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Abstract

A major bottleneck in biological discovery is now emerging at the computational level. Cloud computing offers a dynamic
means whereby small and medium-sized laboratories can rapidly adjust their computational capacity. We benchmarked two
established cloud computing services, Amazon Web Services Elastic MapReduce (EMR) on Amazon EC2 instances and
Google Compute Engine (GCE), using publicly available genomic datasets (E.coli CC102 strain and a Han Chinese male
genome) and a standard bioinformatic pipeline on a Hadoop-based platform. Wall-clock time for complete assembly
differed by 52.9% (95% CI: 27.5–78.2) for E.coli and 53.5% (95% CI: 34.4–72.6) for human genome, with GCE being more
efficient than EMR. The cost of running this experiment on EMR and GCE differed significantly, with the costs on EMR being
257.3% (95% CI: 211.5–303.1) and 173.9% (95% CI: 134.6–213.1) more expensive for E.coli and human assemblies
respectively. Thus, GCE was found to outperform EMR both in terms of cost and wall-clock time. Our findings confirm that
cloud computing is an efficient and potentially cost-effective alternative for analysis of large genomic datasets. In addition
to releasing our cost-effectiveness comparison, we present available ready-to-use scripts for establishing Hadoop instances
with Ganglia monitoring on EC2 or GCE.
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Introduction

Through the application of high-throughput sequencing, there

has been a dramatic increase in the availability of large-scale

genomic datasets [1]. With reducing sequencing costs, small and

medium-sized laboratories can now easily amass many gigabytes

of data. Given this dramatic increase in the volume of data

generated, researchers are being forced to seek efficient and cost-

effective measures for computational analysis [2]. Cloud comput-

ing offers a dynamic means whereby small and medium-sized

laboratories can rapidly adjust their computational capacity,

without concern about its physical structure or ongoing mainte-

nance [3–6]. However, transitioning to a cloud environment

presents with unique strategic decisions [7], and although a

number of general benchmarking results are available (http://

serverbear.com/benchmarks/cloud; https://cloudharmony.com/;

Accessed 2014 Aug 7), there has been a paucity of comparisons of

cloud computing services specifically for genomic research.

We undertook a performance comparison on two established

cloud computing services: Amazon Web Services EMR on

Amazon EC2 instances and GCE. Paired-end sequence reads of

publicly available genomic datasets (Escherichia coli CC102 strain

and a Han Chinese male genome) were analysed using Crossbow,

a genetic annotation tool, on Hadoop-based platforms with

equivalent system specifications [8–10]. A standard analytical

pipeline was run simultaneously on both platforms multiple times

(Figure 1 and 2). The performance metrics of both platforms were

recorded using Ganglia, an open-source high performance

computing monitoring system [11].

Results

Wall-clock time for complete mapping and SNP calling differed

by 52.9% (95% CI: 27.5–78.2) and 53.5% (95% CI: 34.4–72.6) for

E.coli and human genome alignment and variant calling,

respectively, with GCE being more efficient than EMR. Table 1

displays the key metrics for data analysis using both services. The

proportion of central processing unit (CPU) usage by Crossbow

differed between platforms when aligning and SNP calling each

genome, with GCE having better utilisation as the genome size

increased. There was considerably more free memory on GCE for

the smaller E.coli dataset and on EMR for larger human genome

runs. The CPU idle percentage, the percentage of time where the

CPU was idle without waiting for disk input/output (I/O), was

greater on EMR for the human genome while CPU waiting for I/

O (WIO) was considerably lower on the same platform. The CPU

idle and CPU WIO percentages were both significantly higher on

EMR for the E.coli genome. The cost of running this Crossbow
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pipeline on EMR and GCE also differed significantly (p,0.001),

with the costs on EMR being 257.3% (95% CI: 211.5–303.1) and

173.9% (95% CI: 134.6–213.1) more expensive than GCE for

E.coli and human assemblies, respectively. For ,36x coverage of a

human genome, at a current sequencing cost of ,US$1000, the

median cost for computation on GCE was US$29.81 (range:

US$28.86 to US$45.99), whilst on EMR with a fixed hourly rate it

was US$69.60 (range: US$69.60 to US$92.80).

Although runtime variability was inevitable and present in both

platforms when assembling each genome, GCE had a considerably

greater variability with the larger human genome compared to

EMR (coefficient of variation (COV)EMR = 4.48% vs -

COVGCE = 16.72%). We identified a single outlier in run time

on GCE during the human genome analysis. This occurred due to

the virtual cluster having a slower average network connection

(1.55 MB/s compared to the average of the other GCE clusters of

2.02 MB/s) and a higher CPU WIO percentage than the average

for the other GCE runs (9.56% versus 3.52%). The variation in

cluster performance likely reflects an increase in network

congestion amongst GCE servers.

Runtime predictably is an important issue in undedicated cloud

computing. The existing workload of the cloud at the time of

service usage is one of the main determinants of variability in

runtime of undedicated services [12]. In our benchmarking, EMR

was more consistent, though slower, in overall wall-clock time

compared to GCE. This may suggest that GCE is more susceptible

Figure 1. Comparison of undedicated cloud computing performances. The panel includes results of Amazon Web Services Elastic
MapReduce (EMR) on Amazon EC2 instances (panels a & c) versus Google Compute Engine (GCE) (panels b & d) for human genome alignment and
variant calling. In this 40 node cluster the total CPU percent for CPU idle (a and b) and waiting for disk input/output (c and d) is displayed. Note the
greater consistency in performance of Crossbow, though generally longer wall clock times for complete analysis, on EMR compared to GCE.
doi:10.1371/journal.pone.0108490.g001

Figure 2. Comparison of undedicated cloud performance of Amazon Web Services Elastic MapReduce (EMR) on Amazon EC2
instances (panels a & c) versus Google Compute Engine (GCE) (panels b & d) for E.coli genome alignment and variant calling. In this
two node cluster the total CPU percent for CPU idle (a and b) and waiting for disk input/output (c and d) is displayed. Note the shorter wall clock
times for complete analysis on GCE compared to EMR.
doi:10.1371/journal.pone.0108490.g002
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to server congestion than EMR; though service usage data is

difficult to obtain.

Discussion

Our findings confirm that cloud computing is an efficient and

potentially cost-effective alternative for analysis of large genomic

datasets. Cloud computing offers a dynamic, economical and

versatile solution for large-scale computational analysis. There

have been a number of recent advances in bioinformatic methods

utilising cloud resources [4,9,13], and our results suggest that a

standard genomic alignment is generally faster in GCE compared

to EMR. The time differences identified could be attributed to the

hardware used by the Google and Amazon for their cloud services.

Amazon offers a 2.0 GHz Intel Xeon Sandy Bridge CPU, whilst

Google uses a 2.6 GHz Intel Xeon Sandy Bridge CPU. This clock

speed variability is considered the main contributing factor to the

difference between the two undedicated platforms. It must also be

noted that the resource requirements of Ganglia may have had a

small impact on completion times [11].

There are a number of technical differences between GCE and

EMR, which are important to consider when running standard

bioinformatic pipelines. Running Crossbow on Amazon Web

Services was simplified by an established support service, which

provides an interface for establishing and running Hadoop clusters

(Text S1). In contrast, there is currently no built-in support for

GCE in Crossbow (Text S2). The current process to run a

Crossbow job on GCE requires users to complete various steps

such as installing and configuring the required software on each

node in the cluster, transferring input data onto the Hadoop

Distributed File System (HDFS), downloading results from the

HDFS and terminating the cluster on completion. All of these

steps are automatically performed by Crossbow on EMR. Python

scripts offering similar functionality for GCE that Crossbow

provides for EMR were created and are available (https://github.

com/hewittlab/Crossbow-GCE-Hadoop).

While our findings confirm that cloud computing is an attractive

alternative to the limitations imposed by the local environment, it

is noteworthy that better performance metrics and lower cost were

found with GCE compared to its established counterpart,

Amazon’s EMR. Currently, a major limitation of these services

remains at the initial transfer of large datasets onto the hosted

cloud platform [14]. To circumvent this in the future, sequencing

service providers are likely to directly deposit data to a designated

cloud service provider, thereby eliminating the need for the user to

double handle the data transfer [15]. Once this issue is resolved, it

is foreseen that demand for these services is likely to increase

considerably, given the low cost, broad flexibility and good

customer support for cloud services [15]. The development of

Table 1. Comparison of performance metrics for genomic alignment and SNP calling.

E.coli Genome Human Genome

Metric EMR (n = 10) GCE (n = 10) p-value* EMR (n = 10) GCE (n = 10) p-value*

Wall clock time (mean) 0:46:30 0:31:50 ,0.001 2:58:24 2:14:12 ,0.001

Pre-processing short reads
time (mean)

0:14:37 0:12:46 0.109 0:07:29 0:06:23 0.116

Alignment with Bowtie
time (mean)

0:07:04 0:05:03 ,0.001 1:51:06 1:15:07 0.003

Calling SNPs with SOAPsnp
time (mean)

0:05:05 0:02:51 ,0.001 0:35:31 0:29:31 0.033

Post-processing time (mean) 0:04:51 0:00:57 ,0.001 0:01:23 0:01:03 ,0.001

CPU user (mean %) 17.4461.30 22.3163.14 ,0.001 43.8061.87 58.0566.20 ,0.001

CPU idle (mean %) 72.7561.23 65.7664.63 ,0.001 47.4862.30 22.1763.14 ,0.001

CPU wio (mean %) 3.8861.06 0.7060.16 ,0.001 1.8660.19 4.5461.82 0.001

Bytes in (MB/sec) 1.1560.09 2.1260.42 ,0.001 1.5860.07 2.0060.19 ,0.001

Memory free (GB) 2.1960.13 6.1760.42 ,0.001 0.9160.07 0.7060.03 ,0.001

All times are presented as hr:min:sec and remaining metrics are shown as mean 6 standard deviation.
*Calculated by paired t-test.
doi:10.1371/journal.pone.0108490.t001

Figure 3. Analytical pipeline demarcating each step required to
complete the Crossbow job in the cloud.
doi:10.1371/journal.pone.0108490.g003
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additional tools specific to genomic analysis in the cloud, which

offer flexibility in choice of providers, is clearly required.

Methods

Datasets and Analytical Pipeline
We benchmarked two platforms by a single job that completed

read alignment and variant calling stages of next generation

sequencing analysis simultaneously on two independent cloud

platforms. To investigate the impact of data size on undedicated

cluster performance, one small (Escherichia coli CC102 strain

(3 GB SRA file; Accession: SRX003267) and one large (a Han

Chinese male genome (142 GB Fastq files; Accession:

ERA000005) publicly available genomic dataset was selected for

analysis [8,10]. For each job in this experiment, a parallel

workflow was designed using Crossbow. This workflow included

the following four steps: (1) Download and conversion of files; (2)

Short read alignment with Bowtie; (3) SNP call with SOAPsnp;

and (4) Combination of the results (Figure 3). Crossbow was the

preferred genetic annotation tool in this experiment, as it has built

in support for running via Amazon’s EMR and Hadoop clusters

[16].

Cluster construction and architecture
Instances were simultaneously established on Amazon’s EMR

(http://aws.amazon.com/ec2/; Accessed 2014 Aug 7) and GCE

(http://cloud.google.com/products/compute-engine.html; Ac-

cessed 2014 Aug 7). Undedicated clusters were optimized by

selection of computational nodes as suggested for Crossbow [9].

Nodes with equivalent specifications were selected for each system

(Table 2), these being c1.xlarge node in EMR and the closest

specification node n1-highcpu-8 in GCE. For the E.coli genome,

two nodes (one master and one slave) were used on each platform.

On the other hand, for the human genome, the cluster was built

with 40 nodes (one master and 39 slaves). As GCE did not provide

any included storage for each instance, a 128 GB drive (the default

storage quota provided by GCE) was added for each node. This

was at the additional cost of $0.04/GB/Month or $0.000056/

GB/Hour (Jan to June 2014).

Each cluster was run using Apache Hadoop, an open-source

implementation of the MapReduce algorithm [17]. MapReduce

was used to organise distributed servers, manage the communi-

cation between servers and provide fault tolerance allowing tasks

to be performed in parallel [18].

Table 2. Specification of used computational nodes for each system.

Virtual Cores Memory (GB) Included Storage (GB) Price (USD/Hour)‘

Amazon Elastic Compute Cloud (EC2)
+ Elastic MapReduce (EMR) [c1.xlarge]

8 7 46420 $0.640

Google Compute Engine [n1-highcpu-8] 8 7.2 0# $0.352

‘Date accessed: April to June 2014; prior to this period, pricing was $0.700 and $0.520 in Amazon and Google respectively.
#for each instance we added the minimum storage quota of 128 GB.
doi:10.1371/journal.pone.0108490.t002

Figure 4. Directions and types of network transfers in our cloud-computing model. There are a variety of different network transfers
between the nodes for each of the services in use in our model. Hadoop requires a bidirectional transmission of data between the master node and
the slave nodes. This is required to coordinate the parallel processing of the cluster, and to allow for data transfer between nodes. Ganglia uses a
unidirectional connection from the slave nodes to the master node to transfer the recorded metrics for storage and visualization. The persistent
storage (provided by Amazon S3 (Simple Storage Service) or Google Storage, or an alternative method such as an FTP server) is accessed via the
master node. The master node uses it to download input files for Crossbow, such as the manifest file and the reference Jar, and to use for persistent
storage of the results of the Crossbow job as the instances destroy their storage on termination. Our local computer can also access the persistent
storage via the Internet to allow access to upload the input files, or to download the results. The local computer needs to access the master node to
initiate Crossbow. In EMR, this is replaced by a web interface and a JavaScript Object Notation Application Programming Interface (JSON API). In GCE,
the user is required to remotely log in via Secure Shell (SSH) to commence the job.
doi:10.1371/journal.pone.0108490.g004
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To explore the effect of network activity differences between the

platforms, each job was run simultaneously; same day (including

weekdays and weekends) and same time. Detailed description of

the set up and scripts to run the jobs can be found in Text S1 and

Text S2.

Cluster Monitoring
In both EMR and GCE, multiple components of cloud

infrastructure including CPU utilisation, memory usage and

network speeds were monitored and recorded for each node using

Ganglia. The default setting of Ganglia for distributing incoming

requests is multicast mode; however, since EMR and GCE

environments do not currently support multicast Ganglia, it was

configured in unicast mode (Figure 4). The metric output files

constructed in.rrd format were converted into.csv format with a

Perl script (Text S3). For comparison between performance and

costs between platforms, the Student t-test was undertaken using

the statistical software R (R Foundation for Statistical Computing

version 3.0.2; http://www.r-project.org/). In the analysis, cost of

each run was calculated using current pricing (June 10th 2014);

however, all E.coli runs and one human genome run were

performed prior to a recent decrease in price on both platforms.

The COV for runtime variability was calculated as the ratio of the

standard deviation to the mean time (mins) for each system.

Supporting Information

Text S1 Uploading data and setting up an Amazon Web
Services Elastic MapReduce (EMR) cluster.

(DOCX)

Text S2 Scripts for configuration and running jobs on
Google Compute Engine (GCE).

(DOCX)

Text S3 Transformation of metric outputs from. RRD
to. CSV format.

(DOCX)
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