Correction

Correction: Automated Characterization and Parameter-Free Classification of Cell Tracks Based on Local Migration Behavior

The PLOS ONE Staff

In the Methods section, Equations 10 and 11 are missing due to a typesetting error. The publisher apologizes for this error. The equations can be found in the correct context below:
"where we assume without loss of generality that $1 \leq m \leq n \leq N_{i}$. The track length between time points m and $n+1$ can be represented as

$$
\begin{equation*}
l_{i}(n, m)=\sum_{k=m \geq 1}^{n \leq N_{i}}\left|\vec{d}_{i}(k, k)\right| \tag{10}
\end{equation*}
$$

in terms of the displacement vector $\vec{d}_{i}(k, k)$ that refers to subsequent time points k and $k+1$. The staggered confinement ratio is then defined as the ratio of these two quantities,

$$
\begin{equation*}
C_{i}(n, m)=\frac{\left|\vec{d}_{i}(n, m)\right|}{l_{i}(n, m)} \tag{11}
\end{equation*}
$$

Viewing $C_{i}(n, m)$ as entries of the $N_{i} \times N_{i}$ matrix C_{i}, we note that this matrix is symmetric because both the displacement vector $|\vec{d}(m, n)|=|-\vec{d}(n, m)|=|\vec{d}(n, m)|$ and the track-segment length $l(n, m)=l(m, n)$ are invariant under the time reversal operation $n \leftrightarrow m$ such that $C(n, m)=C(m, n)$. Furthermore, the diagonal elements of C_{i} take values $C_{i}(k, k)=1$ because $\left|\vec{d}_{i}(k, k)\right|=l_{i}(k, k)$ for all k. In general, $0 \leq C_{i}(n, m) \leq 1$, since"

Reference

1. Mokhtari Z, Mech F, Zitzmann C, Hasenberg M, Gunzer M, et al. (2013) Automated Characterization and Parameter-Free Classification of Cell Tracks Based on Local Migration Behavior. PLoS ONE 8(12): e80808. doi:10.1371/ journal.pone. 0080808
[^0]
[^0]: Citation: The PLOS ONE Staff (2014) Correction: Automated Characterization and Parameter-Free Classification of Cell Tracks Based on Local Migration Behavior. PLoS ONE 9(12): e115158. doi:10.1371/journal.pone. 0115158
 Published December 4, 2014
 Copyright: © 2014 The PLOS ONE Staff. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

