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Abstract

Background

Evaluations of electric power distribution network risks must address the problems of incom-

plete information and changing dynamics. A risk evaluation framework should be adaptable

to a specific situation and an evolving understanding of risk.

Methods

This study investigates the use of symbolic dynamics to abstract raw data. After introducing

symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative en-

tropy are used to quantitatively evaluate relationships between risk sub-factors and main

factors. For layered risk indicators, where the factors are categorized into four main

factors – device, structure, load and special operation – a merging algorithm using opera-

tors to calculate the risk factors is discussed. Finally, an example from the Sanya Power

Company is given to demonstrate the feasibility of the proposed method.

Conclusion

Distribution networks are exposed and can be affected by many things. The topology and

the operating mode of a distribution network are dynamic, so the faults and their conse-

quences are probabilistic.

Introduction
Electric power distribution networks are receiving greater attention both from administrators
and end users in China as new construction of rural networks and smart grids proceeds.
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A distribution network consists of a large number and variety of devices, which are prone to
external disruptions. These networks are complex systems, and it is impossible to collect all of
the required information for all possible states.

Risk analysis can evaluate both the likelihood of faults occurring and the consequences,
which is the traditional concept of reliability used in China. For distribution networks, the
probability of faults is related to reliability, which has been the traditional focus of management
in power companies. The consequences of faults, however, are usually measured in terms of
power loss, which is insufficient.

Risk management has long been a topic of interest both inside and outside the power indus-
try. Several researchers have focused on distribution network investment. Under brink at-
tempted to relate component failures and repair times to power losses [1].Sand and others
attempted to improve maintenance and reinvestment decisions through Bayesian networks by
correlating certain variable indicators such as adverse weather with risk [2–4]. Janjicat tempted
to decouple risk factors and state transitions based on decision tree diagrams and then adjust
maintenance schedules [5].Risk-based management has been used in many aspects of power
system planning [6–9].

Because a distribution network is a large-scale system, the availability of power is influenced
by component reliability, the network structure, maintenance, the operating condition, the en-
vironment and other factors. Risk analysis based on component failures or system failures can-
not include all of the factors affecting distribution network risk. For example, a transformer
failure may be the result of poor quality manufacturing, a lightning strike, poor maintenance,
prolonged overloaded operation or other reasons. Risk analysis based on the failure time would
miss these details, which would be very important for risk reduction decisions.

Consequences in risk analysis cannot be simply measured or converted to failure times be-
cause this would not reflect all of the loss characteristics. For example, a one-hour power out-
age would not have the same consequences for a five-star hotel as for a remote village. The
expected remedies would also be different, which would result in different
investment decisions.

To describe distribution network risk, one-dimensional time series data, which usually fluc-
tuate over time, should be collected from multiple sources. Processing the data using probabili-
ty theory can reveal the uncertain characteristics of risk[10],e.g., for load forecasting[11]. Xiao
developed probabilistic indices and attempted to control for low voltage and overload using a
multi-objective approach[12].Feng processed data with a random fuzzy model and evaluated
the operation risk[13]. Other researchers have used radial basis function neural networks, hy-
brid methods, equivalent reliability networks and other methods to simplify the analysis[14–
16], but external influences were not included.

For systems with incomplete information, it is logical to consider semi-empirical methods
[17]. However, as technology improves and requirements emerge, data may be added, updated
or deleted from the system, so a scalable framework for risk analysis is critical.

Symbolic dynamics can be used to analyze one-dimensional time series data, and this meth-
od is widely used in anomaly detection and pattern recognition [18–19]. In this study, symbolic
dynamics are used to abstract information contained in raw data, and entropy theory is used to
analyze risk factor relationships.

Materials and Methods

Risk and Symbolic Dynamics
Distribution networks are operated in the open, and they are at risk from a great many factors
that are difficult to enumerate. A risk description framework should be adaptable to the current
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management strategy, the evolution of technology and an understanding of risk for the
distribution network.

To describe risk in a distribution network, data of various types such as continuous load
data or discrete user-level data should be collected. Current approaches tend to use fuzzy set
theory to abstract or categorize data, but the coarse nature of fuzzy sets precludes further pro-
cessing at a finer granularity.

Quantitatively, risk is defined as:

Risk ¼ Possibility � Loss ð1Þ
Where Possibility is the likelihood of the occurrence of a particular fault and Loss is the conse-
quence of that fault occurring. Currently, consequences in distribution network risk analysis
are mostly measured by power loss, which is inadequate. As an example, a power loss would
have different effects, both in economic and social terms, in a five-star hotel and in a rural vil-
lage. Additionally, a consequence in a distribution network is not static because the topology
and the operating mode can change.

For a discrete time series, any set of disjoint regions b ¼ fCigm1 that covers the state space S is
called a partition[20]; that is,

b ¼ fCigm1 ;Ci \ Cj ¼ φfori 6¼ j; [m
i¼1

Ci ¼ S ð2Þ

If a unique symbolm2O, whereO is a symbol set defined as {S0,S1,S2,. . .,Sm-1}, is assigned to
a specific partition, then the representation of the time series data would be

LXðL; iÞ ¼
XL

p¼1

mL�PSðpþ iÞ ð3Þ

where i is the starting index of the symbolic in the symbol setO andm is the length of the sym-
bol sequence. Similar to fuzzy sets, this symbolic representation can abstract the information,
but this representation permits more flexibility and uncertainty than fuzzy sets. It is assumed
that the dynamical system is stationary on the fast time scale and that any nonstationarity is
observable only on the slow time scale. In symbolic dynamics, the slow time scale is typically
defined as being at least two orders of magnitude larger than the fast time scale.

For convenience, we define five levels to describe the risk in the distribution network, very
high, high,medium, low, and very low, which can be represented by a symbol set O = {A,B,
C,. . .,O}.

Risk Description Framework
We propose a risk description framework that includes device, structure, load and special oper-
ation factors, as Fig. 1 illustrates.

All risk indicators should be calculated independently according to the voltage level. For
convenience, it is logical to organize the factors in a layered structure. Theoretically, the more
data that are collected, the more accurate the evaluation of risk will be. Because the types of
data may vary with location and time, the factor merging algorithm should be robust and flexi-
ble. As an example, the organization for the device indicators is given in Fig. 2.

The risk factors may also have sub-factors such as environmental effects, but these will not
be discussed here. As China covers vast area, it is hard to adopt uniform risk factors framework.
Practically, Risk indices selection and categorization is first carried out by national standards.
Then, supplementary indices are integrated into the framework according to local data collec-
tion ability and management requirement.
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Raw Risk Data Processing
Risk, as defined previously, is a relative value, so a baseline should be chosen for evaluation.
For a distribution network risk evaluation, a day with fine weather, a light load, and no defects
or malfunctions should be chosen as the baseline. The risk factors can be mapped linearly
based on the baseline extreme values. A mapping process is described in the following.

Fig 1. Risk description framework.

doi:10.1371/journal.pone.0112940.g001

Fig 2. Example of a layered framework for device factors.

doi:10.1371/journal.pone.0112940.g002
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1. Possibility Data Processing. For the device factor layers shown in Fig. 2, we calculate the
relative level factor for a line or a substation as

DLevelFactor ¼

Xk

l¼1

DeviceðlÞ � DeviceLevel

DeviceCount
ð4Þ

Where DeviceCount and DeviceLevel are self-explanatory and Device(l) is the device number at a
specific level. After the baseline factor is calculated, a mapping from the raw data to a symbolic
sequence can be defined as follows:

IndR ¼
IndCur � IndMin

ðIndMax � IndMinÞ
� 100; IndCur � IndMax

100 ; IndCur > IndMax

ð5Þ
8<
:

PIdx ¼

IndR
20

þ 1

� �
� 3; x � IndR

20

� �
� 20 < 12

IndR
20

þ 1

� �
� 3þ 1; 12 � x � IndR

20

� �
� 20 < 18

IndR
20

þ 1

� �
� 3þ 2; 18 � x � IndR

20

� �
� 20 < 20

ð6Þ

8>>>>>>>><
>>>>>>>>:

Where IndMax and IndMin are the maximum and minimum values of the baseline calculations,
respectively, and PIdx is the first symbol index in the symbol set. We chose three symbols to de-
scribe the risk probability and consequence. Other symbols are consecutive symbols after PIdx
indicates. The symbols indicate weightsWs of 60%, 30% and 10%, respectively. The first and
second symbol weights are approximation of golden number, and the rest is allocated to the
third symbol weight.

2. Consequence Data Processing. The risk factors can have either direct or indirect connec-
tions to a malfunction. For factors with a direct connection such as a device failure, the map-
ping is defined as follows:

ConR ¼ Min 100;
MTTRIdn

MTTRAvg

� Level2 � 100

( )
ð7Þ

CIdx ¼

ConR

20
þ 1

� �
� 3; x � ConR

20

� �
� 20 < 12

ConR

20
þ 1

� �
� 3þ 1; 12 � x � ConR

20

� �
� 20 < 18

ConR

20
þ 1

� �
� 3þ 2; 18 � x � ConR

20

� �
� 20 < 20

ð8Þ

8>>>>>>>><
>>>>>>>>:

Where CIdx is similar to PIdx,MTTRIdn andMTTRAvg represent the affected factor recovery
time and the total line or substation recovery time expressed in terms ofMTTR (Mean Time
To Repair), and Level in equation (7) indicates the relative importance of the line or substation.

From equation (7), we observe that the line or substation level has a strong influence on the
risk consequence.
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For indirect connection factors, we convert the raw data in a relative manner. For example,
the maintenance department risk consequence ConR for a distribution line can be calculated as

ConR ¼ Min 100;
MTTRIdnMngAvg

MTTRAvgAll

� Level2 � 100

( )
ð9Þ

WhereMTTRIdnMngAvg is the averageMTTR under a specific management staff and
MTTRAvgAll is the averageMTTR of all of the lines. The averageMTTR is calculated from the
lineMTTR and the line length. For example,MTTRIdnMngAvg is calculated using equation (10)

MTTRIdnMngAvg ¼
MTTRMng

LineMngLength

ð10Þ

WhereMTTRAvg includes all of the MTTRs under a specific management staff and
LineMngLength is the corresponding line length.

Phase-Space Reconstruction
Once the factors in the risk description have been decided, the phase-space dimension and
structure are determined. It is possible to recreate the entire trajectory of the system from mea-
surements. Based on equation (6) and the symbol sequence representation, the sequence of
state vectors is represented as:

�S0 ¼

Ind0ðtÞ
Ind1ðtÞ
:::

Indm�1ðtÞ

2
66664

3
77775; :::; �Si ¼

Ind0ðt þ iDtÞ
Ind1ðt þ iDtÞ
:::

Indm�1ðt þ iDtÞ

2
66664

3
77775 ð11Þ

where{Indk} is the sequence of the state vectors generated from the raw risk data processing
andΔ2N is a time interval in the phase-space trajectory of the system determined by the obser-
vation rate. To reflect the layered structure of the risk factors, the factors are grouped according
to their place in the risk description framework, such as in Fig. 2.

Symbolic Dynamics Operators
The processing of the raw data and the phase-space reconstruction were discussed in the previ-
ous section. The symbolic dynamics operators are presented in this section to establish a foun-
dation for factor merging.

definition 1: Sequence Index Operator Idx
The sequence index operator is defined as

t ¼ IdxðLXð3ÞÞ ð12Þ
wheret is the index of the first symbol in the symbol set O for a given symbol sequence. The
risk probability and consequence are represented by a symbol sequence of 3, LX(3).

definition 2: Shift Operator!
The shift operator is defined as

LX1ð3Þ ¼ LXð3Þ ! g ð13Þ
whereg is an integer indicating the amount of shift in the symbol set O where positive means a
shift to the right and negative means a shift to the left. The shift operation cannot cross the bor-
der of the symbol set. If the shift operation reaches the symbol set border, the last symbol should
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be repeated. For example, if the first index is 14 or 15 and the symbol set is {A, B, . . ., O}, the re-
sult of the shift operator would be LX(3) = {NOO} or LX(3) = {OOO}.

definition 3: Addition Operator�The addition operator is defined as

IdxðLX1ð3Þ � LX2ð3ÞÞ ¼ ½
X3

l¼1

ðIdxðLX1ð3; lÞ �WsðX1; lÞ
þIdxðLX2ð3; lÞ �WsðX2; lÞÞ

� ð14Þ

where[] is the Gaussian function andWs(X1,l) andWs(X2,l) are symbol weights as described in
Section II Raw Risk Data Processing. Add operator would get the first symbol index of the re-
sult symbol sequence.

definition 4: Multiplication Operator�
The multiplication operator is defined as

IdxðLX1ð3Þ � LX2ð3ÞÞ ¼ ½
X3

l¼1

ðIdxðLX1ð3; lÞ �WsðX1; lÞ
�IdxðLX2ð3; lÞ �WsðX2; lÞÞ

� ð15Þ

definition 5: Ratio OperatorΘ
The ratio operator is defined as

IdxðLXð3ÞYxÞ ¼ x � ½
X3

l¼1

ðIdxðLXð3; lÞ �WsðlÞÞ� ð16Þ

where x is a positive rational number.
As explained in definition 1, the operations in definitions 2–5 cannot exceed the

symbol boundaries.

Results
As mentioned previously, raw risk factor data may vary with location and time. Therefore, it is
critical to build a scalable framework. The framework in Fig. 2 is a scalable framework that en-
ables users to add or remove factors as necessary. In this section, the system symbolic descrip-
tion and operators discussed in the previous sections are used to establish an algorithm for
distribution network risk evaluation that is scalable.

Risk Factor Correlation
In a layered risk evaluation framework, risk sub-factors contribute to higher-layer risk factors.
Because sub-factors may have different effects on the main factor, it is important to measure
the relationship between the sub-factors and the main factor. A statistical method is used with
the assumption that the more information is available, the more accurate the evaluation of risk
will be. Therefore, we calculate the correlations of risk factors, as illustrated Fig. 3 and as de-
scribed in the following.

1. Symbol Distribution Calculation. Based on the state vector {Indk} in equation (11), a
symbol j in symbol setOhas the distribution probability

piðjÞ ¼

Xk

l¼1

WsðlÞ

k�WsðMaxÞ ð17Þ

where k is the time index of the state vector, if symbol j exists, over which the symbol weights
are accumulated andWs(Max) is the maximum symbol weight, say 60%.
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Then, for a specific risk factor, the symbol distribution probability is calculated. For the
main risk factor, the overall symbol distribution probability can be calculated as

Pi ¼

Xr

d¼1

Xk

l¼1

Wsðd; lÞ

k� r �WsðMaxÞ ð18Þ

where r is the number of main risk factors,Ws(d,l) is the corresponding dth sub-factor
symbol weight.

2. Entropy Calculation. After the symbol distribution probability has been calculated for
the risk sub-factors, likeness for the sub-factors can be analyzed, which is useful for
grouping them.

We use Kolmogorov-Sinai entropy, which is defined in equation (19), to measure the ran-
domness of the risk factors, and we use the Kullback-Leibler distance in equation (20) to

Fig 3. Risk factor correlation flowchart.

doi:10.1371/journal.pone.0112940.g003
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quantify the likeness of the risk factors.

HjðcÞ ¼
X
c2O

pjðcÞlog2pjðcÞ ð19Þ

Dðpj jj prÞ ¼
X
c2O

log2ð
pjðcÞ
prðcÞ

Þ ð20Þ

3. Factor Grouping. It should be noted that the randomness of the symbol distributions affects
the accuracy of the Kullback-Leibler distance. Therefore, we define a refined measurement as

Ii;j ¼
Dðpj jj prÞ
Hi � Hr

ð21Þ

This measurement was chosen such that, even if the Kullback-Leibler distance is small, a high de-
gree of randomness in the Kolmogorov-Sinai entropy reduces the possibility of two risk factors be-
longing to the same group, and vice versa. The group threshold is set at 2 to allow the largest
possible grouping of similar sub-factors. For a specific main risk factor, its n sub-factors are
grouped into f categories of risk subsets.

The goal is to correlate sub-factors to main factors through the symbol distribution proba-
bilities, but if certain types of data are more abundant than others, the information in the less-
abundant data may be obscured. Grouping data into categories not only reduces the dimension
of the space, which further simplifies the process, it can reveal information that would other-
wise be lost.

4. Quantification of Correlations. This step attempts to relate the f categories of risk sub-
sets to the main risk factor. We will describe the process using an example.

Without loss of generality, assume that a category f12f hasm1sub-factors. We could then
construct the time series of f1as in equation (11); for example,Sf1(t) = [Ind0(t),. . .,Indm(1)-1(t)]

T.
For each state vector in the time series, an average operation is defined as

IdxðSAvgXðt; 3ÞÞ ¼ ½
Xmð1Þ�1

l¼0

IndlðtÞY
1

mð1Þ
� ð22Þ

In this manner, the state vector phase-space is reduced fromm to f. From equations (17)–(21),
we can calculate the distance between the f categories and the distribution of all the indicators as

Ii ¼
Dðpj jj PÞ
Hi � P

ð23Þ

This is the quantitative distance between the sub-factor set and the main risk factor. The quanti-
tative correlation coefficient is defined as

�i ¼
I2i �mðiÞXn

t¼1

I
2

t

�mðtÞ

ð24Þ

This equation indicates that both the Kullback-Leibler distance and the number of factors in a
sub-factor set contribute to the correlation coefficient and that the Kullback-Leibler distance
has more influence.
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Risk Factor Merging
Merging of risk factors simplifies the calculation of main risk factors from sub-factors. Merging
is defined as

IdxðLMotherXðt; 3ÞÞ ¼ ½ð
Xn

l¼0

IndlðtÞY�lÞY
1

n
� ð25Þ

where n is the number of sub-factor groups.

Event Risk Calculation
Prior to this step, the risk is calculated from the failure probability and the
consequence independently.

For a specific component, line or substation, we can calculate the overall risk as

IdxðLRiskð3ÞÞ ¼ LProbabilityð3Þ � LConsequenceð3Þ ð26Þ

However, this definition, which was derived from equation (1), is mainly a statistical result.
The variable nature of risk is not included. Therefore, an improvement is desired.

Using the shift operator in definition 2 on the phase-space in equation (11), we can obtain
another time series vector for some value of g. Referring to the factor grouping and factor
merging methods, we can define a fluctuation parameter as

Pf ¼ ½ð
Xf

l¼0

kgðl; tÞk � �lÞY
1

f
� ð27Þ

To merge the four major types of risk factors, we define the merge operation given by
equation (28),

RiskLine ¼LineLineðStructIndYIndSocietyÞ � fððDeviceInd � LoadIndÞYIndWeatherÞ � TechIndg ð28Þ

whereDeviceInd, StructInd, TechInd and LoadInd are the device, structure, special operation and
load factors, respectively, and IndSociety and IndWeather are social and weather effect parameters,
respectively, selected in accordance with the norms of that locality.

The final overall risk is defined as

IdxðLRiskð3ÞÞ ¼ ðLProbabilityð3Þ � LConsequenceð3ÞÞYPf ð29Þ

This equation shows that greater diversity in the sub-factors results in greater risk of the event.

Algorithm Discussion
Risk is a relative concept based on probability theory. In distribution networks, if remedial
measures and schedule planswere included in the risk evaluation, the failures and the losses
would all have probabilistic characteristics. The proposed method is built on symbolic dynam-
ics, and the result is intuitive, which is helpful in management. The following discussion further
explains the concepts and the implementation of the method.

1. Information Abstraction. A distribution network is a complex dynamic system that in-
volves many types and large volumes of data. Therefore, information abstraction is
very important.

Because risk is a relative concept, a linear demarcation of baseline data for basic risk stan-
dards as described in equations (5) and (6) is feasible, but this approach is not accurate.
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Furthermore, because the probabilistic nature of risk leads to vagueness in its evaluation, sym-
bolic dynamics are used to incorporate language vagueness in the risk description.

Compared with fuzzy set abstraction, which expresses a variable using a definite category,
symbolic dynamics use a symbol sequence to describe a variable, which enables further
information processing.

Because all raw data are mapped into the symbol set, further uniform processing can be
achieved. This relative processing technique conforms to the risk concept. The method of
merging risk factors using symbolic dynamics operators offers a new way to compute risk
factor relationships.

2. Probability-based Analysis. Risk is a probability-based concept. For layered risk factors,
sub-factors can affect risk factors in higher layers. Under these assumptions, the symbol distri-
butions are calculated to reflect the failure and consequence probabilities. The Kullback-Leibler
distance is used to measure the relationships between the sub-factors and the main risk factors
and can be used as coefficients to adjust for variable randomness.

3. Scalability. The data may vary with location or time, and they may have different num-
bers of sources. Thus, the risk framework should scale according to the data sources and should
not allow data from more sources that is greater in volume to mask information conveyed by
data from fewer sources.

Equation (22) provides the mean value to describe a risk factor category, and equation (25)
merges risk factor categories. Regardless of the number of sub-factors in a risk category or the
number of categories, this method provides a uniform risk value. Therefore, the risk can be cal-
culated for the same description framework regardless of the number of data sources, which
permits scalability.

4. Complexity Analysis. Table 1 gives the approximate computational complexity estimates
for the various steps in the algorithm, assuming the basic dimension of description state vector
ism, as in equation (11).

5. Algorithm Acceleration. The most time-consuming processes are the symbol distribu-
tion, the factor grouping and the factor merging. Because these operations are based on histori-
cal data, they can be performed at system initialization and then updated periodically. In this
manner, each step can be reduced to O(m)complexity, which is very desirable.

6. Multiple Granularity Management. Because the risk factors are layered, grouped and
calculated, the risk failure and consequence distributions can be calculated and the correlations
between risk factors can be tracked. Therefore, management of risk factors with differing gran-
ularities can be implemented. From the risk failure and consequence distributions, proper
countermeasures may be taken. From the correlations between risk factors, counter measures
can be prioritized.

Table 1. Computational Complexities of Algorithm Steps.

Step Complexity

Symbol Distribution O(m2)

Entropy Calculation O(m)

Factors Grouping O(m2)

Quantify Correlation O(m2)

Factors Merging O(m)

Event Risk Calculation O(m)

doi:10.1371/journal.pone.0112940.t001
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Discussion
The Sanya Power Company supplies power to Sanya, a popular tourism site in China. The
company controls three 220kV substations, twelve 110kV substations, seven 220kV lines,
twenty-four 110kV lines and one hundred and eighty-one 10kV lines. Sanya is a tropical island,
so its distribution network is prone to disruptions from weather and other environmental fac-
tors. Therefore, risk management is very important for improving reliability.

Fig. 4 shows the high-voltage distribution network in Sanya. Certain substations or lines
that are not under the SPC’s administration are included to simplify the calculations.

The risk was given five levels, as shown in Table 2.
In our research, following data were collected:

1. Distribution network topology

2. Device accounting

3. Power flow data

4. Deficiencies and malfunctions from 2006 to 2013

5. Device-level and user-level data

6. Distribution network operation reports

Various loads, weather conditions and community activities may affect the overall risk, as
equation (28) indicates. However, risk is a relative value. In our evaluation for 2013, the base-
line was set at the minimum overall load day in 2009. We will list three line analysis results in

Fig 4. High-voltage distribution network.

doi:10.1371/journal.pone.0112940.g004

Table 2. Risk Level.

Risk Level Symbol

Very High(V) A

High(IV) D

Medium(III) G

Low(II) J

Very Low(I) M

doi:10.1371/journal.pone.0112940.t002
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this section, namely Yali II, Yali I and Yatian, which are high-risk transmission lines. The re-
sults for the substations are omitted for brevity.

In this example, the maximum overall load day and a typical rainy day in 2013were selected.
The baseline, the maximum overall load day and the rainy day in 2013were evaluated using the
parameters given in Table 3.

The sub-factor correlation coefficients obtained from equations (22) to (24)are listed in
Table 4.

From Table 4, we conclude the following:

1. 1. The user level and the maintenance are highly correlated with the overall risk.

2. 2. Because Yali II is a relatively new line, defect management for that line has less of an effect
than it does with the older lines, Yali I and Yatian.

The structure indicator varied insignificantly in our three evaluation examples. Fig. 5 and
Fig. 6 give the symbol distributions for a 110kV line structure failure and consequence, respec-
tively. Table 5 lists the corresponding symbol distribution probabilities.

The overall device risk indicators calculated from equations (25) and (26) are listed in
Table 6.

As can be observed from Table 6, the 110kV line is relatively reliable. A comparison with a
high-risk 10kV line is given in Table 7.

The overall risk values are listed in Table 8. To compare high-voltage risk characteristics, we
give the risk analysis results for several10kV lines in Table 9.

Although algorithm in this paper has little constraints on data availability. As precision for
symbolic dynamics data based abstraction and entropy based correlation evaluation, lack of

Table 3. Evaluation Parameters.

Evaluation Number IndWeather IndSociety

1 1.0 1.0

2 1.0 1.0

3 2.0 1.4

doi:10.1371/journal.pone.0112940.t003

Table 4. Line Device Indicator Correlation Coefficients.

Correlation Yali II Yali I Yatian

User Level 4.2 4.1 3.1

Device Level 2 1 1

Operation Date 1.0 1.3 1.5

Device Type 1.0 1.5 1.2

Outage Time 0.8 1.1 1.1

Environmental 1.8 1.9 2.2

Outer Impact 1 1.3 1.2

Defects 1.2 5.9 4.3

Maintenance 1.2 1.7 1.5

Replacement 1.1 1.5 1.3

Maintenance Department 4.2 4.6 4.3

Maintenance Investment 1.2 2.3 2.5

doi:10.1371/journal.pone.0112940.t004

Risk Evaluation by Symbolic Dynamics

PLOS ONE | DOI:10.1371/journal.pone.0112940 March 19, 2015 13 / 17



data would have great impact on the rationality of the result. The more data available, the more
precise the result is.

Although the categorization would also influence the final result, data categorization can be
carried out under national or provincial system monitor, maintenance guidance, which would
leads to uniform categorization in a relatively large area.

Fig 5. Device failure probability symbol distribution.

doi:10.1371/journal.pone.0112940.g005

Fig 6. Device consequence probability symbol distribution.

doi:10.1371/journal.pone.0112940.g006

Risk Evaluation by Symbolic Dynamics

PLOS ONE | DOI:10.1371/journal.pone.0112940 March 19, 2015 14 / 17



Conclusions
Distribution networks are exposed, and their operation can be disrupted for many reasons. Be-
cause the topology and the operating mode of a distribution network are dynamic, failures and
their consequence are probabilistic in nature. This study investigated a risk evaluation method
based on symbolic dynamics. Because of the relative nature of risk, symbolic dynamics is used
to abstract the information contained in raw data. To accommodate a layered framework for
risk factors, symbolic dynamics operators were discussed. To analyze the relationships between
risk factors in a layered structure, quantitative correlation values were obtained using the
Kullback-Leibler distance and Kolmogorov-Sinai entropy in the symbol distribution analysis.

Table 5. Symbol Distributions (%).

Symbol Failure Symbol Distribution Consequence Symbol Distribution

A 8.57 49.28

B 17.14 24.64

C 18.57 8.21

D 20.35 4.31

E 10.36 2.14

F 5.35 0.71

G 1.43 2.14

H 6.79 1.07

I 5.37 0.36

J 2.14 4.29

K 0.36 2.14

L 0 0.71

M 0 0

N 2.14 0

O 1.43 0

doi:10.1371/journal.pone.0112940.t005

Table 6. Line Device Risk.

Line Line Risk Factor Value/Symbol

Evaluation 1 Evaluation 2 Evaluation 3

Yali I 1.52/BCD 1.58/BCD 2.12/CDE

Yali II 1.87/BCD 1.92/BCD 2.42/CDE

Yatian 1.87/BCD 2.01/CDE 2.15/CDE

doi:10.1371/journal.pone.0112940.t006

Table 7. 10kV Line Device Risk.

Line Line Risk Factor Value/Symbol

Evaluation 1 Evaluation 2 Evaluation 3

DongHaibin II 5.36/HIJ 7.35/KLM 7.35/KLM

Xijin 4.37/GHI 5.68/IJK 5.68/IJK

Dadonghai II 6.16/IJK 8.16/LMN 8.16/LMN

doi:10.1371/journal.pone.0112940.t007
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Amethod for merging risk factors using the symbolic dynamics operators that enables the
management of risks with multiple granularities was discussed. Finally, the method was dem-
onstrated using an example from the Sanya distribution network.
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Table 9. 10kV Line Overall Risk.

Line Name/Evaluation Number Risk

Structure Device Operation Load Result Risk Level

Tianhai 1 6.91 5.36 3.20 7 281.37 V

2 8.06 7.35 3.20 12 731.68 V

3 7.85 7.35 3.20 8 1327.59 V

Gang 1 10 4.37 7.07 3 201.8 V

2 11.65 5.68 7.08 11 801.37 V

3 12.38 5.68 7.08 6 1304.06 V

FengH 1 9.84 6.16 3.55 3 216.77 V

2 13.48 8.16 3.55 6 707.83 V

3 9.39 8.16 3.55 7 1548.47 V

doi:10.1371/journal.pone.0112940.t009

Table 8. Transmission Line Overall Risk.

Line Name/
Evaluation
Number

Risk

Structure Device Operation Load Result Risk Level

Yali I 1 23.5 1.52 1.5 1.38 84.66 IV

2 23.5 1.58 1.5 1.46 89.64 IV

3 23.5 2.12 1.5 1.33 234.86 V

Yali II 1 23.5 1.87 1.0 1.14 73.67 III

2 23.5 1.92 1.0 1.24 79.34 III

3 23.5 2.10 1.0 1.09 182.83 V

Yatian 1 14.2 1.87 1.3 1.09 44.97 II

2 14.2 2.01 1.3 1.08 49.34 II

3 14.2 2.15 1.3 0.85 98.68 IV

doi:10.1371/journal.pone.0112940.t008
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