minimum, see S4 Fig. in S1

File.

Supporting Information

S1 File. Supporting information.

doi:10.1371/journal.pone.0115255.s001 (PDF)
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