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Abstract

Objective: Intestinal barrier function is vital for homeostasis. Conditions where the

mucosal barrier is compromised lead to increased plasma content of

lipopolysaccharide (LPS). LPS acts on Toll-like receptor 4 (TLR4) and initiates

cellular inflammatory responses. TLR4 receptors have been identified on enteric

neurons and LPS exposure causes neuronal loss, counteracted by vasoactive

intestinal peptide (VIP), by unknown mechanisms. In addition AMP activated

protein kinase (AMPK) stimulation causes loss of enteric neurons. This study

investigated a possible role of AMPK activation in LPS-induced neuronal loss.

Design: Primary cultures of myenteric neurons isolated from rat small intestine

were used. Cultures were treated with LPS (0.2–20 mg/mL) with and without TAK1-

inhibitor (5Z)-7-Oxozeaenol (1026 M) or AMPK inhibitor compound C (1025 M).

AMPK-induced neuronal loss was verified treating cultures with three different

AMPK activators, AICAR (10242361023 M), metformin (0.2–20 mg/mL) and A-

769662 (10252361024 M) with or without the presence of compound C (1025 M).

Upstream activation of AMPK-induced neuronal loss was tested by treating cultures

with AICAR (1023 M) in the presence of TAK1 inhibitor (5Z)-7-Oxozeaenol

(1026 M). Neuronal survival and relative numbers of neurons immunoreactive (IR)

for VIP were evaluated using immunocytochemistry.

Results: LPS caused a concentration dependent loss of neurons. All AMPK

activators induced loss of myenteric neurons in a concentration dependent manner.

LPS-, AICAR- and metformin-,but not A-769662-, induced neuronal losses were

inhibited by presence of compound C. LPS, AICAR or metformin exposure

increased the relative number of VIP-IR neurons; co-treatment with (5Z)-7-

Oxozeaenol or compound C reversed the relative increase in VIP-IR neurons

induced by LPS. (5Z)-7-Oxozeaenol, compound C or A-769662 did not per se

change neuronal survival or relative numbers of VIP-IR neurons.
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Conclusion: AMPK activation mimics LPS-induced loss of cultured myenteric

neurons and LPS-induced neuronal loss is counteracted by TAK1 and AMPK

inhibition. This suggests enteric neuroimmune interactions involving AMPK

regulation.

Introduction

The gastrointestinal (GI) tract comprises the body’s largest surface to the outside

environment. It is vital for nutrient uptake and contains the human microbiome,

consisting of more than 100 trillion microorganisms with different properties.

[1, 2] The importance of a functional barrier is highlighted in conditions such as

post-operative ileus, functional bowel disorders and obesity, where a compro-

mised barrier causes inflammatory responses of different severity. [3–5] Increased

permeability of the intestinal barrier commonly leads to increased plasma levels of

lipopolysaccharide (LPS), a major component of gram negative bacteria

membranes. LPS binds to toll like receptor 4 (TLR4) and initiates an

inflammatory response. [6] The transforming growth factor-b-activated kinase 1

(TAK1) is an important regulator of cellular responses initiated by environmental

stress. [7] As a downstream effector-molecule common to e.g. TLR4-, interleukin-

1- and tumor necrosis factor-receptor stimulation it is closely linked to the innate

immune response. [6, 7]

A key player in regulating digestive, in particular intestinal, functions is the

enteric nervous system (ENS). The ENS is optimally situated within and along the

digestive tract where it is pivotal in regulating intestinal motility, blood flow and

secretion. Dysregulation of ENS causes GI symptoms and jeopardizes intestinal

barrier integrity. LPS exposure in vitro has previously been shown to cause loss of

porcine and rat enteric neurons, probably through TLR4 activation since this

receptors is expressed on a subpopulation of enteric neurons. [8, 9] Furthermore,

vasoactive intestinal peptide (VIP) has been highlighted as being protective in the

response to LPS mediated TLR4 activation. It reduces LPS-induced inflammation

and enteric neuronal loss. [9, 10]

The evolutionarily well conserved AMP-activated protein kinase (AMPK) is

central in cellular metabolism and energy regulation. It acts as a metabolic switch,

conveying cellular and hormonal responses both short and long term. AMPK is a

heterotrimeric complex consisting of a catalytic a subunit and two regulatory b/c

subunits. It is activated by allosteric binding of AMP to domains on the c subunit

and phosphorylation of Thr172 on the a subunit. Depending on the combination

of subunit isoforms AMPK can display different signalling properties. [11, 12]

Studies investigating AMPK in inflammation have suggested diverse roles. In

microglia cultures and cell lines LPS has been shown to activate AMPK thereby

mediating cytokine release. [13–15] In macrophages, however, AMPK activation

inhibits LPS-induced activation, causing reduced inflammation. [16, 17] AMPK
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activation, using AICAR has even been shown to reduce the pro-inflammatory

cytokine response in TNBS-induced colitis and LPS-induced lung injury. [16, 17]

Current study using pharmacologic in vitro experimentation was designed to

investigate mechanisms underlying LPS-induced enteric neuronal loss.

Methods

Ethics statement

Procedures were approved by the regional Malmö/Lund committee for

experimental animal ethics, under the Swedish board of Agriculture, (diary

number M152-12). Animals were used in accordance with the European

Community Council Directive (2010/63/EU) and the Swedish Animal Welfare Act

(SFS 1988:534).

Animals and tissue preparations

Female Sprauge-Dawley rats (Charles River, DE), (n523, 130–180 g) were used.

Primary myenteric neuronal cultures from the small intestine were prepared as

described previously. [18] From each animal 6 culture plates of 8 wells (BD

Bioscience, SE) were prepared, animals were never pooled. The resulting cultures

containing both myenteric neurons and enteric glia were grown 4 days in medium

(neurobasal A, containing 10% fetal bovine serum, 0.5 mM L-glutamine, 50 U/

mL penicillin and 50 mg/mL streptomycin, all from Life Technologies, SE). Fresh

medium containing applicable experimental test agents was then added and

incubation for an additional 4 day period followed. Control wells were cultured in

parallel. Cells were fixed in Stefaninis fixative, rinsed in Tyrode solution, frozen,

thawed and subjected to immunocytochemistry. [18]

Pharmacological agents and experimental set-ups

Stock solutions of 5-amino-b-D-ribofuranosyl-imidazole-4-carboxamide

(AICAR, Sigma-Aldrich, SE), 6,7-Dihydro-4-hydroxy-3-(2’-hydroxy[1,1’-biphe-

nyl]-4-yl)-6-oxo-thieno[2,3-b]pyridine-5-carbonitrile (A-769662, Tocris, UK),

metformin hydrochloride (Cayman Chemicals, UK), 6-[4-(2-Piperidin-1-

ylethoxy)phenyl]-3-pyridin-4-ylpyrazolo[1,5-a]pyrimidine (compound C, Sigma-

Aldrich, SE), (5Z)-7-Oxozeaenol (Tocris Bioscience, UK) and Escherichia coli

serotype O111:B4 derived LPS (Sigma-Aldrich, SE) were prepared according to

manufactures recommendations, aliquoted and stored at 20 C̊.

Various sets of experiments were performed. Incubations were for 4 days.

Cultures were exposed to 1. LPS (0.2–20 mg/mL) with or without (5Z)-7-

Oxozeaenol (1026 M) or compound C (1025 M), 2. (5Z)-7-Oxozeaenol (1027–

1025 M), 3. compound C (361027–361025 M), 4. AICAR (1024–361023 M),

A-769662 (1025–361024 M) or metformin (1027–1023 M), 5. AICAR (1023 M),

A-769662 (1024 M) or metformin (1024 M) together with compound C
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(1025 M), 6. AICAR (1023 M), metformin (1024 M) or LPS (20 mg/mL) together

with (5Z)-7-Oxozeaenol (1026 M). Controls were always run in parallel.

Immunocytochemistry

For details on primary and secondary antibodies see table 1. All antibodies were

diluted in phosphate buffered saline containing 0.25% Triton X-100 and 0.25%

BSA. Double immunolabelling of cultures was performed by overnight incubation

in moist chambers at 4 C̊ with a mixture of primary antibodies. [9] Secondary

antibodies were mixed and incubated 1 h at RT. Hoechst (Life Technologies, SE)

cell nuclei counter staining was performed according to manufacturer’s protocol.

Mounting was in PBS:glycerol 1:1 followed by fluorescence microscopy (Olympus

BX43, LRI, SE) with appropriate filter setting.

Neuronal analyses

Neuronal survival was estimated according to previously described protocol.

[18, 21] In brief, neuronal survival after exposure to the various treatments was

calculated by counting the total number of HuC/HuD-immunoreactive (IR)

neurons in the entire culture well (69 mm2) and expressed as percentage of the

number of total neurons in the control well run in parallel (% neuronal survival of

control). Relative number of neurons immunoreactive for VIP was estimated

from cultures double immunolabeled for HuC/HuD and VIP. Results were

expressed as the percentage of HuC/HuD-IR neurons also positive for VIP (%

VIP-IR neurons).

Statistical analyses

Data are presented as means ¡ SEM and analyzed by GraphPad Prism (GraphPad

Software Inc, USA). Every experimental group contain n53257 repeats from a

minimum of 3 different animals. Statistical significances were determined using

one-way-analysis-of-variance followed by Dunnet’s post hoc test towards

controls. A confidence level of 95% was considered significant.

Results

All investigations included a 4 day pre-culture period followed by 4 days in treatment

conditions. Untreated controls were always run in parallel and neuronal survival was

calculated and expressed as percentage of control. Control wells displayed a large

number (3.3¡0.03 neurons/mm2, n557, average seeding density 226 neurons/well) of

evenly distributed neurons, with a dense varicose fibre network.

LPS effect on myenteric neurons

Presence of LPS (0.2–20 mg/mL) caused a concentration dependent loss of

cultured myenteric neurons. At highest concentrations tested (20 mg/mL) survival

Lipopolysaccharide and AMP-Activated Protein Kinase

PLOS ONE | DOI:10.1371/journal.pone.0114044 December 2, 2014 4 / 17



was reduced by 45%, figure 1A. Presence of LPS also increased the relative

number of VIP-IR neurons, in a concentration dependent manner, figure 1B.

Representable micrographs of control and LPS treated cultures are shown in

figure 1C–H.

TAK1 inhibitor (5Z)-7-Oxozeaenol exposure

(5Z)-7-Oxozeaenol is a selective and irreversible inhibitor of TAK1. [22] Presence

of TAK1 inhibitor (1027–1025 M) did not alter neuronal survival, (figure 2A) or

the relative number of VIP-IR neurons (figure 2B) compared to control. Based on

this pharmacological profile and profiles described in, [22] 1026 M was chosen as

working concentration in the following experiments.

Compound C has a biphasic pharmacological profile on neuronal

survival

Compound C is demonstrated as a competitive AMPK antagonist. [11] Exposing

cultures to low concentrations (361027–361026 M) of compound C caused a

slight increase in neuronal survival, compared to controls. Higher concentrations

(1025–361025 M) resulted in a concentration dependent reduction in neuronal

survival, figure 2C. Compound C (361027–361025 M) exposure caused no

change in the relative number of VIP-IR neurons, figure 2D. Based on the here

shown pharmacological profile of compound C, 1025 M was chosen as working

concentration in the following experiments.

LPS-induced neuronal loss and relative increase in VIP-IR

neurons are reversed by (5Z)-7-Oxozeaenol or compound C

Simultaneous exposure of LPS (20 mg/mL) and (5Z)-7-Oxozeaenol (1026 M) or

compound C (1025 M) did not change either neuronal survival or the relative

number of VIP-IR neurons within the treated cultures compared to control,

figure 1. Thus, presence of (5Z)-7-Oxozeaenol or compound C abolished the

previously described LPS-induced myenteric neuronal loss and relative increase in

the number of VIP-IR neurons.

Table 1. Overview of primary and secondary antibodies used in immunocytochemistry.

Raised against Dilution Code Source Host References

Human neuronal protein, (HuC/HuD) 1:600 A21272 Life Technologies, SE Mouse [18, 19]

Human gene product 9.5, (PGP 9.5), purified
human brain

1:1.200 RA95101 Ultraclone, UK Rabbit [19]

Vasoactive intestinal peptide, purified porcine 1:1200 7852 Euro-Diagnostica, SE Rabbit [20]

Mouse IgG 1:1.000 115-545-166 Jackson Lab Inc, USA Goat

Rabbit IgG 1:1.000 711-585-152 Jackson Lab Inc, USA Donkey

doi:10.1371/journal.pone.0114044.t001
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AMPK activators mimic the effect of LPS on myenteric neurons.

AICAR acts as an AMP analogue and A-769662 acts as a reversible activator of the

AMPK b/c subunits. [23, 24] Metformin is suggested to interact with the c-AMPK

subunit causing a conformational change, [25] or to activate AMPK indirect

through inhibition of the respiratory chain altering cellular energy status. [26]

Exposing cultures to increasing concentrations of AICAR (1024–361023 M), A-

Figure 1. LPS- induced effects on survival and relative numbers of VIP-immunoreactive (IR) myenteric neurons are attenuated by simultaneous
addition of (5Z)-7-Oxozeaenol or compound C. A. shows neuronal survival, expressed as % of controls, after exposure to LPS (0.2–20 mg/mL) and after
simultaneous exposure to LPS (2–20 mg/mL) and either TAK-1 inhibitor (5Z)-7-Oxozeaenol (1026 M) or compound C (1025 M). Nerve cell bodies were
identified using immunostaining against HuC/HuD. Exposure of LPS reduces neuronal survival in a concentration dependent manner. Both (5Z)-7-
Oxozeaenol and compound C protect against LPS induced neuronal loss. B. shows the relative numbers of VIP-IR neurons, expressed in percentage of
HuC/HuD-IR neurons, after exposure to LPS (0.2–20 mg/mL) and after simultaneous exposure to LPS (2–20 mg/mL) and either TAK-1 inhibitor (5Z)-7-
Oxozeaenol (1026 M) or compound C (1025 M). LPS increases the relative numbers of VIP-IR neurons compared to controls. This effect is blocked by
simultaneous exposure with (5Z)-7-Oxozeaenol (1026 M) or compound C (1025 M). Data are expressed as mean ¡ SEM, ** p,0.01, n53–30. C–H
representative micrographs of cultured myenteric neurons double immunolabled with (C and F) HuC/HuD and (D and G) VIP and (E and H) merged. C–E
control culture, F–H LPS (20 mg/mL) treated culture. Arrowheads in E and H mark neurons IR for both Huc/HuD and VIP. Bar represents 20 mm.

doi:10.1371/journal.pone.0114044.g001
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Figure 2. (5Z)-7-Oxozeaenol- and compound C-induced effects on survival and relative numbers of VIP-
immunoreactive (IR) neurons. A. shows neuronal survival, expressed as % of controls, after exposure to TAK-1
inhibitor (5Z)-7-Oxozeaenol (1027–1025 M). Nerve cell bodies were identified using immunostaining against HuC/
HuD. Exposure to (5Z)-7-Oxozeaenol does not change neuronal survival in cultures. B. shows that the relative
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769662 (1025–361024 M) or metformin (1026–1023 M) caused a concentration

dependent loss of neurons, figure 3A. A-769662 (1025–361024 M) or metfor-

min (1026–1024 M) exposure did not change the relative proportion of neurons

IR for VIP, while AICAR (1023 M) exposure caused an increase, figure 3B.

number of VIP-IR neurons expressed as percentage of HuC/HuD-IR are unchanged after (5Z)-7-Oxozeaenol
(1027–1025 M), compared to control. C. shows neuronal survival, expressed as % of controls, after exposure to
compoundC (361027–361025 M). Exposure to compoundC displays a biphasic pharmacological profile with low
concentrations (361026 M) increasing and high concentrations (361025) decreasing neuronal survival. D. shows
that the relative numbers of VIP-IR neurons are unchanged after exposure to compound C (361027–361025 M),
compared to controls. Data are expressed as mean ¡ SEM, ** p,0.01, n55–20.

doi:10.1371/journal.pone.0114044.g002

Figure 3. Effects of AMPK activation on survival and relative numbers of VIP-immunoreactive (IR)
myenteric neurons. A. Neuronal survival, expressed as % of controls, after 4 days of exposure to AICAR
(1024–361023 M), A-769662 (1025–361024 M) or metformin (1026–1023 M). Nerve cell bodies were
identified using immunostaining against HuC/HuD. AICAR, A-769662 and metformin induced a concentration
dependent loss of neurons. B. shows the relative numbers of VIP-IR neurons, expressed in percentage of
HuC/HuD-IR neurons, after exposure to AICAR (1023 M), A-769662 (1025–361024 M) or metformin (1026–
1023 M). AICAR increases the relative numbers of VIP-IR neurons while A-769662 and metformin does not,
compared to control. Data expressed as mean ¡ SEM, ** p,0.01, n54–24.

doi:10.1371/journal.pone.0114044.g003
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Compound C protects against AICAR- and metformin-, but not A-

769662-, induced neuronal loss

Simultaneous exposure of AICAR (1023 M) or metformin (1024 M) and

compound C (1025 M) did not affect neuronal survival nor the relative number

of VIP-IR neurons within the cultures, thus, compound C abolished the

previously described AICAR- and metformin-induced myenteric neuronal losses

and AICAR-induced relative increase in the number of VIP-IR neurons. On the

other hand, simultaneous exposure of A-769662 (361024 M) and compound C

Figure 4. Effects of compound C on AMPK activation on survival and relative numbers of VIP-
immunoreactive (IR) myenteric neurons. A Neuronal survival, expressed as % of controls, after exposure
to AICAR (1023 M), A-769662 (361024 M) or metformin (1024 M) and compound C (1025 M). Nerve cell
bodies were identified using immunostaining against HuC/HuD. Compound C protects against AICAR- and
metformin, but not A-769662-, induced neuronal loss. B. The relative numbers of VIP-IR neurons, expressed
in percentage of HuC/HuD-IR neurons, are unchanged after simultaneous exposure to AICAR (10-3 M), A-
769662 (361024 M) or metformin (1024 M) and compound C (1025 M), compared to controls. Data
expressed as mean ¡ SEM, ** p,0.01, n53–12.

doi:10.1371/journal.pone.0114044.g004
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(1025 M) caused loss of myenteric neurons in the same magnitude as A-769662

alone. Results are summarized in figure 4.

(5Z)-7-Oxoaeaenol does not inhibit AICAR- or metformin-induced

neuronal loss

Simultaneous exposure of AICAR (1023 M) or metformin (1024 M) and the

TAK1 inhibitor (5Z)-7-Oxozeaenol (1026 M) caused loss of cultured myenteric

neurons in the same magnitude as AICAR (1023 M) or metformin (1024 M)

alone. Presence of (5Z)-7-Oxozeaenol (1026 M) did not affect AICAR-induced

up-regulation of the relative number of VIP-IR neurons. Results are summarized

in figure 5.

Figure 5. Effects of (5Z)-7-Oxozeaenol on AMPK activation on survival and relative numbers of VIP-
immunoreactive (IR) myenteric neurons. A. neuronal survival, expressed as % of controls, after exposure
to AICAR (1023 M) or metformin (1024 M) and TAK-1 inhibitor (5Z)-7-Oxozeaenol (1026 M). Nerve cell bodies
were identified using immunostaining against HuC/HuD. (5Z)-7-Oxozeaenol does not protect against either
AICAR- or metformin-induced neuronal loss. B. (5Z)-7-Oxozeaenol (1025 M) are unable to reduce the AICAR
(1023 M)-induced relative numbers of VIP-IR neurons, expressed in percentage of HuC/HuD-IR neurons.
VIP-IR after simultaneous exposure of 5Z)-7-Oxozeaenol (1025 M) and metformin (1024 M) are unchanged
compared to controls. Data expressed as mean ¡ SEM, ** p,0.01, n57–14.

doi:10.1371/journal.pone.0114044.g005
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Discussion

Current study re-affirmed previous findings showing that Escherichia coli derived

LPS induces neuronal loss in primary cultures of adult myenteric neurons. [8, 9]

The novel findings presented here are that presence of the AMPK inhibitor

compound C protects myenteric neurons against LPS-induced neuronal loss and

that, by using three independent AMPK activators, AMPK activation was found to

mimic LPS exposure in that it induced loss of cultured myenteric neurons. The

link between LPS-induced TLR4 stimulation and AMPK activation was further

strengthened by the finding that TAK1 is involved. This since the presence of

TAK1 inhibitor (5Z)-7-Oxozeaenol protected against LPS-induced neuronal loss

but not against AICAR-induced neuronal loss.

LPS-induced AMPK activation

Elevated fat and energy intake increases plasma LPS levels in both patients and

mice, leading to increased expressions of TLR4 and exacerbation of inflammation.

[3, 27] Current study revealed LPS-induced neuronal loss to be mediated by

AMPK activation. The reduced neuronal survival evident after LPS exposure was

blocked by simultaneous presence of the AMPK inhibitor compound C. These

findings are corroborated by previous findings on primary microglia cultures and

cell lines in which LPS was found to cause AMPK activation and cytokine release,

through TLR4 activation. [13–15] The link between TLR4 activation and AMPK

activation is suggested to be TAK1, a key player in regulating the cellular response

to environmental and cytokine-induced stress. TAK1 is able to regulate several

transcription factors including IKKb, p38/JNK and NF-kB, [7, 28] and has

previously been shown to mediate AMPK activation. [29–31] Enteric neurons are

sensitive to LPS and express TLR4. [9] The significance of such expression is

suggested to be regulation of the innate tolerance response to commensal bacteria

in the intestine. [9] This ensures a balanced immune response with respect to

luminal content and homeostasis. Supporting this, is the finding that TLR4-/- mice

display a delayed transit time. [32] In contrast to previous, [8, 9] and current

findings, LPS has been reported to increase survival of enteric neuronal cultures

through TLR4 signalling. [32] This discrepancy is suggested due to differences in

LPS concentration; low concentrations are protective while high ones are

deleterious. It may also be due to differences in TLR4 expression and LPS

sensitivity between embryonic (gut not colonized with microbiota), [32] and

adult [8, 9] enteric neurons. Also LPS exposure duration and potency are probably

of importance. In vivo the adaptive immune response primed by bacterial

exposure is, in the healthy intestine with a functional barrier, probably mediated

by low mucosal permeability and hence low LPS concentrations. TLR4 activation

may under such healthy conditions promote maintenance of neurons to ensure

survival. In conditions of compromised barrier function and permeability,

systemic LPS reach higher concentrations. This change in LPS concentration may

cause hyper-activation of TLR4 and imminent dysregulation of the adaptive
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immune response eventually leading to death. Another intriguing possibility that

should be considered is the origin of LPS. Though many of the gram negative

bacterial strains are the source of adverse infections some are considered

beneficial. [33, 34] The molecular part of LPS interacting with TLR4 is the

membrane anchoring region, called lipid A. [35] This region consists of a

phosphorylated N-acetylglucosamine dimer with a varying amount of saturated

fatty acid tails in both tail number and chain length attached. [35] The ability of

this region to interact with the TLR4 complex elicits a fine-tuned immune

response. [35, 36] The properties of the LPS variants used in previous studies

investigating LPS-induced effects on ENS need to be taken into consideration

when interpreting and comparing results.

AMPK activation in neurons

The results show AMPK activation to be detrimental to myenteric neurons; this

was confirmed using three different AMPK activators, AICAR, metformin and A-

769662. AMPK-induced neuronal loss has previously been suggested to occur in

enteric, [37] as well as in central [38] neurons. In the CNS compound C was

found to protect against stroke-induced neuronal loss. [38] The suggested

mechanism behind was that compound C attenuated the AMPK activated energy

processes causeing increased cellular stress in already compromised neurons. A

balanced AMPK response is necessary in models of ischemic stress, which induces

a transient increase of AMPK activation and autophagy. This is believed to be part

of the protective response that, if unbalanced, leads to cell death. [39] Further,

AMPK activation has, in neuronal cell lines, been shown to decrease neurite

growth causing loss of contact and eventually neurodegeneration. [40] These

studies are well in line with the here presented data, showing that activation of

AMPK is detrimental to enteric neuronal survival. Interestingly TAK1 inhibition,

like AMPK inhibition, is suggested to mediate neuroprotection also of central

neurons after ischemic or traumatic brain injury. [41, 42]

The here noted difference in sensitivity to compound C by AICAR, metformin

and A-769662 induced neuronal is likely explained by their molecular targets.

AICAR is an AMP analogue activating AMPK in a the same manner as AMP; an

allosteric conformational change and activation. [23] Compound C is a

competitive inhibitor binding to the same ligand site as AMP and AICAR. [11]

On the other hand, A-769662 has a different AMPK activation mechanism

involving ligand site separate from AMP and depends on the presence of the b1

subunit. [24, 43] These differences in ligand binding and activation patterns may

well explain why compound C blocks AICAR, but not A-769662, induced

neuronal loss. Metformin- like AICAR-induced loss was blocked by compound C.

Whether this, in analogy with AICAR, can be explained by a competitive binding

is more uncertain. The mechanism by which metformin activate AMPK is

currently debated. Both a direct interaction with AMPK, [25] as well as several

possible indirect mechanisms have been suggested involving both AMP dependent

and independent mechanism. Metformin is a commonly used drug in the
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treatment of type 2-diabetes and its positive effects on this disease may be ascribed

to other signalling pathways than AMPK activation. [26] It is worth noting that in

the present study while using a concentration within the reported physiological

range, [47, 48] metformin was used as an AMPK activator.

LPS- and AMPK activation-induced VIP expression

The LPS-induced increase in the relative proportion of VIP immunoreactive

myenteric neurons has previously been reported, together with the finding that

exogenous VIP protects against LPS-induced neuronal loss. [8, 9] These reports

further speculated if the physiological significance of an increased number of VIP-

IR neurons was due to VIP’s immunmodulatory effects, or due to its general

neuroprotective properties. [9, 49, 50] Current study showed LPS and AICAR, but

not metformin or A-769662, to increase the relative numbers of VIP

immunoreactive neurons, an increase that could be attenuated by simultaneous

exposure to compound C. The differences between AICAR, metformin and A-

769662 in evoking an increased relative number of VIP-IR neurons are enigmatic.

AICAR has been shown to have intracellular secondary activation targets. [51, 52]

This may provide one explanation since A-769662, which is believed to be a more

precise AMPK activator, [24] did not up-regulate VIP. The unresolved

mechanism of metformin’s activation of AMPK makes interpretation of the

metformin effect on VIP-IR neurons harder to discuss. However, as compound C

was able to reverse both the LPS- and AICAR-induced upregulation of VIP-IR

neurons the possibility of a direct AMPK-induced effect can’t be completely

disregarded. In muscle cells AMPK is able to phosphorylate the transcription

factor cAMP responsive element binding protein (CREB) at the same site as

protein kinase A. [53] AMPK is thereby, through phosphorylation events, able to

cause an increase in CREB-dependent transcription leading to increased VIP

expression. [54] The mechanism behind the lack of VIP up-regulation by A-

769662 and metformin needs further investigation taking into account the diverse

regulatory factors both on transcriptional and translational levels. The rationale

behind such AMPK-induced neurotransmitter up-regulation needs further

investigations. VIP is a neuroimmunopeptide that besides acting as an inhibitory

neurotransmitter in ENS also is able to regulate TLR expression. [10] VIP has

been shown to down regulate LPS-induced TLR4 expression and subsequent the

inflammatory response. [10] It can be speculated that LPS- and AMPK activation-

induced VIP up-regulation is part of a protective neuronal response that may, as

previously described, play a role in modulating the innate immune-response to

commensal bacteria or inflammation. [9]

Conclusion

LPS exposure and activation of AMPK cause neuronal loss of cultured myenteric

neurons. LPS-induced neuronal loss is blocked by the presence of compound C
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and therefore suggested to be executed through activation of AMPK. The link

between LPS and AMPK is suggested to be TAK1 acting downstream of TLR4 and

upstream of AMPK. This suggestion is supported by the finding that (5Z)-7-

Oxozeaenol is able to attenuate LPS- but not AICAR- or metformin-induced

neuronal loss. Further, both LPS and AICAR cause significant increase in the

relative numbers of VIP-IR neurons. The rationale behind upregulation of VIP is

suggested assigned both to activate adaptive innate neuroimmune-responses to

intestinal commensal bacteria and to provide neuroprotection.

Supporting Information

Dataset S1. Neuronal survival of control and relative VIP-IR data.
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