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Abstract

We aim to build the simplest possible model capable of detecting long, noisy contours in a cluttered visual scene. For this,
we model the neural dynamics in the primate primary visual cortex in terms of a continuous director field that describes the
average rate and the average orientational preference of active neurons at a particular point in the cortex. We then use a
linear-nonlinear dynamical model with long range connectivity patterns to enforce long-range statistical context present in
the analyzed images. The resulting model has substantially fewer degrees of freedom than traditional models, and yet it can
distinguish large contiguous objects from the background clutter by suppressing the clutter and by filling-in occluded
elements of object contours. This results in high-precision, high-recall detection of large objects in cluttered scenes.
Parenthetically, our model has a direct correspondence with the Landau - de Gennes theory of nematic liquid crystal in two
dimensions.

Citation: Singh V, Tchernookov M, Butterfield R, Nemenman I (2014) Director Field Model of the Primary Visual Cortex for Contour Detection. PLoS ONE 9(10):
e108991. doi:10.1371/journal.pone.0108991

Editor: Rongrong Ji, Xiamen University, China

Received March 28, 2014; Accepted August 27, 2014; Published October 17, 2014

Copyright: � 2014 Singh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

Funding: This work was supported in part by Army Research Office, 60704-NS-II (V.S., I.N.), James S. McDonnell Foundation, 220020321 (M.T., I.N.), and NIH,
R90DA033462 (R.B.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: ilya.nemenman@emory.edu

Introduction

To recognize an object in a visual scene, humans and other

primates process visual signals relayed through the retina [1] in the

ventral stream of the cortex. Contour detection is a crucial part of

this process (Fig. 1). It is carried out at early stages of the

processing in the primary visual cortex (V1) of the brain [2]. V1

consists of hundreds of millions of neurons organized topograph-

ically into columns of *104 . . . 105 neurons each. Neurons in each

column receive inputs from a localized part of the visual field

(called classical, or feed-forward receptive field). They are

directionally selective, responding primarily to oriented edges

within their receptive fields [3,4]. Computational vision models

that account for such receptive fields of individual neurons [5–10]

typically incorporate them within feedforward hierarchical struc-

tures similar to the cortex [11–13]. Such feedforward models

account for the visual processes on short time scales, and achieve

error rates as low as *10{20% on typical object detection tasks

[10,14].

It is believed that, in vivo, the error rate is reduced by orders of

magnitude by contextual information that influences local

processing, which may not be captured fully in such models

[15,16]. These collective, recurrent dynamics span large spatio-

temporal scales and are mediated through thousands of axons

laterally connecting distant columns [17]. These interactions are

believed to suppress the clutter present in the visual field, while

simultaneously binding edges into contours [18].

The goal of this paper is to build the simplest model of the
primary visual cortex that simultaneously achieves two contradic-

tory tasks: clutter removal and occlusion filling. We do not aim at

the state of the art performance on complex natural images, but

rather ask what is the smallest set of computational primitives that

must be implemented in a model to achieve such detection and

integration of long contours in a nontrivial setting. For this, we

focus on a proposal of a specific lateral connectivity among V1

neurons [19,20], which incorporates the Hebbian constraint that

neurons that are excited simultaneously by the same long, low-

curvature contours should activate each other [19]. However, in

our model, we do not reproduce the complexity of V1, which has

*100 million neurons, with each neuron having *
>103 connec-

tions, some extending for many millimeters. Instead, unlike most

agent based discrete models, we represent the activity as a coarse-
grained, continuous neural field, which we model as a complex-

valued field on the complex plane, W (z). The magnitude and the

phase of W represents the level of excitation and the orientation of

the dominant contour element at point z, respectively. This coarse

graining helps us to identify the minimal features of the neural

structure and dynamics that are essential for contour recognition.

Importantly, our complex field approach is significantly simpler

than most other coarse-grained models, thus pushing the limits in

identification of the minimal set of the required computational

primitives. Indeed, typically the neural firing rate is represented as

a real function of three variables (position in the visual plane and

the directional sensitivity) [21,22]. In our model, the firing rate is

represented as a complex function of a complex variable (or,

equivalently, two real variables), which, manifestly, has a lot fewer

degrees of freedom. Previous approaches that used a similar

complex field representation [23,24] have focused on develop-

ment, rather than on the visual performance of the cortex. Thus it

has been unclear if the simplified, lower-dimensional model can
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solve complex visual tasks. Here we answer this question

affirmatively.

Model

We define the dynamical variables in our coarse-grained model

as the neural firing rate s(x,y), s§0, over the two dimensional

plane R(x,y), and the orientation preference H of neurons, both

averaged over a microscopic patch of the cortex, which still

contains many thousands of neurons. Such averaging is traditional

in, for example, fluid dynamics, where continuous dynamics is

sought from discrete agents. The neural activity is invariant under

parity (i. e., an edge or its p rotation results in the same activity).

Further, two equal edges at one point oriented p=2 apart lead to

cross orientation suppression, not forming a dominant orientation

at the point [25]. Thus the fields s and H are combined into a time

varying complex field W (z,t) in a somewhat uncommon way,

forming an object called a director [26]: W (z,t)~s|ei2H. The

magnitude of this field is the average firing rate, and the argument

is twice the average dominant orientation preference of neurons at

a point z~DzDeih~xziy [23,24]. We similarly coarse-grain the

input images, identifying the dominant orientation at every point

(see Methods). This orientation field serves as the input to the

model. Note the crucial reduction in the number of degrees of

freedom in going from a more traditional description s~s(x,y,H)
to W~W (z). One of the costs of the simplification is the lost

ability to represent multiple different orientations at the same

point, which happens when contours intersect. Correspondingly,

one of our goals is to verify that this loss does not make it

impossible to perform non-trivial visual tasks.

Neurophysiological and psychophysical experiments [15,16,

18,27,28] and theoretical considerations [19] suggest that neurons

in V1 are laterally connected such that active neurons excite

nearby neurons with collinear or large-radius co-circular direc-

tional preference. Conceptually, simultaneous input from several

collinear or co-circular neurons can excite other neurons that

might otherwise not be getting enough excitation from the visual

field due to occlusion or noise, cf. Fig. 2 A. At the same time,

neurons responding to high spatial frequency clutter elements do

not get sufficient lateral excitation, and their activity decays. These

collective dynamics integrate information over large spatial scales.

We represent these phenomena in a traditional linear-nonlinear

model, where the neural field at a point z is affected by a

combination of lateral synaptic inputs:

dW (z,t)

dt
~Fdth

½I(z,t)�{r(z,t)zj(z,t): ð1Þ

Here Fdth
is some sigmoidal function of the excitatory input

I(z,t), r(z,t) describes the inhibitory contribution to the field, and

j(z,t) is the stimulus.

The excitatory input, I(z,t), combines synaptic input from all

points z’ in its interaction region ‘Ex’

I(z,t)~

ð
Ex

d2z’ K ½z{z’DW (z,t)�W �(z’,t), ð2Þ

where K ½z{z’DW (z,t)� is the excitatory interaction kernel between

the fields at point z’ and z, when the field at z is W (z,t). The kernel

for an arbitrary orientation of W (z) can be defined by an

appropriate rotation of the kernel defined for W~1 (parallel to

the real axis):

Figure 2. Co-circularity condition. (A) Neurons send excitatory signals along approximately co-circular directions. Thus neurons in occluded gaps
may get enough excitatory input along smooth contours to get excited without direct visual input. (B) The orientation at two points is said to be co-
circular if they are tangential to the circle connecting the two points. If the orientation preference at the origin is along the real axis, the co-circular
edge at a point z~DzDeih has the orientation 2h. Multiplication by ei2h can be written as: ei2h~(eih)2~ z=DzDð Þ2~ z=z�ð Þ.
doi:10.1371/journal.pone.0108991.g002

Figure 1. Contour Reconstruction Task. A 2d image (left top;
credit: ‘Pont de Singe’, Olivier Grossetete. Photo: Thierry Bal) is recorded
as a field of contrast by the retina and the LGN (left bottom). V1
neurons respond to regions of contrast changes in a direction-selective
manner, performing edge detection (middle bottom). The information
from edges is integrated to reconstruct long contours (middle top). In
this paper, we model the visual process starting from edges in V1;
sample input (bottom) and output (top) to our model are on the right.
doi:10.1371/journal.pone.0108991.g001

Director Field Model of Primary Visual Cortex for Contour Detection
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K ½z{z’DW �~K (z{z’) e
{i

arg(W)
2 D1

� �
: ð3Þ

Co-circular excitation may be represented as

K ½zD1�~ z

z�

� �2

| expf{ DzD2

2s2
{m

DIm(z)D

½Re(z)�2
g: ð4Þ

The first term, derived in Fig. 2, determines the field direction

at z that is co-circular to the field at z’. The s term in the exponent

determines the spatial range of the excitation. The m term

determines the smallest radius for which substantial co-circular

excitations still exist, giving the kernel and hence the induced

dynamics their characteristic bow-tie shapes [19], see Fig. 3. Note

again the reduced complexity of this model, where the kernel is

defined by just two real-valued parameters, instead of being

inferred empirically from the data in a form of a multi-dimensional

matrix, as in Ref. [20] and references therein.

We define the input nonlinearity using a complex step function:

Fdth
(I)~

I

DI D
| A H(DI D{dth), ð5Þ

where H is the Heaviside step function and A determines the

maximum excitation strength. Smoother sigmoidal nonlinearities

were tried as well, but this had little effect on the results presented

below. If the total excitatory input is higher than the threshold dth,

then the field W (z) gets a positive increment in the direction of the

total input. For this, the excitatory contribution from a large part

of the neural field must align in the same direction, representing

coincidence detection. While importance of this coincidence

detection phenomenon in vision is unclear, it is crucial in the

context of auditory signal processing [29]. Thresholding also

suppresses clutter-induced spurious excitations, as it is unlikely that

the excitatory input from short clutter elements becomes higher

than the threshold in the absence of contextual support from long

contours.

The inhibition term r represents two distinct phenomena: local

relaxation, which depends on the local field magnitude [30], and

global inhibition [31], which keeps the activity of the entire neural

field in check (presumably through intermediate inhibitory

neurons, not modeled explicitly). In the spirit of writing the

simplest possible model, we represent inhibition as linear, resulting

in:

r(z)~clW (z)zcgH(DW (z)D)
W (z)

DW (z)D

ð
In

d2z’DW (z’)D: ð6Þ

Here cl and cg determine the rates of local and global

inhibition, and ‘In’ stands for the range of global inhibitory

interactions. Combined with the non-linear excitation, this linear

inhibition produces bimodal asymptotic field values. Hence,

neurons can be defined as ‘active’ or not.

Methods

Image generation
Since our focus is not on practical image processing algorithms,

we focus on synthetic images in this work, as in [20]. This makes it

easier to analyze effects of various image properties on the

performance.

Targets. The ‘‘amoeba’’ objects (long closed contours with

gaps) are generated by choosing a center at a random point in the

image, and then drawing the amoeba around this point in polar

coordinates, with the radius as a superposition of periodic

Figure 3. Shape of the interaction kernel. (A)Schematic shape of the interaction kernel K½z{z’D1�. Arrows represent the orientation preference
and darkness and size represent the magnitude. (B) Results of dynamics with the kernel K with the current j(z,t)~d(z)d(t). Here, as everywhere in this
work, we use A~5,dth~5,s~7:9,m~15,cg~0:012,cl~1, which optimizes the performance according to a genetic algorithm search over the

parameter space, see Methods.
doi:10.1371/journal.pone.0108991.g003

Director Field Model of Primary Visual Cortex for Contour Detection

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e108991



functions with different radial frequencies, r(w)~Sn
k~0 ak sin

(kwzwk). The Fourier coefficients ak are generated randomly

from a normal distribution (s~1), with kƒn~3, and the phases

wk are uniformly distributed between 0 and 2p. To create amoebas

that are about the same size, the coefficients are further

constrained such that the minimum and the maximum radii of

the resulting amoeba and their ratios obey

0:2LvRminvRmaxv0:3L, 0:4v
Rmin

Rmax
v0:6, where L is the image

size. The input current then is j(z)~d(z{ze)ei2H, for every point

ze within 1 lattice spacing away from any point on the amoeba

contour, where H is tangential to the contour at that point. While

generating an amoeba, we also determine an exclusion region

around it of 8 lattice sites. Clutter elements (see below) with

orientations parallel to the closest amoeba segment are not allowed

in these regions. Without such exclusion, a nearby clutter edge

could help amoeba detection, which would artificially elevate the

measured performance. We prefer to err on the side of

underestimating the performance, and hence we remove these

ambiguous cases.

Occlusions. We simulate occlusions and noise in real-world

images by removing parts of amoebas. A random number of 2–4

segments with random angular length combining to the total of

*25% of the amoeba length are chosen at random positions along

the amoeba contour. Within the chosen segments, the input

current j(z) is then set to zero.

Clutter. We need the clutter to be indistinguishable from the

targets by curvature, brightness, and other local statistics, so that

object detection is impossible without long-range contextual

contour integration afforded by co-circular connectivity. Thus

clutter is generated by first generating an amoeba as described

above, partitioning it into segments, and then randomly shuffling

and rotating the segments to break long-range contour continuity.

Specifically, the model cortex is divided into 5|5 square regions,

which are then randomly permuted. The center-of-mass (CoM) of

an image within each region is computed, and the dominant

angular orientation is determined. Then each region is rotated

around its CoM by a random angle, subject to a constraint that the

resulting dominant orientations of neighboring regions are

different. The constraint ensures that the clutter does not form

long range target-like structures.

Combined images. One or two targets and clutter resulting

from breakup of one or two additional targets were then

superimposed together to form test images, see Fig. 4, for an

example. Clutter in the exclusion zones along the amoeba

contours was then removed, as described above.

Transforming pixel images. Images used previously in

psychophysics experiment (Fig. 4) were imported into MATLAB

and then converted to grey scale using rgb2grey. The resulting

matrix was then thresholded and converted into a binary matrix.

A 2D Gabor filter was used to find edges in this bitmap image. For

each point in the image, we find the convolution of a Gabor

filter (ssmaller~10 pixel, slonger~100 pixel, convolution range~

20 pixel|20 pixel) with the image at (360=n) angles where

n~100. The direction with the maximum convolution is taken as

the orientation of the visual field at the point, and the result of the

convolution as the field magnitude. The image thus processed is

presented as an input for simulations.

Simulations
The time evolution of the model is studied on a square lattice of

a linear size L~100 with periodic boundary conditions using

Euler iteration method. The lattice discretization is done for

simulation purposes, and should not be viewed as a representation

of discrete neurons; we are not aware of numerical algorithms able

to simulated our model dynamics without discretizing the space

first.

In each iteration cycle we first calculate the total input I at each

point z from all other points z’ in the excitation region ‘Ex’ using a

precomputed interaction kernel K ½z{z’D1� on a 4L|4L kernel
lattice. Square discretization destroys the angular symmetry of the

kernel evaluated at an arbitrary z. The following procedure

restored the symmetry. First, to calculate the contribution from z’
to I(z), the kernel lattice is superimposed on the image lattice with

the origin of the kernel lattice at point z of the image lattice. Next

the kernel lattice is rotated by
arg(W (z’))

2
with respect to the

image. Then the contribution from the point z’ to I(z) is

W �(z’)|K(0,z’’), where z’’ is the point on kernel lattice closest to

z’. The total input I(z) is then the sum of contributions from all

points z’ in the excitatory interaction region ‘Ex’. After the input is

calculated, if DI(z)D w dth, then the field is incremented

W (z,tzDt)/W (z,t)zA
I(z)

DI(z)D
Dt, where Dt is the time step. To

account for degradation, we finally set W (z,tzDt)/
W (z,tzDt)| exp½{r(z)|Dt=W (z,tzDt)�, where r(z) is as in

Eq. (5). To the first order in Dt, this is equivalent to the dynamics

in Eq. (1). However, this exponential form removes the large

fluctuations in r(z) when W (z)&0.

In our simulations, the excitation range ‘Ex’ is 3s, where s is the

effective spatial range of the kernel K ½z{z’DW (z)�. For global

inhibition range ‘In’ is the entire lattice. The model is easily

modified to restrict the suppression to a smaller inhibition region.

We first chose the parameter m to be similar to the curvature of

a typical amoeba. Next s was chosen such that it was larger than

the typical extent of the occluded amoeba segments. The initial

Figure 4. Neural field dynamics. (top and middle) Time evolution of
the neural field for sample images. The magnitude (line width) and the
direction of the field are plotted at every point where the strength of
the field is higher than a cutoff (0.35). The parameters of the dynamics
are as in Fig. 3. Dynamics removes the clutter and fills in the occlusion
gaps. However, spurious activity (widening lines) appears for large
simulation times, so that the best performance is obtained for
intermediate times. (bottom) Performance of the model on an image
used in psychophysics experiments [32]. Like human subjects, the
model can identify, complete, and bind together long punctuated
contours.
doi:10.1371/journal.pone.0108991.g004

Director Field Model of Primary Visual Cortex for Contour Detection
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values of cl and cg were determined using steady state analysis of

the model, which leads to (Ncgzcl)W0*Fd(?), where N is the

typical number of points with non zero field, and F is the

thresholding function as defined in Eq. (1). Setting cl~1 and

W0~1, we thus constrain all other parameters. Using these initial

values, some coarse parameter optimization was done by simply

observing the simulations while the parameters were varied. After

that genetic algorithm was used to optimize the model for

maximum simultaneous precision and recall (see Results for

definitions). We used the area under the precision-recall curve as

our fitness function. Parameters were changed by a percentage

drawn from a uniform distribution (from 21% to 1%) and the

fitness function was recalculated for the new parameters. Then,

the new parameters were either accepted or rejected according to

whether 1=½1z exp (newarea{oldarea)=0:005�w random vari-

able drawn from uniform distribution on (0,1). The parameter

0.005 acts as the temperature. The final optimized values of the

parameters used for simulations presented here were:

A~5,dth~5,s~7:9,m~15,cg~0:012,cl~1.

The code was implemented in C, compiled with the gcc v. 4.7,

and optimized with OpenMP libraries. Simulations were per-

formed on a computer with Intel i7 2600k (clock speed 3.4 GHz).

The simulation time for 250 iteration cycles for one image took

about 10 s. All model dynamics times were measured in units of

1=cl, which was set to 1 in our simulations.

Results

Figure 4 (top and middle) shows the time evolution of the neural

field W (z,t) in our coarse-grained model for a sample input image,

generated as described in Methods, where a large contiguous

contour with gaps (an amoeba) is superimposed on clutter. The

gaps model occlusion of contours by other objects and noise in the

earlier stages of visual processing. Similarly, Figure 4 (bottom)

illustrates the model output for an image previously used in

psychophysics experiments with human subjects [32]. Its simplicity

notwithstanding, the model performs qualitatively similar to

humans in that long contours implied by collinearity of nearby

edge segments are easily detected. The gaps in amoeba targets get

filled, while the clutter decays with time, resulting in emergence of

long contours. Note also that spurious activity appears around

contours at large simulation times. Even though such hallucina-

tions rarely happen in human vision, they are not of a big concern

here since, at large times, the dynamics would be affected by

feedback from higher cortical areas and eye movements, which we

are not modeling. Importantly, these observation suggests that the

model performance must be evaluated at finite, but not

asymptotically large times.

We quantified the performance in terms of precision, P, and

recall, R. Precision determines the fraction of the total field activity

integrated over the image that matches the actual target contour

(visible and occluded/invisible). Recall gives the fraction of the

target contour that has been recovered. P~1 means that there is

no clutter, and R~1 means that all parts of the contour have been

identified. For a successful contour detection, we must have

R,P?1 simultaneously. Both P and R depend on the cutoff used

to decide which neurons are considered active (larger cutoff

degrades clutter faster, but slows down occlusion filling), and on

the time of the simulation (Fig. 5). Hence different cutoffs and

times must be explored.

Figure 6 A gives the variation of precision and recall at various

cutoffs at particular times during the simulation. At t~0,

(R,P)~(0:75,0:5) on average, i. e., initially about 25% of the

target is invisible and the total lengths of the clutter and the target

segments are nearly equal. At t as small as 0.25 (with Dt~0:01),

P,R are above 0.9 simultaneously for a large set of cutoff values

(1%{42%). Since we present the stimulus instantaneously only, its

effect eventually decreases with time. Thus there is a time that

optimizes performance, at which the precision vs. recall curve

majorates the same curves for other times. For the data-set in

Fig. 6, this optimal time is t~0:40|1=cl (40 numerical iterations),

where the curve reaches R&0:97 and P&0:95 simultaneously.

Performance depends only weakly on the ad hoc details of the

simulations and the data. For example, defining the threshold

parameter not as an absolute value, but as a fraction of the

maximum activity of the field at a given time point did not change

the precision-recall curves much (Fig. 7). Similarly, different

amounts of initial clutter had only a moderate effect if the length

of the clutter elements remained the same (Fig. 6 B). This is

because the time scale of the clutter decay depends on the size of

the segments, and not on their number. For longer segments, the

decay takes longer, and hence the optimal processing time

increases. The optimal processing time also increases with the

linear dimension of the occlusions present in the target amoebas

and with the number of occlusions (Fig. 6 B). However, for all of

these cases, the maximum precision and recall remain simulta-

neously high.

Discussion

We developed a continuum, coarse-grained model of V1 to study

contour detection in complex images, which is substantially

simpler than other models in the literature, and yet still performs

nontrivial visual computation. While borrowing heavily from

previous research, our model differs from most previous

approaches by forgoing individual neurons and describing the

neural activity as a parity-symmetric continuous director field,

which makes expressions for Hebbian connectivity and solutions of

the model dynamics expressible in the closed form. We

incorporate some experimentally observed properties of the visual

neural dynamics, namely non-linear excitation, thresholding, cross

orientation suppression, local relaxation, global suppression, and,

Figure 5. Neural dynamics at different cutoffs. Time evolution of
a sample image at different cutoff values. At a lower cutoff the
occlusions fills rapidly, but it takes longer to suppress the clutter. At
higher cutoffs clutter removes quickly, while it takes longer to fill the
gaps. Notice the spurious activity around the contours at longer times.
This spurious activity is dominant at lower cutoffs.
doi:10.1371/journal.pone.0108991.g005

Director Field Model of Primary Visual Cortex for Contour Detection
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crucially, co-circular excitatory connectivity [19], which brings

long-range context to local edge detection.

The model identifies long object contours in computer-

generated images with simultaneous recall and precision of over

90% for many conditions. It happens even though initially large

parts of objects are invisible (potentially lowering recall), and

clutter is present (decreasing precision). The model fills in the

occlusions and filters out the clutter based on the presence or

absence of co-circular contextual edge support. In addition to the

substantial simplification, this ability to fill in the occlusions
particularly distinguishes our approach from the previous work on

co-circular excitatory feedback [19,20]. It remains to be seen to

which extent the performance is affected by more natural statistics

of images, and by the presence of stochasticity and synaptic

plasticity in neural dynamics.

The model performs on par or better than agent-based three-

dimensional models (two spatial dimensions and one orientation

preference dimension), with complex, empirically specified co-

circular interaction kernel [20]. This illustrates that discreteness of

neurons, existence of the orientation preference as an independent

variable, and intricate details of the kernel are not crucial for the

studied visual processing function. The reduced complexity is not

only conceptually appealing, but also can result in more efficient

computational implementations. For example, it should be

possible to augment practical feedforward models of object

detection, such as [10], with the laterally connected layer

developed in this work. We expect this to lead to improvements

in object recognition performance.

The model makes predictions that can be tested experimentally,

such as regarding the amount of neural excitation in V1 as a

function of the computation time and the duration of exposure to

an image. Additionally, it predicts that the neural activity localizes

to long contours with time, which can be tested with various

imaging technologies. Finally, it can be used to predict the

dependence of the contour detection performance on the statistical

Figure 6. Precision vs Recall with an absolute cutoff. (A) P vs R averaged over 500 randomly generated images at various simulation times
starting with (R,P)~(0:75,0:5). The numbers indicate cutoff values for a specific data point at the corresponding simulation time. Note the weak
dependence on the cutoff. The simulation lengths of t~0:40|1=cl (black dots) produces the curve with the best precision and recall combination.
(B) P vs R with different starting values of precision and recall averaged over 100 randomly generated images, but with the same model parameters.
Legend indicates the initial (R,P). The black dots are the same as in the top panel. Red �’s correspond to a lower initial precision (more clutter),
compared to the black dots. Blue z’s stand for the same initial (R,P) as black, but with the target partitioned into more shorter segments (a larger
number of occlusions). Pink %’s correspond to higher initial precision (less clutter), but the clutter elements are longer and harder to suppress.
doi:10.1371/journal.pone.0108991.g006

Figure 7. Precision vs Recall with a relative cutoff. P vs R
averaged over 500 randomly generated images at various simulation
times starting with (R,P)~(0:75,0:5). The numbers indicate cutoff
values for a specific data point in terms of the percentage of the
maximum activity of the field at the corresponding time. Note the
similarity with the results in case of absolute cutoff values (Figure 6A).
doi:10.1371/journal.pone.0108991.g007

Director Field Model of Primary Visual Cortex for Contour Detection
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structure of images and on the exposure time. Testing such

predictions in psychophysics experiments [20] will be a subject of

the future work.

Finally, we notice that the neural field W (z)~s(x,y)|ei2H(x,y)

can be mapped exactly onto the Landau - de Gennes order

parameter for a two-dimensional nematic liquid crystal

Qmn~
1

2
s

{ sin (2H) cos (2H)

cos (2H) sin (2H)

� �
: ð7Þ

This may help solve a crucial difficulty in implementing an

artificial laterally-interacting neural model: the computational cost

of long-range communication. Indeed, one can think of materials

with symmetry and dynamical properties such that the neural

computation and the communication are performed by the

intrinsic dynamics of the material itself. Potential implementations

can include polarizable liquid crystals with long-range magnetic

interactions, polar colloidal materials, or heterogenous solid state

materials with long-range connectivity. The liquid crystal analogy

suggests the use of the well-developed repertoire of theoretical

physics to understand the impact of different terms in the model

neural dynamics, Eq. (1). In particular, one can hope that the

future renormalization group treatment of this dynamics will

reveal the terms in the interaction kernel K that are relevant for its

long-time, long-range aspects.
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