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Abstract

We present an EEG study of two music improvisation experiments. Professional

musicians with high level of improvisation skills were asked to perform music either

according to notes (composed music) or in improvisation. Each piece of music was

performed in two different modes: strict mode and ‘‘let-go’’ mode. Synchronized

EEG data was measured from both musicians and listeners. We used one of the

most reliable causality measures: conditional Mutual Information from Mixed

Embedding (MIME), to analyze directed correlations between different EEG

channels, which was combined with network theory to construct both intra-brain

and cross-brain networks. Differences were identified in intra-brain neural networks

between composed music and improvisation and between strict mode and ‘‘let-go’’

mode. Particular brain regions such as frontal, parietal and temporal regions were

found to play a key role in differentiating the brain activities between different

playing conditions. By comparing the level of degree centralities in intra-brain

neural networks, we found a difference between the response of musicians and the

listeners when comparing the different playing conditions.

Introduction

Improvisation, an instantaneous creative behavior, is often encountered in

different forms of art such as music and dance. In this paper, we study the brain

mechanisms of music improvisation. We refer to the performance according to

notes as composed music, while the instantaneous creative performance as

improvisation. In the performances, each piece of music either composed or

improvised was played in either a mechanical manner (i.e. strict mode) or in a

more emotionally rich manner (‘‘let-go’’ mode).
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Music improvisation is believed to involve neural-substrates in large brain

regions [16] [18] [19] [6] [4] [3] [2] [1] [12] [13]. If these large brain regions are

identified, one could use neuro-scientific approaches to improve the quality of

music performance. To analyze the brain mechanisms of music improvisation, we

use causality measures to analyze the EEG data measured from the experiments

and construct generalized neural networks for each experimental condition. We

have investigated various kinds of causality measures and found that the

conditional Mutual Information from Mixed Embedding (MIME, a time domain

direct causality measure developed by I. Vlachos and D. Kugiumtzis [27]) to be

the optimal causality measure for our EEG analysis. In this paper, we present our

results on intra-brain and cross-brain neural networks, and compare the networks

observed for different playing conditions.

Music improvisation has long been studied by neuroscientists and mathema-

ticians using various approaches. Recent research has identified a number of

frontal brain regions, including the pre-supplementary motor area (pre-SMA) [7]

[18], [22] and the dorsal premotor cortex (PMD) [9] [15], to play central roles in

more cognitive aspects of movement sequencing and creative generation of music.

For a while, scientists have used brain scanning techniques such as fMRI, PET and

EEG to study the brain. O. D. Manzano et. al. used fMRI to study the melodic and

rhythmic improvisation in a 262 factorial experiment [18] [19], where the dorsal

premotor cortex (PMD, in frontal cortex, is assumed to be consistently involved

in cognitive aspects of planning and selection of spatial motor sequences) was

found to be the main region for melodic improvisation, while the pre-

supplementary motor area (pre-SMA, showing increased activation during

perception, learning and reproduction of temporal sequences) was identified to be

related to rhythmic improvisation [18] [19]. A. L. Berkowitz et. al. [3] also used

fMRI in a study of expertise-related neural differences between musicians and

non-musicians during improvisation. Their results show that musicians have right

temporoparietal junction (rTPJ) deactivation during music improvisation, while

non-musicians showed no activity change in this region [3]. Moreover, C.

Babiloni et al. [1] studied the frequency filtered EEG measured from professional

saxophonists during music performances, they found the EEG power density

values decreased in the alpha band (8–12 Hz) in the posterior cortex during

resting state, while the power values enhanced within narrow high-frequency

bands during music performances [1]. Other studies are e.g. EEG phase synchrony

analysis [5], fMRI study of jazz improvisation [16], PET studies of melody and

sentence generation [6] and the fMRI study of pseudo-random motor and

cognitive tasks [2].

Amongst the many mathematical tools used to study music improvisation, we

consider the most relevant tools to be measures of correlations, standardized Low

Resolution Brain Electromagnetic Tomography (sLORETA, [21]) and analysis of

variance (ANOVA, [20], [23]). sLORETA is a method used to localize, identify

and visualize EEG point sources in the brain [21]. ANOVA is used to analyze the

statistical differences between different experimental conditions [20] [23]. It has

been applied to e.g. the music improvisation study on trained pianists [4], which
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revealed that the dorsal premotor cortex, the rostral cingulate zone of the anterior

cingulate cortex and the inferior frontal gyrus are important to both rhythmic and

melodic motor sequence creation [4]. D. Dolan et al. undertook a sLORETA

analysis of the EEG for music improvisation [10]. They used part of the same data

as we have done for the analysis described in this paper, namely EEG measured on

members of a trio and two members of the audience. Their sLORETA analysis

suggested similar results to those we obtained from the MIME analysis (see

below). In both cases the frontal cortex was found to be strongly involved in

music improvisation [10]. Other studies investigated e.g. the correlation analysis

of EEG [11] [14] and music performance [12] [13], but these investigations did

not address the direction of causal influence between EEG channels. In the present

paper, we will complement the analysis in [10] by applying MIME and network

theory to the analysis of the multi-channel EEG data streams.

For our EEG analysis, we have investigated three popular measures, namely the

nonlinear indirect measures: transfer entropy (TE [24]) and MIME [27], and a

linear direct measure: partial directed coherence (PDC [25] [26]). TE was found

to unsatisfactorily resolve the direction of the causal flow, while PDC returns false

or unreliable causalities presumably due to the limitations of the linear

autoregressive model fitting. MIME appears to be the best measure for our EEG

analysis, among the measures we investigated, and is able to efficiently generate

reliable and robust causality results with a satisfactory resolution. Hence, we only

report the MIME analysis of the neural intra-brain and inter-brain information

flow between large brains regions of musicians and listeners. The technical details

of the comparison between different causality measures will be discussed in

another publication.

Our study

We consider two experiments regarding the effects of the performance approach

for different types of music (composed music and improvisation) and different

playing modes (strict mode and ‘‘let-go’’ mode). Our main interest is to identify

neural information flow between EEG channels using MIME. It is noteworthy that

our emphasis was put on making the experimental environment as close as

possible to real concert performances. This emphasis was especially addressed in

the second experiment, whose playing environment is more extensive.

Two music improvisation experiments were done at the Guild Hall School of

Music and Drama in London separately on 20.06.2010 and 31.03.2012.

Synchronized EEG measurements from both the musicians and the listeners were

collected by Björn Crüts and his team (BrainMarker Corp.) using CE-certified

EEG device (Brainmarker, the Netherlands) during the music performances.

In the first experiment the international concert pianist David Dolan solo

performed four pieces of music:

Test 1: Schubert-Impromptu in G flat major Op. 90 No. 3, neutral mode,

uninvolved
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Test 2: Schubert-Impromptu in G flat major Op. 90 No. 3, fully involved

Test 3: Improvisation, polyphonic, intellectual exercise

Test 4: Improvisation, polyphonic, emotional letting go.

The audience consisted of one listener. Both participants were connected to

synchronized EEG amplifiers (250 Hz sampling frequency) with 8 electrodes (P4,

T8, C4, F4, F3, C3, T7, P3). The electrodes are labeled by the initial of the

corresponding cortices, P: parietal cortex (perception, multi-sensory integration),

T: temporal cortex (processing of language and sounds), C: central cortex (sensory

and motor function), F: frontal cortex (attention and executive control). The odd

numbers stand for locations on the left brain, while even numbers represent

locations on the right brain. The electrodes are all localized according to the

international 10–20 system (Jasper, 1958). A reference electrode (Cz) at the central

location on the top of the head was used, so that each EEG signal was mono-polar

referenced to this central site and activity levels of the eight sites could be

compared relative to each other.

In the second experiment, the music was performed by the Trio Anima (three

highly acclaimed musicians: Drew Balch (violist), Matthew Featherstone (flutist)

and Anneke Hodnett (harpist)) in the following order:

A. Ibert [duration: 39 3099]: 1. strict & 2. ‘‘let-go’’

B. Telemann [duration: 29]: 1. ‘‘let-go’’ & 2. strict

C. Improvisation: 1. ‘‘let-go’’ & 2. strict

D. Ravel [duration: 29 5099]: 1. strict & 2. ‘‘let-go’’

E. Improvisation: 1. strict & 2. ‘‘let-go’’

The audience consisted of 14 listeners. Synchronized EEG data was measured

from all the musicians and from only two of the listeners, this was due to technical

limitations on the number of EEG machines. However, the data from one listener

had to be excluded from the cross-brain analysis, due to a technical issue

concerning the synchronization with the other EEG machines. The EEG data

(100 Hz sampling frequency) was measured from 10 electrodes: P4, T8, C4, F4,

F3, C3, T7, P3, O1 and O2 (O: occipital cortex, visual processing center).

In this experiment, pieces A, B and D are composed music (music

performances according to a written score) and as such are similar to the first two

tests pieces in the first experiment. Pieces C and E were entirely improvised

(instantaneous creative performance of music) by the trio and therefore similar in

performance approach to the last two pieces of the first experiment. Both the

composed music and the improvised were played in the strict mode and the ‘‘let-

go’’ mode. Similar to the mode played in the test 2 and test 4 of the first

experiment, the ‘‘let-go’’ is a music playing mode with full emotional expression,

whereas the strict mode is a mechanical rendition of music, which is similar to the

neutral mode in test 1 of the first experiment. However, the intellectual exercise

(test 3) of the first experiment consists of the musician improvising a technically

correct piece of music without any emotional content. This mode wasn’t used in

the second experiment. Our aim is to identify the neural differences between the

different modes of performance.

Neural Causal Flow during Music Improvisations
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For the EEG measurements, standard EEG caps (BraiNet, Jordan Neuroscience)

were used to standardize the electrode locations by using anatomical reference

points. This ensures that measurements within and between subjects could be

compared. Ag/AgCl electrodes with carbon shielded wires (Temec, the

Netherlands) and conductive electrode gel (Ten20, D.O. Weaver & Co) were used

to minimize movement artifacts. Data acquisition was carried out with a sample

frequency of 250 Hz in the first experiment and 100 Hz in the second experiment.

Data filtering was executed using a first order 0.16 Hz high pass filter and 59 Hz

fourth order low pass filter. The amplifiers were time-synchronized using a

purpose build external trigger. Before the measurement, the skin was cleaned

using abrasive gel (NuPrep, D.O. Weaver & Co.) to ensure low skin impedance

(5 k V) and high signal quality.

The reason for the use of 8 channel EEG recordings, is that we focus on the

activities of large cortical brain regions, such as the primary motor or temporal

cortex. In addition, we aim to choose an experimental set-up of minimal

discomfort for the musicians, but still apply enough electrodes to distinguish the

activity from different large brain regions. Similar approaches have been used in

other patient studies e.g. studies of autism, where the motor cortex activity was

measured. Due to the machine set-up (active shielding mechanism), movement

artifacts were minimized. Since prefrontal poles were not measured, eye

movement artifacts were excluded. Similar considerations hold for other muscle

activity, which most frequently originate in the prefrontal cortex, this region was

excluded from our measurement. Concerning muscle activity originating in the

temporal regions (T), we note that that such activity is limited to high frequencies

and that these frequency components (.32 Hz) were filtered out via Fourier

transforms.

According to Dr. David Dolan, the redering of composed and improvised

music in our experiments are mainly distinguished by the overall manner of the

music performances [10]. Improvisation contains more coherent and long-term

structural lines, shared by all members of the ensemble. The short-term beats are

freer and uneven, but the deep, longer-term pulse is extremely stable in

improvisation. In performances of composed music, the gestures seemed to be

shorter and more rigid (even in quick repetitive phrases). There is less room for

spontaneity and the audience finds themselves less surprised. This is perhaps the

reason behind the results of psychological tests, which showed that the audiences

found improvisation to be more emotionally engaging and musically interesting

[10]. Extra notes were added spontaneously by the freer distribution of time over

gestures, which leans more significantly on structural key moments. Another

important characteristic of improvisation, is that the risk-taking and mutual

support are provided spontaneously by the members of the ensembles. This is

probably a consequence of the higher level of active listening that is needed during

the improvisation. Hence, one may expect that when improvising, musicians are

prevented from entering into an ‘autopilot mode’ since the improvisation forces

them to listen very attentively to the music while being prepared for the

unexpected to happen at any instance.
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Previous research has identified a number of the frontal regions, including the

pre-supplementary motor area (pre-SMA) [7] [18] [22] and the dorsal premotor

cortex (PMD) [9] [15] to play central roles in more cognitive aspects of the

movement sequencing and creative generation of music. We hypothesize that the

musicians may trigger more wide-distributed neural networks when improvising

than when performing composed music, and that the frontal regions (attention

and executive control) play an important role in the improvisation process.

Given the above differences between different music types and playing modes,

we aim to investigate their neural substrates based on the network structure of the

neural information flow. Previous music improvisation studies considered either

unique point sources of the EEG [10] or symmetric correlations between brain

regions [7] [22] [9] [15]. In this paper, we present a causality analysis of the EEG

data recorded during music improvisation, which aims to identify neural

differences between experimental conditions. We use the MIME causality measure

to analyze the EEG data, and construct both intra-brain and cross-brain networks

from the MIME causalities. We mention one limitation of MIME. Namely that

since MIME is a bivariate causality measure (in contrast to multivariate measures)

it is unable to distinguish between direct and indirect causalities. (By this we mean

the following. Consider three time series A(t), B(t) and C(t). Assume C depends

on B and B depends on A, but that C doesn’t depend directly on A. MIME would

however return the following dependencies: C on B and B on A and also C on A,

because it is a bivariate measure, it is unable to determine that the dependence of

C on A is only through B. We stress that although MIME is not a direct measure,

in the sense just mentioned, it is certainly a directed measure, in the sense that it

can determine whether A causes B or B causes A.)

As has been addressed earlier, the reason for using MIME among the many

other measures is that we have found it to be the most reliable and useful measure

for our experimental data analysis. To verify the directionality of MIME in cross-

brain analysis, two reading experiments (See subsection Causality verification of

MIME) were analyzed, where MIME was found to be able to identify the correct

direction of cross-brain interaction from the reader to the listener. We are

convinced from this analysis that MIME does not generate false causalities and is

reliable for the analysis of music experiments. Here we especially use the MIME

causalities to construct networks that allow us to investigate the differences

between experimental conditions.

Results

We have used the causality measure MIME to analyze EEG data from music

experiments, from these results we construct both intra-brain and cross-brain

neural networks connecting large-brain regions of the musicians and listeners.

Neural Causal Flow during Music Improvisations
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Intra-brain neural information flow

In our analysis, each brain is considered as a neural network composed of large

cortical brain regions connected by the neural information flow. A link is drawn

in the intra-brain neural networks if the causality value is positive and significant

according to a significance thresholding test (i.e. surpass the significance

threshold, for details see the subsection Dependence on Thresholding), this way

residual information flow [17] is avoided. We use time averages of the MIME

causalities to determine the links between brain regions.

In the first experiment, the intra-brain neural networks for the pianist and the

listener are shown in Figures 1 (pianist) and 2 (listener), respectively. The

significance thresholds are taken as Tpianist~0:2Cmax,pianist and

Tlistener~0:1Cmax,listener for the pianist and the listener, respectively. The Cmax,pianist

and the Cmax,listener are the maximum causality values (averaged over time

windows) for the pianist and the listener, respectively. The specific choice of the

values 0.2 and 0.1 were found to produce the most clear difference between

experimental conditions. Robustness of the results with respect to the choice of

these parameters are discussed in subsection Dependence on Thresholding.

The intra-brain neural information flow networks differ between composed

music and improvisation. For the pianist (Figure 1), the information flow is

confined to the back of the brain during composed music, whereas during

improvisation the flow expands to the entire brain. A similarly expansion was

observed for the listener (Figure 2), although in this case the expansion is from

the right part of brain to the entire brain when comparing composed music to

improvised music.

In the second experiment, an extra pair of conditions: strict mode and ‘‘let-go’’

mode, was added to the experiment. To compare the differences between

experimental conditions, we study the contrasts, computed as the difference,

between the MIME causalities for the pairwise conditions, e.g. composed music

versus improvisation and between ‘‘let-go’’ and strict mode. The contrast causality

values were averaged over time windows separately for the musicians and the

listeners. Again we used a significance thresholding test to decide the significance

of the difference between the causalities. For each pair of conditions, e.g. the

composed music vs improvisation (Figure 3), we define a radius

R~(Maxcontrast{Mincontrast)=2 as half of the difference between the global

maximum and the global minimum contrasts causality values, one radius for the

musicians and one for the listeners. The significance threshold was defined as half

of the radius T~R=2, the contrast values outside the interval ({T,T) were

deemed significant, otherwise insignificant. This definition of threshold is

empirically reasonable, because a lower threshold will lead to a sharp increase in

the number of detected information flow, while a higher threshold will prevent

reasonable direction of information flow to be registered. For instance, the

(C3,T7) lattice site in the left panel (musicians) of Figure 3, which has the

maximum contrast values 0.1, indicates significant information flow from

C3?T7, i.e. from the left central region to the left temporal region. For more

Neural Causal Flow during Music Improvisations
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details on the dependence on the specific value of the threshold see subsection

Dependence on Thresholding.

When composed music is compared to improvisation, we find that the

composed music has overall stronger intra-brain causalities than the improvised,

which is seen as more links (red) for ‘‘composed music . improvisation’’ than the

links (green) for ‘‘composed music , improvisation’’ in the contrast intra-brain

neural networks (Figure 4). This result does not contradict the observed

expansion of neural information flow when composed music is changed to

improvisation, this only indicates a difference in the strength of the causality

values between the two conditions and corresponds to stronger values for the

composed music.

For musicians (the left panel in Figure 4) the significant information flow of

composed music are from both the left and right central regions to the left

temporal region ([C3,C4]?T7) and from the right frontal region to the right

occipital region (F4?O2). For listeners (the right panel in Figure 4), information

flow that are significant in composed music are from the left frontal and left

parietal regions break into two branches, one is to the left temporal region

([F3,P3]?T7), the other is to the right frontal region via the right central

([F3,P3]?F4, or [F3, P3]?C4?F4) and right temporal regions (P3?T8?F4, or

[F3, P3]?C4?T8?F4). The left frontal (F3) and left parietal (P3) regions act as

the main sources of information flow, while the left temporal (T7) and right

Figure 1. Pianist’s intra-brain neural networks for the first experiment. The two panels show the pianist’s
intra-brain neural networks separately for composed music (left) and improvisation (right). The large brain
regions are labeled by the 8 electrodes: F3, F4, C3, C4, T7, T8, P3, P4. The red links indicate the direction of
neural information flow between large brain regions, where the thickness of the links represent the
magnitudes of the causalities.

doi:10.1371/journal.pone.0112776.g001
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Figure 2. Listener’s intra-brain neural networks for the first experiment. The two panels show the
listener’s intra-brain neural networks separately for composed music (left) and improvisation (right). The large
brain regions are labeled by the 8 electrodes: F3, F4, C3, C4, T7, T8, P3, P4. The red links indicate the
direction of neural information flow between large brain regions, where the thickness of the links represents
the magnitudes of the causalities.

doi:10.1371/journal.pone.0112776.g002

Figure 3. Color-map of the contrast causality matrix between composed music and improvisation. In
this figure, the two 10|10 lattice plot indicates the contrast causality matrices between composed music and
improvisation separately for musicians (left) and listeners (right). The direction of information flow is from the
row channel to the column channel for each lattice. The color of the lattice indicates the strength of the
causality contrasts, of difference, between composed music and improvisation, which is scaled between {0:1
and 0:1. The correspondence between the color and the causality strength is shown in the color-bar.

doi:10.1371/journal.pone.0112776.g003
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frontal (F4) regions are the main sinks, and the right central (C4) and right

temporal (T8) regions serve as transit hubs. The listeners also have significant

information flow during improvisation (green links in the right panel of

Figure 4): from the right frontal region to the left frontal (F4?F3) and right

temporal regions (F4?T8) and from the left central to the left frontal region

(C3?F3). The information flow that are significant during improvisation (red

links) have directions opposite those found during composed music (green links).

The more red links than green links in the figure of the contrast intra-brain neural

networks are not in contradiction to the expansion in the distributions of

information flow, when composed music is changed to improvisation. The

dominance of red links only implies that those directions have stronger causality

values during composed music than during improvisation. In other words, this

analysis highlights the difference in causality values between the different music

types. Namely, when the flow occurs with significant different causal weights for

different mode of performance, it will be detected in Figure 4, while if the

information flow occurs with more or less comparable and significant causality

Figure 4. The contrast intra-brain neural networks between composed music and improvisation for the
second experiment. The contrast neural networks were drawn from Figure 3. The causality contrasts were
obtained by taking the differences of the MIME causalities between composed music and improvisation. A link
is drawn in this network if the causality contrast is significant according to a thresholding test. The red links
indicate the information flow that are significantly stronger (causality values) in composed music than in
improvisation, while the green links indicate the information flow that are significantly stronger in improvisation
than in composed music.

doi:10.1371/journal.pone.0112776.g004
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values for the two conditions no contrast will be registered in this figure. In the

subsection Dependence on Thresholding, we explain that the observed contrast

structure doesn’t depend in any important way on the choice of thresholds.

The network structures are more complicated for strict mode and ‘‘let-go’’

mode (Figure 5). For musicians (left panel) information flow that are stronger in

strict mode (i.e. ‘‘strictwlet-go’’) are from the left frontal region to the left and

right central regions (F3?C3, C4) and to the left occipital (F3?O1) and the right

temporal (F3?T8) regions, from the right frontal and left central regions to the

left temporal region (F4, C3?T7) and from the right parietal region to the left

central (P4?C3), right occipital (P4?O2) and right temporal (P4?T8) regions.

Here we see that the left frontal region (F3) and the right parietal (P4) region are

key to musicians playing in strict mode (‘‘strictwlet-go’’). However, in the same

intra-brain neural network for musicians, information flow that are stronger in

‘‘let-go’’ (i.e. ‘‘let-gowstrict’’) mode are from the right frontal region to left

occipital region (F4?O1) and from the right parietal region to left temporal

region (P4?T7). For listeners, there is also a clear difference in the distribution of

neural information flow. The information flow stronger in strict mode (i.e. ‘‘strict

modewlet-go mode’’) are from the left parietal to the left frontal (P3?F3) and

left temporal regions (P3?T7), from the right temporal region to the left

temporal region (T8?T7) and from the right central region to the right frontal

region (C4?F4), whereas information flow stronger in ‘‘let-go’’ mode (i.e ‘‘strict

mode , let-go mode’’) are from the left and right frontal regions to the right

central (F3,F4?C4) and right temporal regions (F3,F4?T8) and from the left

central region via the left temporal region to the right central region

(C3?T7?C4). In strict mode flow tend to be from the back to the front of the

brain, whilst ‘‘let-go’’ mode tend to exhibit the inverse direction from the front to

the back of the brain. We explain in the subsection Dependence on Thresholding

that the observed contrast structure doesn’t change when we change the

thresholds values by small amounts.

Since the intra-brain analysis studied the difference between different

experimental conditions, we do not have enough statistics to discuss reliably

person specific instantaneous flow patterns, but have concentrated on average

trends of information flow as well as the sink and source activities of large brain

regions. These results are obtained by averaging over time windows and over

experimental conditions.

Degree centrality analysis

To identify the difference between experimental conditions in terms of the

importance of large brain regions, we carried out an analysis of the degree

centrality of the intra-brain neural networks. Since the intra-brain neural

networks are directed we count the number of in-going and out-going links to a

node separately and thereby calculate the in-degree and out-degree for each node

(i.e. large brain region). The degree centralities were averaged over time windows

and experimental conditions, results show that the musicians typically have
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opposite trends to the listeners when composed music is compared to improvised

and the strict mode is compared to the ‘‘let-go’’ mode.

The differences between the experimental conditions were compared by

subtracting the degree centralities found under one condition from those found

under another condition and thereby focus on the contrast between experimental

conditions. In Figure 6, we show that musicians were found to have larger in- and

out-degrees during improvisation than during composed music, while the

listeners exhibit the opposite trend. When strict mode was compared with ‘‘let-

go’’ mode (Figure 7), we find that musicians have larger in- and out-degrees in

strict mode than in ‘‘let-go’’ mode, while listeners again exhibit the opposite

results. In this analysis, a larger in- and out-degree indicates a larger amount of

information flow in and out of the coresponding brain region and hence one

would expect this to imply that the region is more functionally involved with the

other regions in the network.

Figure 5. The contrast intra-brain neural networks between strict mode and ‘‘let-go’’ mode for the
second experiment. The contrast neural networks were drawn from Figure 3. The causality contrasts were
obtained by taking the differences of the MIME causalities between strict mode and ‘‘let-go’’ mode. A link is
drawn in this network if the causality contrast is significant according to a thresholding test. The red links
indicate the information flow that are significantly stronger (causality values) in strict mode than in ‘‘let-go’’
mode, while the green links indicate the information flow that are significantly stronger in ‘‘let-go’’ mode than in
strict mode.

doi:10.1371/journal.pone.0112776.g005
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Cross-brain networks

P. Vuust reported in [28] and [29] a study of jazz performances, where the jazz

musicians were found to communicate with each other by modulating their

individual rhythm during ensemble performances. In our experiments, we study

both the musicians and the listeners, and we try to investigate the way the

musicians coordinate with each other in terms of information flow. In Figure 8,

we show e.g. the information flow within and between the brains of the flutist and

the harpist. We also investigate how the musicians interact with the listeners

during the music performances. In our study, to analyze the pattern of

coordination, we monitor the average cross-brain causalities which results in a

single nonnegative real number for each direction (i.e. from one brain to

another). A cross-brain link is drawn if the average causality value i.e. the cross-

brain weight, is significantly higher in one direction than in the opposite

direction. For instance, in the second experiment, the cross-brain weight was

significantly higher for harpist? listener, but almost vanished for listener?har-

pist, hence the cross-brain interaction was from the harpist to the listener during

the music performances. We do not need to define a specific threshold, since the

Figure 6. Degree centrality contrasts, or difference, between composed music and improvisation in the second experiment. In this figure, the red
stems and the blue stems indicate the in and out degree centrality contrasts between composed music and improvisation, respectively. The horizontal axis
has 9 channels represent the 8 electrodes: P4, T8, C4, F4, F3, C3, T7, P3 and the overall average over the 8 electrodes, while the vertical axis gives the
magnitudes of the degree centrality contrasts between composed music and improvisation.

doi:10.1371/journal.pone.0112776.g006
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cross-brain weight is positive with high values in one direction and almost

vanishing cross-brain weight in the opposite direction between each pair of brains.

For instance, in Figure 9, the cross-brain weight for flutist?listener is clearly

higher than the cross-brain weight for listener?flutist, which implies a directed

link from the flutist to the listener.

In the first experiment (the left graph of Figure 10), the cross-brain interaction

is from the pianist to the listener (average weights: AP?L~0:6554:10{4
w

AL?F~0:1352:10{4), while in the second experiment (the right graph of

Figure 10), the cross-brain interactions are from the three musicians to the

listener: [flutist, harpist, violinist]?listener (average weights: AF?L~0:1647w

AL?F~0:0304, AH?L~0:2002wAL?H~0:0053 and AV?L~0:1901wAL?V~

0:0392) and from the harpist to the flutist and violinist: harpist?[flutist, violinist]

(average weights: AH?F~0:0680wAF?H~0:0033 and AH?V~0:0945w

AV?H~0:0097). The flutist ping-pongs with the violinist: flutist<violinist

(AF?V~0:0509wAV?F~0:0515), the average values are high in both directions,

but the dominance of the cross-brain weights swaps between the two when the

time window moves). This network structure is robust for all performances in the

second experiment.

Figure 7. Degree centrality contrasts between strict mode and ‘‘let-go’’ mode in the second experiment. In this figure, the red stems and the blue
stems indicate the in and out degree centrality contrasts between strict mode and ‘‘let-go’’ mode, respectively. The horizontal axis has 9 channels represent
the 8 electrodes: P4, T8, C4, F4, F3, C3, T7, P3 and the overall average over the 8 electrodes, while the vertical axis gives the magnitudes of the degree
centrality contrasts between strict mode and ‘‘let-go’’ mode.

doi:10.1371/journal.pone.0112776.g007
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To verify the directionality of MIME in the detection of cross-brain

interactions, we conducted two reading experiments. The reading experiments

consist of a reader and a listener, where the reader read to the listener to establish

a natural driver-responder system during the reading processes. Each reading

experiment has two tests, where the reader and the listener swap their roles for the

different tests. The EEG data of the reading experiments were analyzed by MIME

to obtain the cross-brain information flow. The outcome is a causal direction

pointing from the reader to the listener. We mention that in one test of each

experiment the cross-brain weights for the flow between the reader and the

listener were equivalent, but, importantly, both weights were insignificant, in

which case no cross-brain interaction is detected. This is of course a limitation of

the MIME analysis and shows that MIME may miss causal relations. On the other

hand, the analysis of the reading experiment suggests that MIME is unlikely to

produce causalities that do not exist. In other words, we believe that MIME is

unlikely to produce false positives. For more details see subsection Causality

verification of MIME.

Figure 8. Color-map of cross-brain causality matrix between flutist and harpist in the second
experiment. This graph shows a color-map (scaled between 0 and 1) of the cross-brain causality matrix for
the flutist and harpist at the time window 15 (140.01s-150.00s) during the performance of piece A: Ibert (strict
mode). The two 10|10 diagonal blocks indicate the intra-brain causalities for the flutist (upper-left) and the
harpist (lower-right), respectively, while the two 10|10 off-diagonal blocks indicate the cross-brain causalities
for flutist?harpist (upper-right) and for harpist?flutist (lower-left). The correspondence between the color and
the causality values is shown in the color-bar.

doi:10.1371/journal.pone.0112776.g008
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Figure 9. The cross-brain weights between flutist and listener in the second experiment. This figure
plots the cross-brain causalities between flutist and listener against time windows for piece A: Ibert, strict
mode. The red curve indicates flutist?listener, the blue curve represents listener?flutist, while the black
curve is the significance threshold.

doi:10.1371/journal.pone.0112776.g009

Figure 10. Cross-brain networks for the two music improvisation experiments. The left graph is for the
first experiment, while the right graph is for the second experiment. The red links represent the direction of
cross-brain information flow, while the thickness of the links is proportional to the strength of the cross-brain
weights (i.e. the average cross-brain causalities).

doi:10.1371/journal.pone.0112776.g010
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Discussion and Summary

In this paper, we constructed intra-brain and cross-brain networks for both

musicians and listeners during music performances. The differences between the

composed music and improvised music and between the strict mode and the ‘‘let-

go’’ mode can be identified in terms of the direction of neural information flow,

the number of in-going and out-going connections (i.e. the in-degree and out-

degree centralities) between large brain regions, as well as the sink and source

activities in the frontal, parietal and temporal regions. The latter are similar to the

results obtained from the sLORETA on the same data set [10], [8].

In the intra-brain neural network analysis, the improvisation was found to

trigger a more widely distributed network structure than the composed music did.

When composed music is changed to improvisation, the distribution of intra-

brain neural information flow expands from the back of the brain to the entire

brain (for musicians), the frontal (attention and executive control) and central

(motor cortex) regions become activated when musicians improvise. This may be

because performing or listening to improvisations demands more widespread

functional coordinations between large brain regions. When composed music is

compared to improvisation, the intra-brain causality values are found to be

greater in composed music than during improvisation, particularly for the

listeners. We find that the neural information flow starts and terminates separately

in left frontal and right frontal regions, the neural information flow reverses

directions when composed music is changed to improvisation and strict mode is

changed to ‘‘let-go’’ mode. These results agree with earlier studies [7] [22]: the

frontal regions (a more general area that covers the dorsal prefrontal regions),

especially the right frontal region, play an important role in free improvisation of

melodies and rhythms, which is the key regions that distinguish the brain

activities between composed music and improvisation and between strict mode

and ‘‘let-go’’ mode. Moreover, the central regions tend to act as transit hubs for

the neural information flow for all experimental conditions. This is in contrast to

what we find for the temporal and parietal regions, which behave differently under

different experimental conditions.

The identification of the importance of the frontal regions is similar to the

findings of a previous fMRI study of pianist improvisation [2], where the dorsal

prefrontal cortex (part of the frontal regions) and rostral premotor regions

(located within the frontal regions) were found to be involved in the free-response

selection. This study shows an activation of the cortical association areas,

especially the prefrontal cortex, during divergent thinking, where the right

prefrontal cortex appears to be particularly involved. The high level of

involvement of the frontal and central regions and the source activity of the right

frontal region during improvisation also agree with the cortical source analysis

(sLORETA) on the EEG data we have studied in this paper (see [10]). Dolan et al.

found that a clear increase in the activation of the frontal region, acting as the EEG

point sources of the brain activities, when composed music was changed to

improvisation [10]. A similar studies on cortical regions of music improvisation
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used fMRI on a improvising pianist [4]. The study found the dorsal prefrontal and

rostral cingulate regions to play a key role in melodic and rhythmic improvisation

[4].

In the study of intra-brain neural networks we used the degree centrality to

analyze the level of connections between large brain regions. Since the intra-brain

neural networks are directed and the degree centrality measure (i.e. the number of

links connected to the nodes) is very simple to use and is a very suitable centrality

measure for directed networks. In this analysis musicians were found to have

opposite trends to the listeners. The musicians tend to have overall larger (in and

out) degree centralities in improvisation than in composed music, which may be

because the improvisation demands more intra-brain communication for the

musicians to be able to instantaneously create melodies and rhythms. They also

have larger degree centralities in strict mode than in ‘‘let-go’’ mode, which may be

because musicians need more brain attention to perform in strict mode. In

contrast, the listeners have larger degree centralities in composed music than in

improvisation, which may be because the listeners found the music performed

according to a score to be more familiar than the instantaneous creation of music

during improvisation. The listeners also have larger degree centralities in ‘‘let-go’’

mode than in strict mode. It is interesting to mention that a questionnaire

answered by the listeners showed that music performed with free emotional

expression, i.e. the ‘‘let-go’’ mode, is considered more beautiful than the

mechanical rendition of music, i.e. the strict mode, see [10] for details.

The cross-brain network structure provides a sensible view of the pattern of

coordination between musicians and interactions between musicians and

listeners, either during solo, or ensembles, performances. In the cross-brain

networks, the musicians are pointing to the listeners, which of course seems to

confirm the fact that the musicians are communicating to the listeners during the

music performances. The harpist was frequently found to lead the flutist and the

violinist, this may be because the harp provides the chord structure, which is then

responded to by the flutist and the violinist during the trio’s improvisation.

We want to point out a limitation and a strength of our study. Our EEG

recording has only 8 or 10 electrodes, which are quite few compared to other

studies. This enables us to analyze only general brain activities. However, since we

do not focus on specific task-related brain activities, this experimental set-up is

sufficient for us to be able to distinguish the brain activities from different cortical

brain regions and at the same time the low number of electrodes minimize the

discomfort to the participants during the experiments. Nevertheless, the results of

our study imply that the neural differences in the brain of the subjects (e.g. the

musicians and the listeners) under different experimental conditions (e.g.

composed music and improvisation) can be detected by the network analysis

generated from the MIME causality measures. This analysis provides a potential

tool to study the intra-brain and cross-brain information flow and therefore is a

very promising tool for the analysis of group behavior in other situations similar

to ensemble performances of music. The method of analysis can potentially be

applied to financial and more general neuroscience data sets.
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Methods

The experiment on musicians has already been published in [10] and received

ethical approval from Guildhall School of Music and Drama.

The reading experiment was performed on employers from Brainmarker.

Before agreeing to participate, the participants were informed in detail about the

experiment and signed the informed consent form; although they were allowed to

withdraw at any moment. The reading experiment simply consists of the same

kind of check-of-method as carried out routinely by, and on, Brainmaker’s

employees, hence no institutional approval was obtained. We have obtained

confirmation from the Head of the Imperial College Mathematics Department

that prior approval was not required.

We use causality measures to analyze the intra-brain connectivities between

large brain regions and cross-brain interactions between musicians and listeners.

We have tried three frequently used causality measures, namely the partial

directed coherence (PDC [25] [26]), transfer entropy (TE [24]) and conditional

mutual information from mixed embedding (MIME [27]), in order to compare

the efficiency and practicality in EEG analysis. From the analysis, we found that

PDC gives an unrealistic large number of cross-brain causalities from listener to

the pianist in the first experiment although listener and pianist were facing away

from each other. TE has poor directionality as it gives similar strength for

causalities between pairs of links with opposite directions. Only MIME presents

clear directionality and robust results with larger average causalities from

musicians to listeners than from listeners to musicians. Therefore, we use MIME

as our core causality measure for the EEG analysis.

The MIME software package developed by I. Vlachos and D. Kugiumtzis, et al.

[27] was used to calculate the causalities between EEG data channels. MIME is a

time domain bivariate method, used to analyze nonlinear indirect information

flow. It uses a progressive scheme to select mixed embedding vectors that

maximizes the conditional mutual information rate between future and past

embedding vectors [27]. For a K-dimensional stationary vector process

Xn~½x1,n, � � � ,xK,n�, the causality from xj to xi is calculated by defining a future

vector vF~(xi,nz1,xi,nz2, � � � ,xi,nzTi) containing the future of the driven variable

(xi), a uniform state-space embedding vector

B~(xi,n,xi,n{1, � � � ,xi,n{Li ,xj,n, � � � ,xj,n{Lj),

consists of the lagged values from both driving (xj) and driven (xi) variables and

an empty vector b0~6 0 as an initial selected non-uniform state-space embedding

vector, Ti is the time horizon (prediction step) of xi and Li,Lj are the maximum

time lags for xi and xj, respectively. In each iterative cycle s, the progressive scheme

seeks element in B\bs{1 that satisfies the maximum criterion

I : max
xs
fI(vF ; xsjbs{1)g: ð1Þ

which element will be add to bs{1 to form a new selected vector bs. The
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progressive scheme stops at an s-th iterative circle and uses bs{1 as the final

embedding vector if the stopping criterion

I(xF ; bs{1)=I(xF ; bs)wA, ð2Þ

is satisfied. Here, A[(0,1) is a threshold close to 1. I. Vlachos and D. Kugiumtzis,

et al. [27] found empirically that A~0:95 (default in MIME software) gives the

best causality detection.

When the progressive scheme terminates, MIME measures the causal effect

from xj,n to xi,n (i,j~1, � � � ,K , i=j) by evaluating the ratio between the

conditional mutual information rates

MIMExj?xi~1{
I(vF ; bi

s{1)

I(vF ; bs{1)
~

I(vF ; bj
s{1jbi

s{1)

I(vF; bs{1)
, ð3Þ

where bs{1~½bi
s{1,bj

s{1� is the final selected non-uniform state-space embedding

vector when the progressive scheme terminates where bi
s{1 and bj

s{1 are the i th

and j th components of bs{1, respectively.

Here, MIME was applied on the standardized EEG voltages. MIME is an

information based measure entirely determined by the probability distributions of

the signals and therefore independent of the amplitude of the measured signal.

Hence no normalisation is necessary. To analyze cross-brain information flow,

synchronized EEG data measured from each combination of two different brains

was put together to form an augmented data matrix, e.g. the EEG data of the

pianist and the listener. These augmented data matrices were analyzed by moving

time windows with window size DT1~4s (f1,sample~250Hz) for the first

experiment and DT2~10s (f2,sample~100Hz) for the second experiment. These

time windowed data files were used as input to the MIME software.

The MIME software outputs sequences of causality matrices, which contain

both intra-brain and cross-brain causalities. These matrices are of size 16|16
(20|20) for the first (second) experiment, which consists of two 8|8 (10|10)

diagonal sub-matrices for intra-brain causalities and two 8|8 (10|10) off-

diagonal sub-matrices for cross-brain causalities. The diagonal sub-matrices

(intra-brain) were averaged over time windows to construct intra-brain neural

networks. The intra-brain causality matrices were also discretized into binary

matrices, which after matrix transposition become the directed adjacency matrix

for the intra-brain neural networks, the directed adjacency matrices were then

used to compute the degree centralities. The off-diagonal sub-matrices (cross-

brain) were used to construct cross-brain networks by taking averages of the

cross-brain causalities over electrodes and comparing the magnitudes of the

causality averages with the opposite cross-brain direction. A cross-brain link is

drawn from one brain to another, if the average cross-brain causality is

significantly larger from one brain to the other than measured in the opposite

direction. If the average values are equivalent in both directions, the cross-brain

causality cancel each other and one will not draw a link between this pair of

brains.
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A strength of MIME is that it doesn’t rely on any computationally costly

significance tests. This is due to the stopping criterion and the progressive scheme.

However, we do have to use significant thresholding tests on the MIME causalities

in order to identify the important differences between experimental conditions

and filter out any residual flow arising from numerical inaccuracies [17]. We

made use of different values for the thresholds for the different types of analysis

reported. In all cases we chose the threshold with the aim to best identify neural

difference between experimental conditions. It is important to point out that

small changes to the value of the thresholds do not have any serious influence on

the results. Details of the investigation of the significance threshold are presented

in subsection: Dependence on Thresholding.

Causality verification of MIME

We use MIME for our EEG analysis because it is found to be more reliable than

TE [24] and PDC [25], [26]. Several simulation tests find that MIME is able to

detect correctly the causality structure [27]. Moreover, reasonable directional

interdependencies are reported for experimental time series such as EEG for

epilepsy patient [27]. To our knowledge, no paper has used MIME to study music

improvisation studies yet. To verify the directionality of MIME, we designed two

reading experiments with the aim to check the cross-brain directional inference of

MIME.

The reading experiments include one reader and one listener, both of which are

healthy normal people. The reader is to read a short story to the listener, while the

listener is to listen to the story carefully and try to imagine the scene described by

the story. When the first story is finished the reader and the listener swap their

roles after a short break, to repeat the reading process on another story. The

stories were new to both the reader and the listener. The reader and listener did

not face each other during the tests in order to avoid visual influences.

Synchronized EEG data was measured from the reader and the listener on 10

electrodes (P4, O2, T8, C4, F4, F3, C3, T7, P3, O1) during the reading processes

with 100Hz sampling frequency. The whole experiment was repeated once on

another pair of healthy normal subjects to avoid fortuity.

The MIME analysis (time window analysis, window size: Treading~10s) shows

that the dominant cross-brain information flow is from the reader to the listener.

In the first reading experiment, the average (cross-brain) causalities are

Wreader?listener~0:0523 and Wlistener?reader~0:0034 in one test, while

Wreader?listener~0:0192 and Wlistener?reader~0:0215 in the other test. In the second

reading experiment, Wreader?listener~0:5971 and Wlistener?reader~0:0012 in one

case, while Wreader?listener~0:1008 and Wlistener?reader~0:1035 in the other test.

For both experiments, a link can be drawn from the reader to the listener, rather

than the opposite direction, because the overall causality average is significantly

greater for reader?listener than for listener?reader. This is according to a

significance thresholding test with instantaneous threshold a~10% above the

mean value between Wreader?listener and Wlistener?reader at each time window. For
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the cases with equivalent causality strength between the reader and the listener,

non of the two causal directions surpass the significance threshold, in which case

it was deemed that no significant causal influence occurred between the reader

and the listener. Nevertheless, the overall average for the four tests (two

experiments) gives dominant cross-brain causalities from the reader to the

listener.

We have varied the parameters of MIME, e.g. the time horizon (prediction

step) T~1,2,3 and the maximum embedding dimension (time lags) Lmax~3,4,5
under restriction that TvLmax [27]. In spite of these variations the directional

results were unchanged. This implies that the directionality of MIME doesn’t

depend strongly on the parameter choice. Our conclusion from the reading

experiments is that MIME may fail to pickup up causal links (e.g. no significant

causal influence between the reader and the listener), but it never predicts an

unreliable causalities. This means, once MIME picks up a causal direction, one has

good reason to believe in the directional results.

Dependence on Thresholding

The network exhibiting the information theoretic causality flow between brain

regions relies on defining thresholds. If the strength of the causal weight in a

certain direction exceeds the threshold, a directed link is included in the network.

We now study systematically for each of the extracted networks, how the resulting

structure depends on the value of the chosen threshold.

The First experiment

In Figures 1 and 2 different thresholds were used for the pianist

(Tpianist~0:2Cmax,pianist) and for the listener (Tlistener~0:1Cmax,listener). This choice

of thresholds correspond to the most clear difference between experimental

conditions. In order to access the stability of our results we altered the thresholds

to intervals with boundaries 10% below and above the original thresholds,

namely, Tpianist~0:22Cmax,pianist and Tlistener~0:11Cmax,listener or

Tpianist~0:18Cmax,pianist and Tlistener~0:09Cmax,listener . For this new set of para-

meters the intra-brain neural network structures for both the pianist and the

listener remain unchanged. We also checked what happens when we changed the

thresholds by 100% below and above the original thresholds. In this case changes

do occur to the network structures but only involving the weaker links, the

stronger links i.e. the most dominant links still remain unchanged. Thus the

conclusion concerning the main differences between the different modes of

performance remain unchanged

The Second experiment

We again check how the 10% changes to the thresholds influence the network

structures. See Figure 4 for the contrast intra-brain neural networks between
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composed and improvised music. When the significance thresholds increase by

10%, i.e. a new interval Tci,z~½{1:1Tci,1:1Tci� (Tci denotes the original

threshold), the contrast network structures remain unchanged for both the

musicians and the listeners. When the significance thresholds decrease by 10%, i.e.

a new interval Tci,{~½{0:9Tci,0:9Tci�, the contrast network structure is

unchanged for the musicians, while for the listeners, all the old links remain, with

new red link (causalities Composed musicwimprovised music) F3?T8 and green

links (causalities Composed musicvimprovised music) F4?C4 and T7?C3

added to the network. However, these small changes to the listeners’ network,

follow the same pattern as the old links do, i.e. the trends of the neural difference

between the composed music and the improvisation remain unchanged.

For the contrast between the strict mode and the ‘‘let-go’’ mode in Figure 5,

again the networks for both musicians and listeners stay unchanged when the

significance threshold increases by 10%, i.e. Tsl,z~½{1:1Tsl,1:1Tsl�. However,

when the significance threshold decreases by 10%, new red links (causalities Strict

modew‘‘let-go’’ mode) T8?O2 and P3?[C4,T7] and new green links C4?T7

and C3?F3 are added to the musicians contrast network, whereas new red links

T8?F4 and P3?F3 and new green links F4?[T8,C4] are added to the listeners

contrast networks. Nevertheless, the new links follow the same pattern as the

original links do and hence no essential change occurred to the observed neural

differences between the strict mode and the ‘‘let-go’’ mode.

From this analysis we conclude that small changes to the significance thresholds

do not have any essential influence on the neural network structures, which

implies that the observed neural differences between experimental conditions are

robust.

As to the cross-brain networks, the significant cross-brain links are drawn in the

dominant directions (i.e. the direction with stronger weight between a pair of

opposite directions). Because the cross-brain weights are significantly positive in

one direction and almost vanished in the opposite direction, the cross-brain

networks are robust and do not necessitate the use of any significance thresholds.

Selection of causality measures

There are a number of reasons for us to use MIME in our EEG analysis. Firstly, we

have compared our EEG analysis using three popular causality measures: MIME

[27], PDC [25] [26] and TE [24], in which MIME produces the most reliable

results among the three measures. PDC is a linear method which relies crucially

on linear autoregressive models. For real EEG analysis, PDC presents a large

number of, presumably false, causalities from the listeners to the musicians. The

PDC causality flow from listeners to musicians was found even when the two

groups couldn’t watch each other and since only the musicians made any sound

we would expect causality to entirely flow from musicians to listeners.

TE is a nonlinear method, which is supposed to work better than PDC in

nonlinear time series analysis. However, due to computational restrictions on

embedding dimensions, TE cannot use large enough embedding dimensions and
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is for this reason unable to produce satisfactory directional results. The TE’s

analysis generates similar causalities between every pair of brains, so no cross-

brain network structure is detected. A small increment in the embedding

dimension will cause a dramatic increase in the computation time.

Both the linearity and computational short comings of the PDC and TE were

overcome by MIME, which can produce reliable causality results efficiently [27].

As has been tested on various data, MIME presents all correct directional results

for model data and reasonable causalities for experimental time series [27].

Furthermore, we also did tests on a natural driving-driven respond system,

namely the reading experiments to test the reliability of MIME in cross-brain

analysis (See section Causality verification of MIME), from which analysis we

concluded that MIME does not present false or unreasonable causalities when

analyzing directed interactions between experimental time series.
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