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Abstract

With the growth of the low altitude remote sensing (LARS) industry in recent years, their practical application in precision
agriculture seems all the more possible. However, only a few scientists have reported using LARS to monitor crop
conditions. Moreover, there have been concerns regarding the feasibility of such systems for producers given the issues
related to the post-processing of images, technical expertise, and timely delivery of information. The purpose of this study is
to showcase actual requests by farmers to monitor crop conditions in their fields using an unmanned aerial vehicle (UAV).
Working in collaboration with farmers in northeastern Ontario, we use optical and near-infrared imagery to monitor fertilizer
trials, conduct crop scouting and map field tile drainage. We demonstrate that LARS imagery has many practical
applications. However, several obstacles remain, including the costs associated with both the LARS system and the image
processing software, the extent of professional training required to operate the LARS and to process the imagery, and the
influence from local weather conditions (e.g. clouds, wind) on image acquisition all need to be considered. Consequently, at
present a feasible solution for producers might be the use of LARS service provided by private consultants or in
collaboration with LARS scientific research teams.
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Introduction

With the primary objective of matching agricultural practice

with crop and soil conditions, the use of Precision Agriculture (PA)

technologies is considered one of the key directions in modern

agriculture development. Some of the perceived benefits of PA

include increasing crop yield and efficiency by lowering the costs

associated with fertilizer, pesticides, herbicides, and fungicides. An

additional socio-economic benefit of PA is reducing the transport

of agriculture inputs on the air, soil and water. To date,

considerable progress has been made in reducing the application

of fertilizer, insecticides and fungicides using Variable Rate

Technologies (VRT) and Global Positioning Systems (GPS).

However, one main remaining challenge is the ability to obtain

up-to-date crop/soil condition data (e.g., nutrient deficiency, water

stress, pests, disease) for VRT. Historically, yield maps from yield

monitors had been applied to create zonal maps for VRT

machines [1–3]. However, these maps are normally obtained once

a year and often the large variation observed make the reliability

of the zonal maps limited [4]. Moreover, these types of yield maps

are only available after the season, and many harvesters are still

not equipped with yield monitors [5].

Alternatively, remotely sensed imagery obtained during the

growing season could be utilized to extract crop condition

information for management purposes in a timely fashion. In

addition, yield maps derived from these data could be used as an

alternative for yield maps from harvesters [5]. In particular, high

spatial resolution satellite imagery can provide crop and soil

condition information for management adjustment. For example,

a variety of satellite data, including IKONOS, QuickBird,

GeoEye-1 and WorldView-2, have been successfully applied in

crop yield predictions [6–16]. However, image availability is

highly restricted for these sensors due to weather condition and the

satellites’ poor temporal resolution. Moreover, the spatial resolu-

tion of these satellite images is limited with the highest resolution

for commercial satellite data (WorldView-2 and GeoEye-1) at

approximately 50 cm for the panchromatic band. Although quite

good, this spatial resolution along with the limited spectral

resolution of the panchromatic band might be not sufficient for

examining within-field variations of crop condition and yield.

With finer spatial resolution and real-time monitoring capability

[5], airborne multispectral [8,17–19] and hyperspectral [11,20]

sensors had been applied to monitor crop conditions and yield.

Aerial imagery has been shown to be as effective as high resolution

satellite imagery in monitoring spatial variation of crop condition

and yield. Furthermore, the rapid development of Low Altitude

Remote Sensing Systems (LARS) over the past decade makes its
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application for PA possible. In 2000, Inoue et al. [21] collected

crop images using a Charge-Coupled Device (CCD) camera on-

board a blimp to measure biomass and Leaf Area Index (LAI)

variation within rice and soybean fields. The results from their

study showed that it might be plausible to apply LARS images in

studying crop biological parameters. More recently, research

scientists at the US Department of Agriculture have been

conducting experiments using a fixed wing UAV to monitor

various crop characteristics. Specifically, Hunt et al. [22] used a

color digital camera on-board a radio controlled model aircraft to

collect images of a corn field in order to examine the relationships

between Normalized Green Ratio Difference Index (NGRDI),

biomass and corn nitrogen status. Similarly, Hunt et al. [23]

assessed the relationships between LAI and Green Normalized

Difference Vegetation Index (GNDVI) for a wheat field. More

recently, Hunt et al. [24] used a modified digital camera on-board

a LARS to take high-resolution (i.e. 2.7 and 5.1 cm) color-infrared

pictures of two winter wheat fields. They assessed the spectral

information with ground collected biophysical data to demonstrate

the scientific feasibility of applying LARS to monitor within-field

crop variations. Most recently, Primicerio et al. [25] employed an

ADC-lite camera on-board a UAV to acquire photos of a

vineyard. They were able to convert digital numbers to reflectance

and then calculated NDVI to display vineyard vigor. Peña et al.

[26] and Torres-Sánchez et al. [27] both applied UAV images to

map weeds in corn and sunflower fields, respectively.

While a number of sensors/cameras are available for LARS,

optical (either metric or commercial scale) or infrared (metric or

commercial with modified filter to record near infrared radiation

[22,23]) are the most commonly used for crop monitoring.

Thermal infrared sensors have been shown to be useful for

monitoring soil moisture or stress [28–30] and, most recently,

hyperspectral sensors on board a UAV were used to examine leaf

carotenoid content [31]. From the aforementioned studies, the

number of crop types examined using LARS is still limited, mainly

rice [21,32,33], soybean [21], wheat [24,34], sunflower [27] and

corn [22,26,35].

The studies to date demonstrate the scientific feasibility of

LARS applications for monitoring crops. LARS appears capable

of resolving the spatial resolution restrictions of satellite imagery.

However, there are several key limitations apparent in such studies

including the small spatial coverage and the image processing of

the LARS data. For example, in Canada transportation regula-

tions restrict the operating height of LARS, which means a large

number of images need to be collected for each field. Depending

on the percent of front- and side-lap of the images, a 30-acre field

may require over 300 images. Moreover, because of the relative

homogeneity of crops in the field, it is difficult to mosaic the

images [24,36]. Hunt et al. [24] reported that calculating NDVI or

other vegetation indices from LARS image mosaics is challenging.

For example, the same crop feature in several images could have

different digital numbers due to changes in the incident angles

and/or the atmospheric transmittance [24]. Consequently, most

published LARS investigations focus on each image separately and

not as an image mosaic [21–23,25].

There appear to be mixed messages about the practical

applications of LARS for PA. On one hand, the scientific research

demonstrates the ability to quantify relationships between crop

biomass [33] and water stress [29] with the digital numbers (or

reflectance values) acquired from LARS imagery, which would

suggest a very practical use for crop monitoring. On the other

hand, the analyses are most often carried out on each image

separately, which would not be practical for producers who may

require hundreds, if not thousands of images to monitor their

fields. In addition, there are very few examples of applied

applications of LARS for crop monitoring in the literature and

none so far based on actual requests from producers. Working in

collaboration with cash crop producers, we use case studies based

in northeastern Ontario, Canada, to explore and describe some

applications of LARS mosaic imagery for crop monitoring:

scouting, emergency response, and field trials.

Study Area

This research takes place in the clay belt area within in the West

Nipissing District of northeastern Ontario, Canada. The main

cash crops grown in this region are soybean (Glycine max), wheat

(Triticum spp.), barley (Hordeum vulgare), oat (Avena sativa) and

canola (Brassica napus). The annual mean temperature is 3.8uC
and the annual mean length of the growing season is 180 days,

with a frost-free period of only 120 days. On average, the last

spring frost is May 15, and the first fall frost is September 15. The

annual precipitation is 1008 mm, in which 273 mm is snow.

Agricultural production is influenced by acidic soil, which requires

limestone to neutralize the soil pH. Even though the growing

season is relatively short, fast growing crop varieties have shown to

be successful for this region [37]. With such a short growing season

it is necessary to monitor the field crop conditions in a timely

fashion. Moreover, the large acreage and scattered distribution of

the fields, typical of this region, makes personal visits and scouting

of the fields a challenge [38,39].

Producer requests were drawn from members of the North

Eastern Ontario Soil and Crop Improvement Association

(NEOSCIA). During the 2013 growing season and the spring of

2014, the research team was contacted several times by Steve

Roberge of Ferme Roberge and Mitch DesChatelets of Leisure

Farms. They requested that we analyze fertilizer field trials, field

tile drainage conditions, crop damage from an armyworm

[Spodoptera frugiperda] infestation, and lodging following a storm

event. These farmers gave us permission to fly over their respective

farms. Federal permission to fly the LARS over this region of

Ontario was granted by Transport Canada (Special Flight

Operations Certificate (SFOC) # 5812-15-33-2012-1).

Equipment and Methods

For this study, the UAV system, developed by Aeryon Labs Inc.,
Canada, consisted of a graphical, touch-screen control station

(Figure 1), an aerial vehicle (Aeryon Scout) (Figure 2), and a radio

repeater station to extend the control station’s transmission range.

This aerial vehicle is a commercially available quadrocopter UAV

that can be equipped with both an optical and infrared camera.

The Aeryon Scout has a maximum flight time of 25 minutes with

a communication range of 3 km. The flyer has a maximum

ground speed of approximately 50 km/hr and can remain stable

in gusts exceeding 60 km/hr. Rechargeable lithium polymer

batteries power the flyer and base station. The control station

allows the user to create flight plans that can be reused at a later

date. This aerial vehicle collects GPS/INS data for each photo,

which are later used to orthorectify and create a mosaic image.

Optical images were captured using the Photo3S optical camera

(Aeryon Labs Inc., Canada) and near infrared images using an

ADC-lite camera (Tetracam, United States) that affix to the

Aeryon Scout. Both cameras use a Bayer filter to record the

radiance from the ground targets. The Photo3S optical camera

has three bands: blue, green and red. The images captured with

this camera are stored in the flyer and then transferred to a hard

drive after landing. The ADC-lite has three bands: near infrared,

red, and green. The images captured with the ADC-lite are stored
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directly on a flash card located in the camera. The flight altitude

was set at 120 meters, as per our SFOC. Consequently, the spatial

resolution for the Photo3S optical and NIR images were 3.5 cm

and 5 cm, respectively. Given the homogeneity of the crop fields

the front overlap and side lap were 85% and 65% respectively.

The high overlapping flight path helps to improve the efficacy of

post-flight mosaic processing. The Aeryon Scout can cover close to

0.1 km2 (,25 ac) per battery charge, flying at 12 km/hr.

Moreover, although the rechargeable batteries can be replaced

quite quickly, the Aeryon Scout needs to return to the landing/

takeoff location during battery replacement.

Ground Control Points (GCP) were set up to help in the

orthorectification and georeferencing of the final mosaic images.

Each GCP was made of a 30 by 30 cm foam pad placed on the top

of a wood stake at a height of 1.5 m. Based on the size of the field,

6 to 8 GCPs were dispersed throughout the field prior to each

flight. Locations of the GCPs were recorded using a Trimble

GeoXH GPS (Trimble, United States). Coordinates recorded from

this GPS unit had a positional accuracy of less than 10 cm after

real time differential analysis.

For each mission, a team of three was required. One person

operated the control unit for the planning and operation of the

LARS, while the two others were responsible for flight observation

(i.e. spotting aircraft or other potential hazards) and the

distribution and collection of the GCPs. When using the ADC-

lite infrared camera, a photo of a white Teflon calibration plate

was taken upon takeoff for calibrating images taken. Pixelwrench2
(Tetracam, USA) software was used to convert each raw image to a

jpeg file and to calibrate the image. Field validation was done at

the time the images were being taken. The optical and infrared

imagery were then orthorectified and mosaicked using Pix4d

Mapper (Pix4D, Switzerland) software. Pix4D was also used to

generate NDVI images of fields. For the Leisure Farms soybean

field a stratified random sample based on 1 m radius sample plots

was used to statistically examine the differences in NDVI between

the three fertilizer treatments. Specifically, a One-Way Analysis of

Variance (ANOVA) was applied to mean values of 18 sample plots

generated from treatment areas A and B and 27 sample plots

generated from treatment area C (Figures 3&4).

Results and Discussions

The application of UAV imagery to assess fertilizer
treatments

There have been several studies demonstrating the benefits of

organic manure on soil quality and crop production. For example,

adding compost has shown to increase crop production and

improve soil fertility [40–43]. However, it is often necessary for

producers to conduct their own trials in order to determine the

economic feasibility of such products. In 2013 a local producer

(Leisure Farms) conducted a trial test of an organic fertilizer on a

soybean field to test the economic feasibility. He requested that the

research team image of the field prior to an annual mid-season

crop tour conducted by the members of the Nipissing District

branch of the Ontario Soil and Crop Improvement Association

(OSCIA). The three distinct fertilizer treatments were observed in

the field (Figure 3). The producer had applied only organic

fertilizer (9.37 L/ha or 1 gallon/acre) in section A of the field,

whereas in section C a conventional chemical fertilizer (3–14–45,

371.25 kg/ha or 330 lb/acre) was applied. Section B (i.e. middle

strip) was treated with a mix of organic (9.37 L/ha or 1 gallon/

acre) and chemical fertilizer (185.53 kg/ha or 165 lb/acre). The

research team flew his soybean field on a clear day (July 12, 2013)

42 days after seeding. The crop height was approximately 30 cm

at the time image acquisition. The mosaicked image (Figure 3)

shows a large contrast between the organic treatment and

chemical fertilizer treatment. The section treated with only

organic fertilizer had the weakest vegetation vigor and conse-

quently appears much darker in the infrared image. The NDVI

values are significantly lower than those of the chemical fertilizer

treatment (P,0.001, Figure 3). However, there is no statistical

difference between the strips of half organic/half chemical (B) and

normal chemical fertilizer (C) application (P = 0.59). The observed

variability within each treatment area could have been due to soil

types, soil moisture content, or other factors. The large patch of

high vigor (section D) in the southern section of the field was the

result of operator forgetting to turn off the fertilizer spreader. The

NDVI difference between treatments B and C were not detectible

at the early stages of growth in July 12th imagery. The images

taken at later growth stages (August 29, 2013, 90 days after

seeding, Figure 4) show greater variability among the three

treatments. Significant differences (P,0.001) were observed

between treatments A and C, and B and C. While the differences

between treatment areas A and B were not statistically significant

(P = 0.07), the P values is really close to the critical value of 0.05.

Consequently, it is possible that a flight between these two dates

would have provided better discrimination of the treatment areas.

Figure 1. The touch-screen control station for the Aeryon Scout
UAV.
doi:10.1371/journal.pone.0112894.g001

Figure 2. The Aeryon Scout quadrocopter.
doi:10.1371/journal.pone.0112894.g002
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The application of UAV images in identifying area of
lodging and insect infestation

Fall armyworm is an agricultural pest more typical of tropical

and subtropical regions. However, a cool, wet spring followed by

warm, humid weather and heavy rainfall favor the propagation of

fall armyworm in more temperate regions [44]. On average, one

caterpillar needs 140 cm2 of leaf area to develop through 6 instars

[44]. However, the 6th instar itself requires 77.2% of that leaf area.

Consequently, the producer in this study only recognized and

reported the armyworm infestation at this stage growth. For many

crops, including wheat, the fall armyworms tend to consume only

the succulent parts of the leaves with the main midribs intact

following the infestation (Figure 5). As a result the leaf area of the

field or parts of the field drops significantly in a relatively short

period of time. Given this type of damage it is believed that

armyworm movement/impacts could be assessed using high

resolution remotely sensed imagery. For areas infested within a

wheat field, the reflectance in the NIR band should decrease

whereas that of the red band should increase due to the loss of flag

leaves and increased exposure of the soil surface and shadows.

During the 2013 growing season the producer notified the

research group that his wheat field was hit by the fall armyworm

on July 31, 2013 when the wheat crop was at BBCH stage of 83.

Consequently, a mission over the field was taken the following day

under somewhat cloud covered conditions.

Lodging, or stem breakage, is a very common type of cereal

crop damage which results from stormy weather events and the

inadequate standing power of the crop during certain growth

stages (i.e. heavy seed heads). Consequently, high nitrogen

fertilization may cause plants to be more susceptible to lodging.

For the Nipissing district a relatively strong storm event occurred

on July 19, 2013 resulting in significant lodging within the same

armyworm infested field (Figure 6). In the infrared image, the

lodged areas appear as a bright red tone (Figure 7). The lodged

wheat covers the bare soil and consequently there is stronger

reflectance from wheat leaves and stalks in the IR band which

results in the large contrast between the lodged and non-lodged

areas.

In addition, it is also quite easy to identify stressed areas on and

around the rock outcrop area (Figures 6 and 7). During the field

trip the crops on the shallow soils were dead and are shown by a

dark tone in the NIR images. The research team provided the

producer with a mosaicked hard copy image and knowledge

regarding how to interpret the data. The information was actually

used to determine whether the producer should invest in

equipment required to lift the lodged heads during harvesting.

Figure 3. Mosaicked image map based on UAV images of a soybean field in Sturgeon Falls, ON, Canada (796569510E, 466209140N)
taken on July 12, 2013. The image map on the left is a mosaicked infrared color composite image (NIR, red, green-no enhancement applied) and
the image map on the right a mosaicked NDVI image. The A, B, and C represent treatment areas of organic only, organic and chemical fertilizer and
chemical fertilizer only applications, respectively. D indicates a fertilizer application error. The final yields for the treatment areas A, B and C were
calculated at 1.73, 2.27 and 2.97 tons/ha, respectively.
doi:10.1371/journal.pone.0112894.g003

UAV Applications upon Farmers’ Requests

PLOS ONE | www.plosone.org 4 November 2014 | Volume 9 | Issue 11 | e112894



Using UAV images to identify a field tile drainage
network

The main soil type for this area of northeastern Ontario is clay

and the topography is nearly level with gentle slopes of 1–2%. The

combination of clay and flat terrain has led to drainage problems

for local producers. Consequently, field tile drainage systems are

commonly installed to reduce the risk of crop loss from excess

water and provide more uniform crop production amidst climate

variability [45]. In addition, producers have higher flexibility in

field operations (e.g., planting, drier harvest conditions, less soil

compaction, and a wider choice of crops and crop varieties)

[45,46]. Good drainage can also reduce the frequency of pests and

disease outbreak [45]. On tiled land, producers are able to obtain

a modest return [47]. Once installed these systems need to be

monitored and maintained and thus it is important for the farmer

to know the exact location of their tiles. However, such

information is not always available to farmers particularly when

ownership of the field changes. In the Nipissing district it is

common that the contractors only provide the producers with

hand-drawn maps of the drainage system. In Ontario, the Ministry

Figure 4. Mosaicked image map based on UAV images of a soybean field in Sturgeon Falls, ON, Canada (796569510E, 466209140N)
taken on August 29th, 2013. The image map on the left is a mosaicked infrared color composite image (NIR, red, green-no enhancement applied)
and the image map on the right a mosaicked NDVI image. The A, B, and C represent treatment areas of organic only, organic and chemical fertilizer
and chemical fertilizer only applications, respectively. D indicates a fertilizer application error. The final yields for the treatment areas A, B and C were
calculated at 1.73, 2.27 and 2.97 tons/ha, respectively.
doi:10.1371/journal.pone.0112894.g004

Figure 5. A comparison of the result of an armyworm attack.
The arrows indicate the difference in the flag leaf of the infested (left)
versus the healthy (right) wheat plants. Only the mid-rib of the flag
leaves remains on the infested plants.
doi:10.1371/journal.pone.0112894.g005

Figure 6. A picture showing lodging and crop stress in a wheat
field on Roberge Farms. The photograph was taken between
locations C and D in Figure 5, pointing south.
doi:10.1371/journal.pone.0112894.g006

UAV Applications upon Farmers’ Requests

PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e112894



of Agriculture and Food normally maintains tile drainage

information but access to their GIS database revealed very little

coverage for this region of Ontario.

The owner of Leisure Farms had two fields tiled in 2012 but was

not able to obtain maps of the location of the tiles from the

contractor. Consequently, he requested the research team identify

the tile locations prior to seeding. On April 28, 2014 images were

collected using the UAV system, processed and mosaicked. The

mosaic image was then converted from a tiff file format to a KMZ

and e-mailed to the producer for interpretation on Google Earth

on the same day. In a follow up phone conversation with the

producer we were able to identify locations of some of the tiles in

the image which depicted a brighter tone with the expected linear

feature. Areas well drained were drier and consequently look

brighter (Figure 8). The interpretation is also validated by the fact

that the field tile drainage network was located at the expected 50

feet (15 m) on centre interval. Further, we were also able to

identify some drainage problems (i.e. excessive wetness) in the field

possibly resulting from a poor grade during installation (Figure 8).

Interpretation was possible in part to the bare soil present at this

time. We were not able to identify the tile drainage system for

another of his fields due to the presence of a residual straw cover.

Based on the positive results, the producer suggested that we might

receive more requests from other local producers to identify field

tile locations and drainage problems.

Weather conditions and UAV image acquisition
Weather conditions are critical for remote sensing acquisitions

and unfortunately the growing seasons are typically the rainy

seasons for many parts of the world. For example, the City of

North Bay, located only 50 km east of the study area, experienced

30 rainy days in the 77 days from June 1st to August 16th of 2013.

In addition, there were ten days with trace amounts of

precipitation. Consequently, sky conditions can considerably

hinder the availability of satellite imagery during the peak-growing

season. In fact, our research group had requested a WorldView-2

image for the study area during the growing season for two

consecutive years (2012–2013) without any success due to

persistent cloudy conditions.

In comparison to satellite and high altitude aerial remote

sensing, LARS has a higher degree of flexibility with regards to

image acquisition. Although it is best to take imagery during a

cloud free period, LARS images were successfully collected under

full cloud cover. However, the impacts of varying solar radiation

on the image should be considered for each task particularly when

creating large mosaics based on hundreds of individual images.

Figure 7. The top image is a mosaicked infrared color composite map (NIR, red, green-no enhancement) of a wheat field located in
Verner, ON, Canada (80659500E, 466229350N) that was stricken by army worms and lodging taken on July 31, 2013. The bottom image
is the corresponding NDVI derived map. The A indicates a healthy non-infested alfalfa field, the B indicates a section of the wheat crop hit by army
worms, the C shows an area of lodging and D indicates a rock outcrop.
doi:10.1371/journal.pone.0112894.g007
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Factors impacting LARS adoption for PA
At present one of the major factors impeding the adoption of

LARS is the cost. Currently it is expensive to own LARS

equipment with the flyers alone costing between US$20,000 and

US$70,000 [48]. The camera cost range from several hundred

dollars for a standard commercial camera to upwards of US$7,000

for a metric infrared camera. The maintenance cost should also be

considered. For example, the quadrocopter propellers can be

damaged and rechargeable batteries have a limited number of

cycles. Consequently, an additional US$5,000 should be budgeted

for LARS maintenance. For this study an additional software

expense was incurred to mosaic the imagery. Finally the costs of

liability insurance must also be considered if the LARS is to be

flown for commercial or research purposes in Canada and other

jurisdictions. Fortunately, insurance was covered through our

institution at no additional cost.

Another current limitation for the wide use of LARS for PA is

the personnel required. A team of two individuals, one operator

and one spotter, were required as part of the SFOC. However, it is

recommended that at least three people be present. Specifically, a

trained and qualified person needs to be responsible for the

assembling, operation and disassembly of the UAV, a spotter is

required and it is suggested that a third person set up the GCPs,

measure the reference targets spectral responses, and act as a

second spotter. In Canada a SFOC is also required for all

commercial and research uses of UAV. The UAV team should

also be able to mosaic images and georeferencing them shortly

after image acquisition. In this investigation we determined that

one of the team members needs to spend roughly one hour to

download all of files associated with the UAV images, the GPS

coordinates, and the spectral measurements. Moreover, another

two to four hours, depending on the number of pictures collected,

are required to orthorectify these images.

Besides the requirement of short image processing, certain skills

in image interpretation or classification are also necessary for

effective use of a LARS for PA. Most producers would require

image interpretation training. The collection and processing of

UAV images in a timely fashion is a key obstacle for their practical

application. For our tile drainage example, we received the request

from the producer on April 21, 2014. The fight was possible only

due to ideal weather conditions and other logistical issues. The

travel time from our institute to the study area is roughly

40 minutes. We went to the field on the morning of April 28, 2014

and finish four flights in just under two hours. We had to then

travel back to our lab, download all the images and process on the

same date. Two KMZ files were sent to the farmer that same day.

In this tile drainage case, skills of image interpretation are very

important [48]. The farmer was not able to visually identify tiles

from the image mosaic until we sent him a KMZ file with our

digitization of the tiles.

Feedback from farmers on the application of UAV image
in PA

During the process of image acquisition, we had many

discussions with the farmers regarding the issues of LARS

applications in agriculture. The owner of Leisure Farms was

extremely satisfied with the mosaicked imagery we provided to

him for the soybean fertilizer trials and tile drainage maps. Based

on the results he decided not to bother including his soybean

treatment in the annual crop tour of 2013. Moreover, he was

impressed with the ability to identify the field tile drainage runs.

He anticipated we would receive request for this service from other

farmers in the area. Based on the extent of lodging in Roberge

Farms wheat fields (approximately 13%) Steve Roberge decided to

purchase a lift fork to harvest lodged wheat. According to these

farmers, a fast response is the key for the application of UAV

Figure 8. Mosaicked image maps, based on UAV optical images, of a bare field located in Sturgeon Falls, ON, Canada (796569510W,
466209440N). The image maps were used to locate the tile drainage pipes and to identify faulty drainage pipes. A linear enhancement applied to the
optical image map (left) helps to better discriminate the tile drainage configuration in comparison to the non-enhanced optical image map (right).
doi:10.1371/journal.pone.0112894.g008
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imagery in PA, especially for the requests of insect damage and

other crop stress scenarios. Consequently it is critical to set up a

routine procedure for image capture and processing. As a result,

image processing (mosaic, georeferencing and interpretation)

should be completed in one or two days with feedback directed

to the farmer as quickly as possible. Considering the operating and

processing costs of a LARS, it is more practical for a third-party to

own the LARS and to provide the service.

Conclusion

This paper examined the feasibility of applying UAV acquired

images for monitoring crop conditions based on the actual requests

from producers. The results suggest that it is plausible to obtain

images and process them in a timely fashion for PA applications.

However, due to current costs and operational logistics the

application is still in its infancy stage. A fast adoption of UAV

systems should occur as the costs of LARS decrease and more

experienced personnel, possibly a service industry, are available to

acquire and process these data in a timely fashion.
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