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Abstract

Humans are colonized by thousands of bacterial species, but it is difficult to assess the metabolic and pathogenic potential
of the majority of these because they have yet to be cultured. Here, we characterize an uncultivated vaginal mycoplasma
tightly associated with trichomoniasis that was previously known by its 16S rRNA sequence as ‘‘Mnola.’’ In this study, the
mycoplasma was found almost exclusively in women infected with the sexually transmitted pathogen Trichomonas
vaginalis, but rarely observed in women with no diagnosed disease. The genomes of four strains of this species were
reconstructed using metagenome sequencing and assembly of DNA from four discrete mid-vaginal samples, one of which
was obtained from a pregnant woman with trichomoniasis who delivered prematurely. These bacteria harbor several
putative virulence factors and display unique metabolic strategies. Genes encoding proteins with high similarity to potential
virulence factors include two collagenases, a hemolysin, an O-sialoglycoprotein endopeptidase and a feoB-type ferrous iron
transport system. We propose the name ‘‘Candidatus Mycoplasma girerdii’’ for this potential new pathogen.
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Introduction

Application of next-generation sequencing to the study of the

human microbiome is rapidly transforming our understanding of

the diversity of the microbial communities that inhabit the human

body [1]. However, progress towards the identification of specific

microbiome signatures or specific organisms with strong links to

disease states has proven elusive. We characterize a new vaginal

mycoplasma species ‘‘Candidatus Mycoplasma girerdii’’, previ-

ously identified only by its 16S rRNA sequence [2], that exhibits a

strong and unique association with the sexually transmitted

pathogen Trichomonas vaginalis.
Organisms of the Mycoplasma and Ureaplasma genera are

collectively referred to as mycoplasmas. They lack cell walls, have

small genomes and are often dependent on their hosts. Mycoplas-

mas of the female urogenital tract are associated with bacterial

vaginosis (BV), pelvic inflammatory disease, preterm labor and

preterm birth [3,4]. These mycoplasmas are among the most

common organisms to invade the amniotic cavity, and their

carriage is associated with chorioamnionitis in preterm premature

rupture of membranes (PPROM) [5]. Moreover, uncultivated and

uncharacterized bacterial species also invade the amniotic cavity

and likely impact pregnancy outcome [6]. Mycoplasmas can

induce inflammatory cytokines in the host [4], and they are more

prevalent in the vaginal flora of HIV-infected women [7].

Ureaplasmas have been associated with complications during

pregnancy [4], M. genitalium with pelvic inflammatory disease,

cervicitis, endometritis and salpingitis [8], and M. hominis with BV

[3] and trichomoniasis [9,10]. M. genitalium is an emerging

sexually-transmitted infection, which causes nongonococcal ure-

thritis in men. Despite these associations with disease, M. hominis
and Ureaplasma are also common in apparently healthy women.

T. vaginalis causes trichomoniasis, the most common non-viral

sexually transmitted infection worldwide [11]. Trichomoniasis

often accompanies low levels of lactobacilli [12] and BV, and has

been implicated in an array of pregnancy complications [13,14].

Although the extracellular eukaryotic parasite binds to vaginal
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epithelial cells and is hemolytic [15], the mechanisms of its

pathogenesis remain enigmatic.

Martin et al. [2] recently described a 16S rRNA sequence from

an unknown Mycoplasma, which they called ‘‘Mnola’’, in vaginal

secretions and found it to be strongly associated with presence of

T. vaginalis in the study. Shortly thereafter, Costello et al. [16]

reported a phylotype with a 16S rRNA sequence exhibiting ,99%

identity to that of the new mycoplasma described herein and by

Martin et al. [2] as a predominant taxon in the oral sample of a

low birth-weight infant (24.5 wks) and speculated it may have been

acquired by vertical transmission during delivery. Hyman et al.
also subsequently identified a partial 16S rRNA sequence from a

vaginal sample of a woman who delivered full term that is 99%

similar to ‘‘Ca. M. girerdii’’ [17]. We independently identified this

phylotype and its association with T. vaginalis, first reported by

Martin et al. In the current work, we confirm and extend the

characterization of this new Mycoplasma using metagenomic

strategies, present the genomic sequences of four independently

identified strains, one of which was isolated from a pregnant

woman who subsequently delivered preterm, and we propose

‘‘Candidatus Mycoplasma girerdii’’ for its name.

Results and Discussion

As part of the Vaginal Human Microbiome Project at Virginia

Commonwealth University, we generated 16S rRNA gene-based

microbiome profiles for 1,361 mid-vaginal samples collected from

women visiting outpatient clinics and an additional 110 samples

collected in a labor and delivery unit [18]. Our analyses revealed a

novel mycoplasma phylotype that represented the most abundant

bacterium observed in 25 mid-vaginal samples (i.e., 25/1,471),

including at least one from a woman who experienced preterm

labor. Twenty-two of these 25 (88%) women had a clinically

diagnosed vaginal infection (Table 1), and all but one of these 22

women for whom vaginal pH was recorded exhibited an elevated

pH value greater than 4.5 (median pH value = 5.8), an indicator of

vaginal dysbiosis. Although microbiome profiles based on 16S

rRNA gene surveys are not always accurate measures of the

proportions of bacterial taxa present in a sample for a variety of

reasons (e.g., biases inherent in DNA extraction, PCR and related

sequencing technologies and variations in the number 16S rRNA

genes per genome in different species), it is clear that this

mycoplasma represents a very abundant taxon in the vaginal

samples collected from these 25 women.

We examined the association between vaginal carriage of the

novel bacterium, even as a minor component of the microbiome,

and common clinically diagnosed vaginal infections. The associ-

ation between ‘‘Ca. M. girerdii’’ and trichomoniasis was highest of

several vaginal organisms of the female urogenital tract with a

relative risk of 20.12 (Table 2). M. hominis, which has previously

been linked with trichomoniasis [9,10], exhibits a much weaker

association with a relative risk of 2.53, likely at least in part due to

its strong association with BV. We did not find ‘‘Ca. M. girerdii’’

to be associated with an elevated relative risk for BV as diagnosed

by Amsel’s criteria [19]. Amsel’s criterion assessment provides a

dichotomous test with a relatively high specificity, but relatively

low sensitivity [20]. BV assessed the Nugent’s Gram-stain criteria

[21] represents the continuum of alterations in vaginal flora. Both

pregnant [22] and non-pregnant [2] women with intermediate

Nugent scores have been reported to be more likely to have

trichomoniasis. While Nugent scores were not recorded in this

study, the 16S rRNA microbiome profiles (Figure S1) are

consistent with the hypothesis that women co-infected with ‘‘Ca.

M. girerdii’’ and T. vaginalis may also be more likely to have

intermediate flora.

We detected ‘‘Ca. M. girerdii’’ at threshold of at least 0.1% of

the 16S profile in 28 of the 63 (44.4%) women with clinically

diagnosed trichomoniasis. We also found the new mollicute at less

than 0.1% of the 16S rRNA threshold in eight additional women

with trichomoniasis. Thus, we were unable to detect ‘‘Ca. M.

girerdii’’ in the 16S rRNA gene profiles of only 27 of the 63

(42.9%) women with clinically defined trichomoniasis. In this

study, trichomoniasis was clinically diagnosed by wet prep

microscopy rather than culture and microbiome profiles were

generated using the V1-V3 hypervariable region of the 16S rRNA

gene rather than the V4-V6 region used by others [2]. Despite

these methodological differences and differences in the study

populations, we confirmed a strong association between the

presence of T. vaginalis and ‘‘Ca. M. girerdii’’ previously reported

as statistically significant (p = 0.026) by Martin et al. [2].

Association of ‘‘Ca. M. girerdii’’ with T. vaginalis
Up to half of all T. vaginalis infections are asymptomatic and

undiagnosed [11]. We performed real-time qRT-PCR on all mid-

vaginal samples positive for ‘‘Ca. M. girerdii’’ and found that 49 of

the 51 (96%) women who carried the mycoplasma at a 1%

threshold by 16S rRNA gene profiling also carry T. vaginalis
(Figure 1A; Table 1). Even at a lower 16S rRNA threshold of

0.1%, 61 of 72 (85%) of women who carried ‘‘Ca. M. girerdii’’

were T. vaginalis positive. Thus, ‘‘Ca. M. girerdii’’ exhibits an

unusually strong correlation with trichomoniasis. We also found

that ‘‘Ca. M. girerdii’’ was associated with both of the previously

described genotypes of T. vaginalis [23,24], type 1 and type 2

(Figure S3), indicating a broad-range association with this

infectious disease. Both T. vaginalis genotypes have been reported

in the HIV-positive women [25]. Additional studies are needed to

determine whether ‘‘Ca. M. girerdii’’ co-infection contributes to

the increased risk of HIV acquisition and transmission or to

adverse pregnancy outcomes associated with trichomoniasis.

Interestingly, of 22 women with no diagnosis who were positive

for ‘‘Ca. M. girerdii’’, 14 were also positive for T. vaginalis
(Table 1). Lactobacillus crispatus is associated with decreased rates

of T. vaginalis infection [12], and we found that the three ‘‘Ca. M.

girerdii’’ positive women with a predominance of L. crispatus were

negative for T. vaginalis (Figures 2 and S1). Thus, although our

data are supportive of a dependent relationship, it appears that

‘‘Ca. M. girerdii’’ may not absolutely require T. vaginalis to

colonize the human vagina. Our data suggest vaginal carriage of

the new mycoplasma is associated with elevated vaginal pH and

African American race (Table 3), risk factors for preterm birth

[26], which are also associated with BV [27] and trichomoniasis

[28]. Given the tight association of the mycoplasma with T.
vaginalis, it is not possible to determine whether the organism is

independently associated with these factors.

Fluorescence in situ hybridization (FISH) on vaginal samples

with a representation of ‘‘Ca. M. girerdii’’ (Figure 1B–E, Figure

S2) showed that the bacterium is prominent in polymicrobial

biofilms sometimes associated with ‘‘clue cells’’ (Figure 1B, 1C,

1E), a characteristic of BV. The mycoplasma was also dispersed

with other bacteria and only occasionally co-localized with T.
vaginalis (Figure 1D). It is not yet clear whether ‘‘Ca. M. girerdii’’

can enter and replicate inside of T. vaginalis like M. hominis [29],

penetrate human cells like M. penetrans [30], or whether the

mycoplasma is strictly extracellular. Given that eight women

carrying the mycoplasma were negative for T. vaginalis (Table 1),

our data suggest ‘‘Ca. M. girerdii’’ is not an obligate symbiont of

the parasite as suggested by Martin et al. [2]. Symbiotically-
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Table 1. Characteristics of 73 ‘‘Ca. M. girerdii’’ positive vaginal samples.

VCU_ID
% ‘‘Ca.
M. girerdii’’

qRT-PCR
T. vaginalis

Current clinical
diagnosis Race/ethnicity

Vaginal
pH

T. vaginalis
genotype Dominant taxon

VCU_NT02 99.90 + Trichomoniasis African American 4.4 ND ‘‘Ca. M. girerdii’’

VCU_CD82 99.70 + Trichomoniasis African American 6 2 ‘‘Ca. M. girerdii’’

VCU_LN42 97.50 + Trichomoniasis African American ND 1 ‘‘Ca. M. girerdii’’

VCU_QM60 94.90 + Trichomoniasis African American 5.3 1 ‘‘Ca. M. girerdii’’

VCU_NT41{* 92.90 + Preterm labor and delivery African American 6.5 ND ‘‘Ca. M. girerdii’’

VCU_FQ09 90.60 + Trichomoniasis African American 5.5 2 ‘‘Ca. M. girerdii’’

VCU_NT49 90.40 + None African American 5.6 ND ‘‘Ca. M. girerdii’’

VCU_CT62{ 89.90 + Trichomoniasis Hispanic 6 2 ‘‘Ca. M. girerdii’’

VCU_KH69 88.80 + Trichomoniasis Caucasian 7 1 ‘‘Ca. M. girerdii’’

VCU_GK81 88.00 + Trichomoniasis, Bacterial vaginosis African American 5.8 AMB ‘‘Ca. M. girerdii’’

VCU_NT63 87.30 + Bacterial vaginosis African American 6 ND ‘‘Ca. M. girerdii’’

VCU_NT94 85.00 + Not Available African American ND ND ‘‘Ca. M. girerdii’’

VCU_AM41 84.20 + Trichomoniasis African American 5.8 2 ‘‘Ca. M. girerdii’’

VCU_NT05 82.50 + Yeast infection Other (African) 7 ND ‘‘Ca. M. girerdii’’

VCU_OL06 75.60 + Trichomoniasis African American 7 1 ‘‘Ca. M. girerdii’’

VCU_NT03 73.70 + Bacterial vaginosis African American 7 ND ‘‘Ca. M. girerdii’’

VCU_NT54 60.10 + Trichomoniasis African American ND ND ‘‘Ca. M. girerdii’’

VCU_MP27 59.60 + Trichomoniasis African American 5 1 ‘‘Ca. M. girerdii’’

VCU_NT95 58.80 + None African American 7 ND ‘‘Ca. M. girerdii’’

VCU_BK46 56.10 + Trichomoniasis African American 5.5 2 ‘‘Ca. M. girerdii’’

VCU_NT31 51.50 + Genital warts African American 5 ND ‘‘Ca. M. girerdii’’

VCU_NT27 49.70 + Yeast infection African American 5.5 ND ‘‘Ca. M. girerdii’’

VCU_NT44{ 48.40 + Yeast infection African American 5.5 ND ‘‘Ca. M. girerdii’’

VCU_NT22 46.10 + Bacterial vaginosis African American 5.2 ND ‘‘Ca. M. girerdii’’

VCU_NT71{ 34.90 + None African American 5 ND ‘‘Ca. M. girerdii’’

VCU_RQ481 34.77 + Trichomoniasis African American 5.5 2 Lactobacillus iners

VCU_NT75 28.15 + Bacterial vaginosis African American ND ND NT

VCU_NT96 22.56 + None African American 4.5 ND Lactobacillus iners

VCU_QQ25 17.48 + Trichomoniasis Other (Biracial) 6.5 1 NT

VCU_NT06 14.89 + Bacterial vaginosis African American 5 ND Atopobium vaginae

VCU_NT64 8.63 + None African American 4.4 ND Lactobacillus iners

VCU_NT99 8.03 + None African American ND ND Lactobacillus iners

VCU_VL26 7.90 + Trichomoniasis African American 5.8 AMB Prevotella

VCU_NT771 7.51 + Not Available African American 6.6 ND NT

VCU_IV47 7.20 + Trichomoniasis African American 5 2 Gardnerella
vaginalis

VCU_XN28 5.43 + Trichomoniasis African American 5 AMB NT

VCU_NT61 4.09 + None African American ND ND Lactobacillus iners

VCU_NT50 3.36 + Bacterial vaginosis African American 5 ND Gardnerella
vaginalis

VCU_QR65* 2.98 + Trichomoniasis African American ND AMB Mycoplasma
hominis

VCU_NT29 2.59 + Yeast infection African American 4.5 ND Lactobacillus iners

VCU_NT04 2.21 + Bacterial vaginosis African American 5.8 ND Atopobium vaginae

VCU_NT24 2.08 + Yeast infection Other (Biracial) 5 ND Lactobacillus iners

VCU_NT55* 1.90 2 None African American ND N/A Lactobacillus
crispatus

VCU_SY21 1.76 + Trichomoniasis Hispanic 5.5 2 NT

VCU_GF833 1.64 + Trichomoniasis African American 5.8 1 Prevotella

VCU_NT19 1.59 + Trichomoniasis Not available 6 ND Gardnerella
vaginalis

Trichomoniasis-Associated Mycoplasma
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associated M. hominis and T. vaginalis have recently been shown

to synergistically upregulate the proinflammatory response [31].

Further studies are required to determine whether a symbiotic

relationship between ‘‘Ca. M. girerdii’’ and T. vaginalis may

similarly synergize to influence host response.

Genomic and Phylogenetic Analyses of ‘‘Ca. M. girerdii’’
Our attempts to cultivate ‘‘Ca. M. girerdii’’ have not succeeded.

Therefore, we employed the strategy of assembling whole

metagenome shotgun sequence reads to complete the genome of

a reference strain of this organism. The ,619 kb genome is

,28.6% GC content and features sequences for ,572 putative

proteins, 34 structural RNAs and one predicted CRISPR locus

(Figure 3). Three additional strains from other samples were

similarly assembled and aligned to the reference. Gene synteny

was very high among the four strains, but limited with other

related species (Figure S4). The four strains of ‘‘Ca. M. girerdii’’

exhibited an average of 99.8% nucleotide identity.

The reference genome exhibits irregular GC skews with no

distinctive inversion (Figure 3), which is indicative of the high

genome plasticity that is typical for mycoplasmas and consistent

with the overall lack of synteny with related species. In the

Table 1. Cont.

VCU_ID
% ‘‘Ca.
M. girerdii’’

qRT-PCR
T. vaginalis

Current clinical
diagnosis Race/ethnicity

Vaginal
pH

T. vaginalis
genotype Dominant taxon

VCU_LU24 1.50 + Trichomoniasis, Bacterial vaginosis African American 6.1 1 NT

VCU_NT52 1.40 2 Trichomoniasis African American 5.5 ND Gardnerella
vaginalis

VCU_NT69 1.11 + None (abnormal discharge) African American 4.5 ND Lactobacillus iners

VCU_BN49 1.06 + Trichomoniasis, Bacterial vaginosis African American 5 2 Gardnerella
vaginalis

VCU_NT68 0.97 + None African American ND ND Lactobacillus iners

VCU_NT702 0.93 + None African American 5.8 ND Gardnerella
vaginalis

VCU_NT93 0.92 2 None African American 5.3 N/A Gardnerella
vaginalis

VCU_NT21 0.86 + Yeast infection African American 5 ND Lactobacillus iners

VCU_NT60 0.85 + Trichomoniasis African American 4.4 ND BVAB1

VCU_NT67 0.61 + Yeast infection Caucasian 4 ND Lactobacillus iners

VCU_NT17 0.59 2 None Caucasian 4.4 N/A Lactobacillus
crispatus

VCU_NT81 0.56 2 None African American 5.5 N/A BVAB1

VCU_NT28 0.54 + None African American 4 ND Lactobacillus iners

VCU_NT582 0.44 + None African American 4.5 ND Lactobacillus iners

VCU_NT09 0.40 + None African American 4.6 ND BVAB1

VCU_QN84 0.39 + Trichomoniasis African American 6.1 AMB BVAB1

VCU_NT59 0.34 2 None Hispanic ND N/A Lactobacillus iners

VCU_NT97 0.29 2 None African American ND N/A Lactobacillus
crispatus

VCU_NT40 0.26 + Bacterial vaginosis African American 8 ND Sneathia amnii

VCU_NT733 0.20 + None African American 5.8 ND Lactobacillus iners

VCU_NT88 0.20 2 None African American 4 N/A Lactobacillus iners

VCU_XP87 0.15 + Trichomoniasis, Bacterial vaginosis African American ND 2 BVAB1

VCU_NT89 0.13 2 Bacterial vaginosis African American 4.5 N/A Streptococcus
agalactiae

VCU_NT07 0.13 2 None Hispanic ND N/A Lactobacillus iners

VCU_NT26 0.12 + Bacterial vaginosis Other (Multiracial) 5 ND Gardnerella
vaginalis

VCU_NT62 0.11 ND Bacterial vaginosis African American 5.3 N/A Gardnerella
vaginalis

VCU_NT91 0.10 2 None Caucasian 4 N/A Lactobacillus iners

‘‘Ca. M. girerdii’’ was detected in the mid-vaginal microbiome profile at 0.1% or more of total reads. (ND, not determined; AMB, ambiguous; N/A, not applicable; NT, no
type).
* Recruited from Labor & Delivery Unit.
{ ‘‘Ca. M. girerdii’’ sequenced genomes VCU-M1, VCU-JB1, VCU-PA1 and VCU-G1 in listed order.
1,2,3 Three ‘‘Ca. M. girerdii’’ positive samples were from women who enrolled in the study more than once. VCU_GF83 was collected 424 days after VCU_NT73;
VCU_NT58 was collected 246 days after VCU_NT70; VCU_NT77 was collected 117 days after VCU_RQ48.
doi:10.1371/journal.pone.0110943.t001
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reference strain, one putative CRISPR locus containing four 34-

nucleotide repeats and three 35-nucleotide spacers was identified

in the genome with a consensus direct repeat sequence of 59-

AAGTATTAATATTCCAAGTAGTGTAACTAGTATT.

Genes in the rRNA operon were organized 59-16S-23S-5S, and no

tRNAs were identified in the intergenic transcribed spacer regions

as with most Mycoplasma and Ureaplasma species [32]. Like other

mycoplasmas, ‘‘Ca. M. girerdii’’ possesses a minimal number of

tRNAs and utilizes UGA as a tryptophan codon. We identified 31

putative tRNAs: 11 amino acids represented by a single anticodon;

seven amino acids (Gly, Lys, Ser, Thr, Trp, Met) represented by

two anticodons; and two amino acids (Leu, Arg) represented by

three anticodons. Some, but not all, mycoplasmas have lost the

tRNA-Trp gene that utilizes the TGG codon[33], but ‘‘Ca. M.

girerdii’’ appears to have both. We identified two tRNA-Trp

genes, one that utilizes the UGA codon with an observed codon

frequency of ,0.87% and another that utilizes the TGG codon

with an observed codon frequency of ,0.13%. The dnaA and

dnaN genes are co-localized, but recF appears to be absent and

gyrB is only distantly linked. As with M. penetrans and U.
urealyticum [34], no clusters of DnaA boxes were identified

upstream of the dnaA gene, as only one 9-mer with two base

differences from the DnaA box consensus (59-TTATCCACA) was

identified in that region.

Homologs to putative virulence factors, including collagenases,

a hemolysin, an O-sialoglycoprotein endopeptidase, and a feoB-

like iron transport system, were identified in all four strains.

Intriguingly, tensile strength of fetal membranes is imparted by

collagens, and thus bacterial collagenase activity could facilitate

fetal membrane rupture. ‘‘Ca. M. girerdii’’ appears to lack the

superoxide dismutase gene, but encodes a complete desulfoferro-

doxin-type superoxide reductase system that likely functions to

protect against oxidative stress. A ,16 kb plasmid is apparently

present at approximately two copies per ‘‘Ca. M. girerdii’’ cell in

Table 2. Associations of vaginal carriage of bacterial taxa with common vaginal infections.

Relative Risk (95% Confidence Interval)

Trichomoniasis Bacterial vaginosis Yeast infection

‘‘Ca. M girerdii’’ 20.12 (7.75–48.34) 0.88 (0.24–1.53) 0.86 (0.00–1.98)

M. hominis 2.53 (0.85–6.83) 2.08 (1.61–2.68) 0.80 (0.44–1.30)

U. parvum/U. urealyticum 1.36 (0.40–3.49) 0.62 (0.45–0.84) 1.18 (0.74–1.75)

Gardnerella vaginalis 4.45 (0.91– Infinity*) 7.17 (4.05–21.78) 0.81 (0.54–1.32)

Atopobium vaginae 1.79 (0.70–9.10) 5.02 (3.50–8.43) 0.56 (0.35–0.83)

BVAB2 0.66 (0.17–1.80) 3.25 (2.54–4.30) 0.45 (0.22–0.75)

Bootstrap (n = 1,000) samples were selected from the outpatient clinic population to reflect the outpatient community composition. Median relative risk and 95%
bootstrap confidence intervals are shown. A bacterial taxon was considered present in the mid-vaginal sample if at least 0.1% of the metagenomic 16S rRNA gene
microbiome profile reads classified to the taxon. Vaginal infection was determined by clinical diagnosis using Amsel’s criteria for BV.
*For at least 2.5% of the bootstrap samples, all subjects with a trichomoniasis diagnosis were positive for G. vaginalis.
doi:10.1371/journal.pone.0110943.t002

Figure 1. Detection of ‘‘Ca. Mycoplasma girerdii’’ in mid-vaginal samples. Panel (A) shows relative abundance of major taxonomic groups in
‘‘Ca. M. girerdii’’ positive samples (1% 16S rRNA threshold): ‘‘Ca. M. girerdii’’ is colored red (A). Light colored bars represent other taxa. Dark blue circles
represent samples positive for T. vaginalis by qRT-PCR, light gray circles represent negative samples. Panels (B–E) show fluorescence in situ
hybridization detection of bacteria in mid-vaginal samples from two participants with clinically diagnosed trichomoniasis (subject 1, panels B, C and
D; subject 2, panel E) by confocal laser scanning microscopy. Most bacteria were detected with fluorescein-labeled broad-range bacteria probe
Eub338 (turquoise). ‘‘Ca. M. girerdii’’ was also stained with a Cy5-labeled probe targeting 16S rDNA (red). Nuclei were labeled with 4969-diamidine-2-
phenylindole, dehydrochloride (DAPI, blue). Negative control with reverse complementary probe of Eub338 did not hybridize to any bacteria (data
not shown). Scale bar = 10 mm.
doi:10.1371/journal.pone.0110943.g001
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the sample containing the reference strain, but was not observed in

the samples containing the other strains. It carries a plasmid

replication initiator protein, two genes resembling components of a

type IV secretion system and ,9 hypothetical genes. Because of its

prevalence in the former sample and its similarity to plasmids from

related organisms, it is possible that this may represent the first

plasmid associated with a mycoplasma in this phylogenetic group

(see below).

Phylogenetic analysis of 16S rRNA genes shows that ‘‘Ca. M.

girerdii’’ is most closely related to other uncultivated organisms

identified by 16S rRNA sequence: the organism reported by

Martin et al. [2], an organism identified by Costello et al. in oral

samples of a low birth weight neonate [16], and other organisms

from bovine rumen [35], the gut of termites [36–38] and Asiatic

elephant and Somali wild ass feces [39] (Figure 4). Interestingly,

the environments of the gut of lower termites, the rumen of cattle

and other foregut fermenters and the cecum of hindgut fermenters

Figure 2. Cluster analysis of mid-vaginal samples positive for ‘‘Ca. M. girerdii’’. Relative abundance of microbial taxa in mid-vaginal
bacterial communities of ‘‘Ca. M. girerdii’’ positive women is shown. The dendrogram was generated using Ward’s method with Manhattan distance.
This analysis includes only mid-vaginal samples that exhibited at least 0.1% ‘‘Ca. M. girerdii’’ by 16S rDNA profiling. Clinical diagnosis is indicated in
the first bar, and presence of T. vaginalis by RT-PCR is indicated in the second bar (orange designates a negative result and pink designates a positive
result). The three samples dominated by L. crispatus and the three samples with the highest prevalence of L. iners were negative for T. vaginalis.
doi:10.1371/journal.pone.0110943.g002

Table 3. ‘‘Ca. M. girerdii’’ is associated with African American race and elevated vaginal pH.

African American race Caucasian race Mid-vaginal pH

‘‘Ca. M. girerdii’’ 88.0/74.8(0.003*) 6.9/17.6(1) 5.5/5.0(0.006*)

Mycoplasma hominis 89.4/70.1(0*) 6.2/21.2(1) 5.5/5.0(0*)

Ureaplasma spp. 75.1/75.3(0.555) 17.0/17.2(0.571) 5.0/5.0(0.514)

Gardnerella vaginalis 81.5/59.2(0*) 11.9/30.8(1) 5.3/4.6(0*)

Atopobium vaginae 85.6/62.2(0*) 8.8/27.6(1) 5.3/4.6(0*)

BVAB2 88.1/69.0(0*) 6.5/22.3(1) 5.5/5.0(0*)

Mean proportions of the most common racial groups and median values for mid-vaginal pH were calculated for carriers and non-carriers (i.e., 0.1% 16S rRNA
microbiome threshold) of the genital mycoplasmas and representative BV-associated species of women recruited from 1,361 women recruited from outpatient clinics.
Bootstrap analysis was performed so that values represent the underlying population of the clinic.
*Bootstrap probabilities (n = 1,000) less than 0.05 indicate that the mean proportion or median value is significantly higher for carriers of the species.
doi:10.1371/journal.pone.0110943.t003
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(e.g., Asiatic elephant and Somali wild ass) are all models of

symbiosis where diverse groups of organisms including bacteria

and protozoa contribute to carbohydrate fermentation and benefit

the host by assisting with plant digestion.

A phylogenetic analysis using 57 inferred orthologous proteins

placed ‘‘Ca. M. girerdii’’ in the Pneumoniae group with M.
penetrans and Mycoplasma iowae, relatively distant from M.
hominis (Figure 5). This phylogeny is supported by analysis.

Analysis of COGs distributed 415 of the ‘‘Ca. M. girerdii’’ genes

among functional categories in a pattern similar to that exhibited

by other mycoplasma species (Table S1). The full-length ‘‘Ca. M.

girerdii’’ 16S rRNA gene from all four genomes and ‘‘Mnola’’

exhibited 100% identity.

Metabolic strategies of ‘‘Ca. M. girerdii’’
Genital mycoplasmas have evolved to utilize various energy

sources; M. genitalium, M. hominis, and ureaplasmas use glucose,

arginine and urea respectively. Our metabolic reconstructions

suggest that ‘‘Ca. M. girerdii’’ is glycolytic like M. genitalium and

encodes all enzymes for utilization of glucose as an energy source

(Figure 6). Arginine dihydrolase pathway and urease genes are

absent, thus ‘‘Ca. M. girerdii’’ is not predicted to utilize arginine

and urea. Catabolism of galactose, mannose, sucrose, maltose,

glycogen, starch or glycerol is not predicted, and the roles of genes

in the lactose/galatose pathways are unclear. ‘‘Ca. M. girerdii’’

possesses genes for a putative IIA component of the lactose-specific

phosphotransferase system (MGM1_4770), ribose/galactose-ABC-

type transporter system (MGM1_3070, MGM13080) and a

galactose-6-phosphate isomerase (MGM1_4760/MGM1_4750).

However, other genes required for lactose and galactose catabo-

lism, including 6-phospho-beta-galactosidase, tagatose-6-phos-

phate kinase and tagatose-bisphosphate aldolase, were not

identified. Moreover, the L-lactate dehydrogenase gene

(MGM1_4130) has an apparent frameshift. Other components

of the phosphotransferase system (PTS) system were also

identified, including the HPr phosphocarrier protein

(MGM1_1420) and an HPr phosophatase/kinase

(MGM1_4210), which likely functions in the regulation of carbon

metabolism. While all eight subunits for the F1F0 ATPase

complex were identified (MGM1_4310 through MGM1_4380),

these genes are thought to be involved in maintenance of the

proton gradient rather than ATP generation in mycoplasma

species as the cytochrome components are absent.

Unique among the genital mycoplasmas, the ‘‘Ca. M. girerdii’’

genome encodes serine dehydratase (MGM1_2560, MGM1_0390),

alanine dehydrogenase (MGM1_5480, MGM1_1820), and 29,39-

cyclic-nucleotide 29-phosphodiesterase (MGM1_1930) that may

permit use of alternate energy sources in the absence of glucose: L-

alanine, L-serine, and 29,39 cyclic AMP. No serine dehydratases

have been previously described for the mollicutes, and while alanine

dehydrogenase has been described for Acholeplasma laidlawii [40]

and annotated for M. mycoides (ADH22225.1), M. mobile
(AAT27586.1), M. leachii (ADR24467.1), and M. putrefaciens
(YP_004790384.1), neither the gene nor the enzyme has been

previously identified in any of the genital mycoplasmas or organisms

classified in the Pneumoniae group. Moreover, 29,39-Cyclic

phosphodiesters may be available in the environment as interme-

diate products in the hydrolysis of RNA by ribonuclease I. This

strategy has been proposed for Yersinia enterocolitica [41], which

has been shown to grow on 29,39-cAMP as a sole carbon source.

‘‘Ca. M. girerdii’’ does not metabolize pyruvate through the

pyruvate dehydrogenase pathway that is used by M. genitalium or

the other mycoplasma species that catabolize pyruvate to acetate.

However, ‘‘Ca. M. girerdii’’ may utilize one or both of two alternate

enzymes identified in the genome: pyruvate-formate lyase

(MGM1_5430), which produces acetyl-CoA and formate from

CoA and pyruvate, and/or pyruvate ferredoxin/flavodoxin oxido-

reductase (MGM1_5310), which yields acetyl-CoA and carbon

dioxide from the same substrates by reducing either ferredoxin or

flavodoxin. Both of these enzymes seem to be unique to ‘‘Ca. M.

girerdii’’ among the mycoplasmas. Acetyl-CoA may be converted to

acetate by phosphate acetyltransferase (MGM1_0120) and acetate

kinase (MGM1_2290), resulting in the production of ATP.

As with other mollicutes, ‘‘Ca. Mycoplasma girerdii’’ appears to

have limited metabolic capabilities and imports much of what it

needs from its environment or host. ‘‘Ca. M. girerdii’’ seems to

lack gluconeogenesis and the TCA cycle like other mycoplasmas.

It lacks enzymes for de novo purine or pyrimidine synthesis and

amino acid synthesis, but appears to be capable of nucleotide

salvage and amino acid transport. The genome encodes ,40

genes associated with transport of various ions and substrates

including amino acids, glucose, ribose/lactose, potassium ion,

magnesium ion, calcium ion, ferrous iron, cobalt, phosphate and

Figure 3. Representation of ‘‘Ca. M. girerdii’’ genomes. A circular
representation of the ‘‘Ca. M. girerdii’’ reference genome (strain
VCU_M1) assembled from metagenomic sequences from a mid-vaginal
sample. Position 1 is set to the start of the dnaA gene. Outermost circles
(1–3) show the alignment (97% or greater identity) of contigs of three
different strains from metagenomic assemblies from mid-vaginal
samples containing high proportions of ‘‘Ca. M. girerdii’’. Circle 4 (red)
represents the reference strain (VCU_M1). Circles 5 (dark red) and 6
(blue) represent the predicted coding sequences in the forward and
reverse orientations respectively. Circle 7 (black) shows the GC content,
and circle 8 shows GC skew (pink (-), green (+)).
doi:10.1371/journal.pone.0110943.g003
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spermidine/putrescine (Table S2). An alcohol dehydrogenase

(MGM1_5890) exhibiting homology to a butanol dehydrogenase

and putative bifunctional aldehyde-alcohol dehydrogenase

(MGM1_1150) were also annotated in the genome, thus ethanol

may also be an end product of metabolism. Although ‘‘Ca. M.

girerdii’’ is predicted to be able to convert butanol to butanoyl-

CoA, it appears to lack other enzymes of butanoate metabolism.

Figure 4. Phylogenetic tree of 16SrRNA shows uncultured ‘‘Ca. M. girerdii’’ clusters most closely with other uncultivated organisms
in the Pneumoniae Group. The maximum likelihood tree was inferred by RAxML 7.2.7 using the gamma-distributed heterogeneity rate categories
with 1,000 bootstraps. The 16S rRNA gene alignments were manually inspected. The Hominis Group is shaded in blue, the Pneumoniae Group in
green, the Hemoplasma Group in gray and the Spiroplasma Group in purple. The 16S rRNA sequence of ‘‘Ca. M. girerdii’’ VCU_M1, ‘‘Ca. M. girerdii’’
VCU_PA1, ‘‘Ca. M. girerdii’’ VCU JB1 and ‘‘Ca. M. girerdii’’ VCU_G1 were identical. ‘‘Ca. M. girerdii’’ groups most closely with ‘‘Mnola’’, which shows
100% identity in 16S rRNA sequence, uncultivated organisms from the oral sample of a low birth weight infant (HG764209, HG764210, and
HG764212) and uncultivated species from rumen and termite gut in the Pneumoniae Group. A partial 16S rRNA sequence from the vaginal sample of
a woman who delivered full term (JX871253) also exhibits 99% identity with ‘‘Ca. M. girerdii’’, but was not included in the analysis due to its length.
doi:10.1371/journal.pone.0110943.g004
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The predicted metabolic reconstruction may provide insight and

help guide future cultivation attempts.

BspA-like proteins encoded in ‘‘Ca. M. girerdii’’
Mycoplasma species contain surface proteins that exhibit high

frequency antigenic variation [42]. Although these organisms

exhibit a low level of horizontal gene transfer, expanded families of

surface proteins are an exception [43–45]. In the reference

genome of ‘‘Ca. M. girerdii’’, we identified a family of 26 BspA-

like proteins containing Treponema pallidum leucine rich repeat

(TpLRR) domains with homology to the prototypical BspA

virulence factor of Tannerella forsythia and a family of over 900

BspA-like proteins of T. vaginalis [46,47]. BspA-like proteins from

‘‘Ca. M. girerdii’’ exhibit variable length ranging in length from

136 to 1481 amino acids (Figure 7). Twenty-three of the BspA-like

proteins contained a predicted C-terminal transmembrane

domain, and a signal peptide was detected for five of the BspA-

like proteins.

Members of this family stimulate a Toll-like receptor 2 (TLR2)-

mediated host immune response. We also identified two other

putative surface lipoproteins that lack the TpLRR domain, but

exhibit homology to other mycoplasma proteins that stimulate a

TLR-mediated innate immune response. It is intriguing to

hypothesize that the expanded families of BspA-like proteins in

the ‘‘Ca. M. girerdii’’ and T. vaginalis may represent a common

host-adaptation strategy.

The BspA from T. forsythia is perhaps the best studied protein

containing the TpLRR domain. This protein has been shown to

mediate a host innate immune response through Toll-like receptor

2 (TLR2 [48]) by directly interacting with the receptor [49]. More

recently, the protein has been shown to elicit a response through

scavenger receptor gp340 [50]. T. forsythia BspA has also been

shown to be required for host cell attachment and invasion [51]

and co-aggregation with Fusobacterium nucleatum [51]. Thus, the

‘‘Ca. M. girerdii’’ BspA-like proteins may also mediate interactions

with the host and contribute to virulence through induced host

inflammation.

No TpLRR-containing proteins have been identified in U.
parvum, U. urealyticum or M. genitalium and only one or two

predicted BspA-like proteins were identified in the other related

genomes examined: one in M. iowae (ZP_08916569.1), one in M.
fermentans (YP_003922737.1 and YP_003922552.1), two in M.
hominis (YP_003302763.1; YP_003303010.1) and one in M.
penetrans (NP_757414.1). Although the role of the 26 member

BspA-like gene family in ‘‘Ca. M. girerdii’’ is currently unclear, it is

likely that they have important functions in host interactions. It is

intriguing to hypothesize that the TpLRR domains of the BspA-

like proteins from M. hominis, T. vaginalis, and ‘‘Ca. M. girerdii’’,

which appear to be absent in the Ureaplasma species and M.
genitalium genomes, may interact with the human host cells in a

similar manner via the TLR2 receptor.

Conclusions

In summary, we confirmed the identity of a recently described

and still uncultivated species of mycoplasma, further documented

its strong association with the presence of T. vaginalis, and

comprehensively characterized the genomes of ‘‘Ca. M. girerdii’’

from four vaginal samples collected in the Vaginal Human

Figure 5. Phylogenetic Tree based on inferred amino acid sequences confirms placement of ‘‘Ca. M. girerdii’’ in the Pneumoniae
group. ‘‘Ca. M. girerdii’’ is located within the Pneumoniae group, denoted in green, in a subclade along with the Ureaplasma species, M. iowae and
M. penetrans. The tree was inferred using amino acid sequences of 57 orthologs (Tables S4, S5, and S6). Numbers at nodes correspond to the support
values from 1,000 bootstrap replicates.
doi:10.1371/journal.pone.0110943.g005

Trichomoniasis-Associated Mycoplasma

PLOS ONE | www.plosone.org 9 October 2014 | Volume 9 | Issue 10 | e110943



Microbiome Project at VCU. The genomes of this potentially

emerging pathogen provide insight into its metabolic strategies and

reveal a potential for virulence and for triggering host inflamma-

tory responses through innate immune mechanisms. This work

lays the foundation for understanding the impact of ‘‘Ca. M.

girerdii’’ on women’s urogenital health and the nature of its

association with T. vaginalis.

Figure 6. Unique strategies of ‘‘Ca. M. girerdii’’. Putative transporters, enzymes involved in carbohydrate metabolism and virulence factors are
represented in red for ‘‘Ca. M. girerdii’’. Comparisons with other genital mycoplasmas are indicated with color-coded boxes: M. genitalium (MG, blue)
U. parvum (UP, green) and M. hominis (MH, purple). Arrows indicate direction of transport. Light gray arrows represent metabolic strategies unique to
other genital mycoplasma. Metabolic reconstruction was performed using ASGARD and careful inspection of manual annotations.
doi:10.1371/journal.pone.0110943.g006

Figure 7. Expanded ‘‘Ca. M. girerdii’’ BspA-like protein family. The diverse family of 26 BspA-like protein family members from the ‘‘Ca. M.
girerdii’’ strain VCU_M1 is depicted in panel (A). Predicted transmembrane domains and TpLRR domains are represented. An alignment of TpLRR
domains from Tannerella forsythia BspA (AAC82625.1, bases 382–1347), ‘‘Ca. M. girerdii’’ strain VCU_M1 MGM1_3780 (bases 449–782) and T.vaginalis
BspA-like TVAG_495790 (XP_001327783.1, bases 112–1077) is shown in panel (B).
doi:10.1371/journal.pone.0110943.g007
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Description of ‘‘Candidatus Mycoplasma girerdii’’
‘‘Candidatus Mycoplasma girerdii’’ [gir.erdii. N.L. gen. n.

girerdii, named for P.H. Girerd, an American obstetrician and

gynecologist, for his dedication to clinical practice and his

contributions to the research of the vaginal microbiota].

Materials and Methods

Identification of ‘‘Ca. M. girerdii’’
Mid-vaginal swab samples collected from women at 1,471 visits

(1,361 outpatient visits, 110 visits to the labor and delivery unit)

were assayed by 16S rRNA gene pyrosequencing according to the

protocols of the Vaginal Human Microbiome Project at VCU

[18,52]. The team that performed the PCR was blinded to the BV

and T. vaginalis diagnoses and results. Mid-vaginal pH, clinical

diagnosis and health history were recorded. The teams that

recorded and digitally entered this information were blinded to the

PCR and RT-PCR results. Clinical diagnosis of trichomoniasis

was based on identification of motile trichomonads in a saline wet

mount preparation of vaginal discharge. BV was clinically

diagnosed in women meeting at least three of Amsel’s four criteria

[19]: characteristic BV discharge, clue cells on microscopy, vaginal

pH .4.5 and positive whiff test. Consent was obtained from all

participants in accordance with the study protocol (HM12169) as

approved by the institutional review boards for human subjects

protection at Virginia Commonwealth University and the Virginia

Department of Health Raw sequence data from the project is

available from the Short Read Archive at NCBI (projectID

phs000256).

Fluorescence in situ hybridization
Vaginal swabs were resuspended in phosphate buffered saline

(PBS) and incubated on poly L-lysine coverslips (BD Biosciences,

San Jose, CA) in a 24-well tissue culture plate for 30 min at 37uC.

Coverslips were washed with PBS, fixed in 4% paraformaldehyde/

PBS for 1 h, and permeabilized with 0.2% TritonX-100/PBS for

10 min. Fifty nanograms of fluorescently labeled probe targeting

bacterial 16S rRNA was added to 200 ml of pre-warmed

hybridization buffer (0.9 M NaCl, 20 mM Tris-HCl (pH 7.2),

10% formamide, 0.01% SDS). Hybridization was carried out at

45uC for at least 2 h. Fluorescein-labeled broad range bacteria

probe Eub338 (59GCTGCCTCCCGTAGGAGT-39) was used as

a control. A Cy5-labeled specific probe (59-TCCTCTTAGTG-

CCGTTCGTCC-39) was used to detect ‘‘Ca. M. girerdii’’.

Following hybridization, coverslips were rinsed with pre-warmed

hybridization wash buffer (0.45 M NaCl, 20 mM Tris-HCl (pH

7.2), 0.01% SDS) then incubated in the wash buffer for 15 min at

48uC. Immediately following, coverslips were washed with ice-cold

distilled H2O, dried for 15 min at 48uC and mounted with

ProLong Gold Antifade containing 49,6-Diamidino-2-phenylin-

dole (DAPI) (Invitrogen, Carlsbad, CA). Slides were visualized by

laser scanning confocal microscopy using a Zeiss LSM 700.

Detection and genotyping of T. vaginalis
Detection of T. vaginalis by quantitative real-time RT-PCR

was performed as described by Shirm et al. [53], and T. vaginalis
genotyping was performed using three single-copy genes as

described by Conrad et al. [23,24].

Relative Risk Analysis
Bootstrap (n = 1,000) samples were selected from the outpatient

clinic population to reflect the outpatient community composition.

Samples from women enrolled in labor and delivery were not

included in this analysis. Median relative risk and 95% bootstrap

confidence intervals were calculated. A bacterial taxon was

considered present in the mid-vaginal sample if at least 0.1% of

the metagenomic 16S rRNA gene microbiome profile reads

classified to the taxon.

Metagenomic assembly of ‘‘Ca. M. girerdii’’
We selected one mid-vaginal sample (VCU_NT41; Table 1)

with .90% of 16S rRNA reads classified to ‘‘Ca. Mycoplasma

girerdii’’ from which to assemble the reference genome of the

organism. The woman who provided this sample was in active

preterm labor and also tested positive for group B Streptococcus

(GBS), Chlamydia trachomatis and T. vaginalis.
Fifty nanograms of total DNA was used in a tagmentation

reaction with a Nextera DNA Sample Prep Kit (Roche Titanium-

compatible, Epicentre Biotechnologies) following the manufactur-

er’s protocol and sequenced in the Nucleic Acids Research

Facilities at VCU. Titanium FLX pyrosequencing (Roche/454; 1/

2 plate) yielded 793,732 reads and 241,486,162 bases. The raw

data was pre-filtered to remove most human reads (55% of the

total reads) using Bowtie 2 [54] with default parameters. The reads

were then split into two bins using AbundanceBin [55]: (1) a bin

containing abundant reads including those derived from ‘‘Ca. M.

girerdii’’, and (2) a bin containing less abundant reads derived

from the minor components of the vaginal microbiome. Human-

filtered reads from the bin of abundant sequences (i.e., 252,073

reads, 79,029,547 bases) were assembled using Newbler, resulting

in 298 contigs larger than 500 bases and 1,966 contigs larger than

100 bases, with a total of 89.10% of reads aligned to a contig.

Through a careful analysis of the single-end read flow information

from Newbler, we inferred a circular scaffold for the organism that

incorporated 19% (152,023 total reads) of the total unfiltered reads

from the metagenomic sample. The scaffold incorporated eight of

the largest ten contigs that ranged in size from 144,547 bases to

4,826 bases and exhibited 67.2-fold to 95-fold coverage. Sequence

reads incorporated into the ‘‘Ca. M. girerdii’’ genome did not map

to known Mycoplasma or Ureaplasma sequences, and no other

unnamed mollicutes were detected in these samples by 16S rRNA

analysis. The eighth-largest contig encoded a 16kb plasmid with

an observed depth of 189-fold coverage. Because of its abundance,

it is likely that this plasmid is from ‘‘Ca. M. girerdii’’ but the host of

the plasmid cannot yet been unequivocally assigned. The ninth-

largest contig aligned to T. vaginalis ribosomal RNA genes. An

additional eight smaller contigs ranging in size from 161 bases to

814 bases were also incorporated into the scaffold, with two of the

contigs incorporated twice. The majority of non-assembled contigs

aligned to T. vaginalis (232 contigs), Homo sapiens (21 contigs), or

other bacterial species; e.g., Gardnerella vaginalis (10 contigs).

Physical gaps in the contig junctions were confirmed and closed by

PCR across gaps and fluorescent chain termination sequence

analysis on the AB3730 or AB3130 capillary sequencers (Applied

Biosystems). These gaps commonly occurred either in genes

exhibiting homology to type I restriction modification system

proteins or those encoding BspA-like proteins, although one

junction spanned a gene encoding a signal recognition particle

protein, which was present in only one copy. PCR and sequencing

primers are provided (Table S3). All physical gaps in the scaffold

were closed by PCR-amplification and sequencing using the

Sanger capillary methodology. The circularity of the 16kb plasmid

was similarly confirmed.

Three additional mid-vaginal samples (VCU_CT62,

VCU_NT44, VCU_NT71; Table 1) each containing more than

30% ‘‘Ca. M. girerdii’’ by metagenomic 16S rRNA gene

microbiome analysis were also sequenced by whole metagenome

shotgun sequencing using Titanium FLX pyrosequencing and the
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protocol described above. Each sample was run on approximately

one eighth of a plate, yielded between 185,612 and 222,667 total

reads and assembled using Newbler, and aligned to the reference

strain. The genomes of ‘‘Ca. M. girerdii’’ have been deposited with

NCBI under the Bioproject accession numbers PRJNA196996,

PRJNA196997, PRJNA196998, and PRJNA196999. The com-

plete genome of ‘‘Ca. M. girerdii’’ has been deposited at NCBI

under accession number CP007711.

Genome annotation and metabolic reconstruction
Open reading frames (ORFs) greater than 100 nucleotides were

predicted by Glimmer3 [56] and GeneMarkS [57] using

translation table 4 and were manually examined. In most cases

the start site predicted by Glimmer3 was chosen for genes that had

the same predicted stop codon called by both Glimmer3 and

GeneMarkS. Translated ORF predictions were searched against

the non-redundant (nr) database from NCBI and a custom

database of Mollicute proteins downloaded from NCBI using the

blastp algorithm, and the gene products were manually annotated.

Predicted gene products were compared to conserved domain

databases (COGs and Pfam) by RPS-BLAST. Other annotation

features were predicted using TMHMM 2.0c [58] for transmem-

brane domains and SignalP 4.0 for signal peptides. Although

mollicutes have a unique membrane composition, SignalP has

been previously validated on experimentally verified secreted

proteins from mollicutes [59]. The hmmsearch program from

HMMER3.0 [60] was used to search predicted proteins for the

Treponema palladium family of leucine rich repeats (TpLRR)

using the Pfam raw hidden markov model for the family (LRR_5;

PF13306). Transfer RNA genes were predicted by tRNAscan-SE v

1.3 using the genetic code outlined in translation table 4. The

tRNA-Ile, elongator tRNA-Met and initiator tRNA-fMet were

distinguished by alignment with previously annotated tRNAs [61].

The CRISPR element containing four 34-nucleotide repeats and

three 35-nucleotide spacers was identified in the genome with a

consensus direct repeat sequence of 59-AAGTATTAATATTC-

CAAGTAGTGTAACTAGTATT using the CRISPR recognition

tool (CRT) [62]. Metabolic reconstruction and Gene Ontology

classification assignments were performed using ASGARD [63]

and the UniRef100 database.

Phylogenetic analysis
One reference genome was selected for each species in the

Mollicutes class for which a completely sequenced genome is

available. A total of 57 transitively closed orthologous clusters were

retrieved from the RoundUp [64] database (release date: Dec. 23,

2011). ‘‘Ca. M. girerdii’’ orthologs were identified using blastp and

confirmed using the Reciprocal Smallest Distance (RSD) algo-

rithm. Orthologs were similarly identified for M. iowae for which

only a draft genome is available. The maximum-likelihood tree

was inferred by RAxML 7.2.74 [65] using the gamma-distributed

heterogeneity rate categories with 1,000 bootstraps. The tree was

rooted using Lactobacillus gasseri as the outgroup. Phylogenetic

trees based on 16S rDNA gene sequences were similarly

constructed. The 16S rRNA gene alignments were manually

inspected and the maximum likelihood tree was inferred by

RAxML 7.2.74 using the gamma-distributed heterogeneity rate

categories with 1,000 bootstraps.

Attempts to cultivate ‘‘Ca. M. girerdii’’
Frozen vaginal swab samples were incubated on A8 and SP4

agar (Hardy Diagnostics). When these plates did not yield colonies,

the frozen samples were cultured on PPLO broth base containing

10% horse or 10% human serum, 10% yeast extract, 1% arginine

and 1.5% Bacto agar [66]. The samples were also incubated on

supplemented BHI agar [67] containing 10% human blood. All

solid media was supplemented with 100 mg ampicillin/mL and

plates were incubated at 37uC under anaerobic conditions and in

air supplemented with 5% CO2. None of these efforts yielded

detectable growth.

Ethics Statement
Consent was obtained from all participants in accordance the

study protocol as approved by the institutional review boards for

human subjects protection at Virginia Commonwealth University

and the Virginia Department of Health. All enrolled subjects were

18 years of age or older and provided written informed consent.

Supporting Information

Figure S1 Cluster analysis of mid-vaginal samples with
a clinical diagnosis of trichomoniasis. Relative abundance

of microbial taxa in mid-vaginal bacterial communities of 63

women with clinically diagnosed trichomoniasis is shown. The

dendrogram was generated using Ward’s method with Manhattan

distance. Presence of ‘‘Ca. M. girerdii’’ as determined by 16S

rDNA profiling is indicated in the top bar. Samples that contained

‘‘Ca. M. girerdii’’ at less than 0.1% abundance are indicated as

ambiguous (AMB) in light blue.

(PDF)

Figure S2 Detection of ‘‘Ca. M. girerdii’’ in mid-vaginal
samples. Fluorescence in situ hybridization detection of bacteria

in mid-vaginal samples from two participants with clinically

diagnosed trichomoniasis (subject 1, panels A–O); subject 2, panels

P–T) by confocal laser scanning microscopy. The merged

photomicrographs are also depicted in Figure 1. Nuclear DNA

was detected with 4969-diamidine-2-phenylindole, dehydrochlor-

ide (DAPI, blue) as shown in panel B, G, L and Q. Most bacteria

were detected with fluorescein-labeled broad-range bacteria probe

Eub338 (green) as shown in panels C, H, M and R. ‘‘Ca. M.

girerdii’’ was also stained with a Cy5-labeled probe targeting 16S

rDNA (red) as shown in panels D, I, N and S.

(PDF)

Figure S3 ‘‘Ca. M. girerdii’’ coexists with both geno-
types of T. vaginalis. The maximum likelihood tree was

constructed using concatentated, aligned partial protein sequences

from three single-copy orthologs (CRN, PMS1, Mlh1a). Isolates

indicated as type 1 or type 2 were previously typed using

microsatellite markers. Strains from 43 clinically diagnosed cases

of trichomoniasis from this study are indicated with the prefix

‘‘VCU’’. The type 1 cluster is shaded blue and contains eight ‘‘Ca.

M. girerdii’’ positive cases, the type 2 cluster is shaded green and

contains ten ‘‘Ca. M. girerdii’’ positive cases and the ambiguous

cluster is shaded gray and contains five ‘‘Ca. M. girerdii’’ positive

cases. In this analysis, the ambiguous cluster groups with type 2 T.
vaginalis, but the subgroup contains isolates that were differen-

tially classified as type 1 using microsatellite markers. T. vaginalis
strains from ‘‘Ca. M. girerdii’’ positive cases as determined by 16S

rRNA microbiome profiling (0.1% threshold) are indicated with

red boxes. Ambiguous cases that were detected at less than 0.1%

threshold are denoted with pink boxes. Blue dots denote branches

with bootstrap values greater than 50.

(PDF)

Figure S4 Conserved synteny among ‘‘Ca. M. girerdii’’
strains not shared with related species. Panel (A) shows dot

plot nucleotide-based alignments of the reference ‘‘Ca. M.

girerdii’’ strain VCU_M1 with contigs from three different ‘‘Ca.
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M. girerdii’’ strains (VCU_PA1, VCU_JB1, VCU_G1). Panel (B)

shows dot plot amino-acid based alignments of the reference with

three closely related species (M. iowae, M. penetrans and U.
parvum). Horizontal grid lines delineate contigs. Nucleotide-based

and protein-based alignments were performed using Nucmer and

Promer respectively.

(PDF)
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Groups (COGS).
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Table S2 Putative transporters in ‘‘Ca. M. girerdii’’
strain VCU_M1.
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Table S3 List of primers for circularization of ‘‘Ca. M.
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logs.
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Pathogenic, Plastic, and Sexual while Living with a Nearly Minimal Bacterial
Genome. PLoS Genet 3: e75. doi:10.1371/journal.pgen.0030075.
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