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Abstract

Existing techniques to reconstruct tree models of progression for accumulative processes, such as cancer, seek to estimate
causation by combining correlation and a frequentist notion of temporal priority. In this paper, we define a novel theoretical
framework called CAPRESE (CAncer PRogression Extraction with Single Edges) to reconstruct such models based on the
notion of probabilistic causation defined by Suppes. We consider a general reconstruction setting complicated by the
presence of noise in the data due to biological variation, as well as experimental or measurement errors. To improve
tolerance to noise we define and use a shrinkage-like estimator. We prove the correctness of our algorithm by showing
asymptotic convergence to the correct tree under mild constraints on the level of noise. Moreover, on synthetic data, we
show that our approach outperforms the state-of-the-art, that it is efficient even with a relatively small number of samples
and that its performance quickly converges to its asymptote as the number of samples increases. For real cancer datasets
obtained with different technologies, we highlight biologically significant differences in the progressions inferred with
respect to other competing techniques and we also show how to validate conjectured biological relations with progression
models.
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Introduction

Cancer is a disease of evolution. Its initiation and progression

are caused by dynamic somatic alterations to the genome

manifested as point mutations, structural alterations, DNA

methylation and histone modification changes [1].

These genomic alterations are generated by random processes,

and since individual tumor cells compete for space and resources,

the fittest variants are naturally selected for. For example, if

through some mutations a cell acquires the ability to ignore anti-

growth signals from the body, this cell may thrive and divide, and

its progeny may eventually dominate some part(s) of the tumor.

This clonal expansion can be seen as a discrete state of the cancer’s

progression, marked by the acquisition of a set of genetic events.

Cancer progression can then be thought of as a sequence of these

discrete steps, where the tumor acquires certain distinct properties

at each state. Different progression sequences are possible, but

some are more common than others, and not every order is viable

[2].

In the last two decades, many specific genes and genetic

mechanisms that are involved in different types of cancer have

been identified (see e.g. [3,4] for an overview of common cancer

genes and [5,6] for specific genetic analyses of ovarian carcinoma

and lung adenocarcinoma, respectively), and therapies targeting

the activity of these genes are now being developed at a fast pace

[2]. However, unfortunately, the causal and temporal relations
among the genetic events driving cancer progression remain

largely elusive.

The main reason for this state of affairs is that information

revealed in the data is usually obtained only at one (or a few) points

in time, rather than over the course of the disease. Extracting this

dynamic information from the available cross-sectional data is

challenging, and a combination of mathematical, statistical and

computational techniques is needed. In recent years, several

methods to extract progression models from cross-sectional data

have been developed, starting from the seminal work on single-

path-models by Fearon and Vogelstein [7]. In particular, different

models of oncogenetic trees were developed over the years. At the

core of some of these methods, e.g. [8,9], is the use of correlation to

identify relations among genetic events. These techniques recon-

struct tree models of progression as independent acyclic paths with

branches and no confluences. Distinct models of oncogenetic trees

are instead based on maximum likelihood estimation, e.g.,

[10,11,12]. More general Markov chain models, e.g., [13],
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describe more flexible probabilistic networks, despite the compu-

tationally expensive parameter estimation. Other recent models

are Conjunctive Bayesian Networks, CBNs [14,15], that extract

directed acyclic graphs, yet imposing specific constraints on the

joint occurrence of events. Finally, in a slightly different context,

temporal models were reconstructed from time-course gene

expression data [16,17].

In this paper we present a novel theoretical framework called

CAPRESE (CAncer PRogression Extraction with Single Edges) to

reconstruct cumulative progressive phenomena, such as cancer

progression. We assume the original problem setting of [8], and

propose a new a technique to infer probabilistic progression trees
from cross-sectional data. Unlike maximum likelihood estimation-

based techniques, our goal is the extraction of the minimal
progression model explaining the order in which mutations occur

and accumulate. The method is technology agnostic, i.e., it can be

applied to dataset derived from all types of (epi-)genetic data such

as deep exome sequencing, bisulfite sequencing, SNP arrays, etc.,

(see Results), and takes as input a set of pre-selected genetic events

of which the presence or the absence of each event is recorded for

each sample.

CAPRESE is based on two main ingredients: 1) rather than

using correlation to infer progression structures, we base our

technique on a notion of probabilistic causation, and 2), to increase

robustness against noise, we adopt a shrinkage-like estimator to

measure causation among any pair of events. More specifically,

with respect to our first ingredient, we adopt the notion of (prima

facie) causation proposed by Suppes in [18]. Its basic intuition is

simple: event a causes event b if (i) a occurs before b and (ii) the

occurrence of a raises the probability of observing b. This is a very

basic notion of probabilistic causation that in itself does not

address many of the problems associated with it (such as

asymmetry, common causes, and screening off [19]), and includes

spurious as well as genuine causes. However, as it turns out, this

basic notion combined with a filter for independent progressions

starting from the same root, is an excellent tool to guide

progression extraction from cross-sectional data – one that

outperforms the commonly used correlation-based methods.

Probabilistic causation was used in biomedical applications

before (e.g., to find driver genes from CNV data in [20], and to

extract causes from biological time series data in [21]), but, to the

best of our knowledge, never to infer progression models in the

absence of direct temporal information.

The extraction problem is complicated by the presence of both

false positive and false negative observations (see [22] for a

discussion on this issue based on the reconstruction by [8]), such as

the one provided by the intrinsic variability of biological processes

(e.g., genetic heterogeneity) and experimental errors. This poses a

problem, because while probability raising is a very precise tool, it,

by itself, is not robust enough against noise. Conditional on the

amount of noise, we will rely both on probabilistic causation and

on a more robust (but less precise) correlation-based metric in an

optimal way. To do this we introduce our second ingredient, a

shrinkage-like estimator to measure causation among any pair of

events. The intuition behind this estimator, which is closely related

to a shrinkage estimator from [23], is to find the optimal balance

between probability raising on the one hand and correlation on

the other, depending on the amount of noise.

We prove correctness of our algorithm by showing that with

increasing sample sizes, the reconstructed tree asymptotically

converges to the correct one (Theorem 3). Under mild constraints

on the noise rates, this result holds for the reconstruction problem

in the presence of uniform noise as well.

We also study the performance of CAPRESE in more realistic

settings with limited sample sizes. Using synthetic data, we show

that under these conditions, our algorithm outperforms the state-

of-the-art tree reconstruction algorithm of [8] (see Results). In

particular, our shrinkage-like estimator provides, on average, an

increased robustness to noise which ensures it to outperform

oncotrees [8]. Performance is defined in terms of structural
similarity between the reconstructed tree and the actual tree,

rather than on their induced distribution as is done, e.g., in [11].

This metric is especially appropriate for the goal of reconstructing

a progression model where data-likelihood fit is secondary to

‘‘calling’’ the possibly minimal set of causal relations.

Also, we show that CAPRESE works well already with a

relatively low number of samples and that its performance quickly

converges to its asymptote as the number of samples increases.

This outcome hints at the applicability of the algorithm with

relatively small datasets without compromising its efficiency.

We remark that further analyses on synthetic data suggests that

CAPRESE outperforms a well known bayesian probabilistic

graphical model as well (i.e., Conjunctive Bayesian Networks
[14,15]), which was originally conceived for the reconstruction of

more complex topologies, e.g. DAGs, but was proven effective in

reconstructing tree topologies as well [24] (see Results).

Finally, we apply our technique to alterations assessed with both

Comparative Genomic Hybridization and Next Generation

Sequencing techniques (see Results). In the former case, we show

that the algorithm of [8] and CAPRESE highlight biologically

important differences in ovarian, gastrointestinal and oral cancer,

but our inferences are statistically more significant. In the latter,

we validate a recently discovered relation among two key genes

involved in leukemia.

Methods

Problem setting
The set-up of the reconstruction problem is as follows.

Assuming that we have a set G of n mutations (events, in

probabilistic terminology) and s samples, we represent a cross-

sectional dataset as an s|n binary matrix in which an entry

(k,l)~1 if the mutation l was observed in sample k, and 0
otherwise. The problem we solve in this paper is to extract a set of

edges E yielding a progression tree T~(G|f%g,E,%) from this

matrix which, we remark, only implicitly provides information of

progression timing. The root of T is modeled using a (special)

event %=[G such that heterogenous progression paths or forests can

be reconstructed. More precisely, we aim at reconstructing a

rooted tree that satisfies: (i) each node has at most one incoming

edge, (ii) the root has no incoming edges (iii) there are no cycles.
Each progression tree subsumes a distribution of observing a

subset of the mutations in a cancer sample that can be formalized

as follows:

Definition 1. (Tree-induced distribution) Let T be a tree and
a : E?½0,1� a labeling function denoting the independent proba-
bility of each edge, T generates a distribution where the probability
of observing a sample with the set of alterations G�(G is

P(G�)~ P
e[E’

a(e): P
(u,v)[E

u[G�,v=[G

½1{a(u,v)� ð1Þ

where all events in G� are assumed to be reachable from the root %,
and E’(E is the set of edges connecting the root to the events in G�.

We would like to emphasize two properties related to the tree-

induced distribution. First, the distribution subsumes that, given

Inferring Tree Causal Models of Cancer Progression
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any oriented edge (a?b), an observed sample contains alteration

b with probability P(a)P(b), that is the probability of observing b
after a. For this reason, if a causes b, the probability of observing a
will be greater than the probability of observing b accordingly to

the temporal priority principle which states that all causes must

precede, in time, their effects [25].

Second, the input dataset is a set of samples generated, ideally,

from an unknown distribution induced by an unknown tree or

forest that we aim at reconstructing. However, in some cases, it

could be that no tree exists whose induced distribution generates

exactly those input data. When this happens, the set of observed

samples slightly diverges from any tree-induced distribution. To

model these situations a notion of noise can be introduced, which

depends on the context in which data are gathered. Adding noise

to the model complicates the reconstruction problem (see Results).

The oncotree approach. In [8] Desper et al. developed a

method to extract progression trees, named ‘‘oncotrees’’, from

static CNV data. In [22] Szabo et al. extended the setting of

Desper’s reconstruction problem to account for both false positives
and negatives in the input data. In these oncotrees, nodes

represent CNV events and edges correspond to possible progres-

sions from one event to the next.

The reconstruction problem is exactly as described above, and

each tree is rooted in the special event %. The choice of which

edge to include in a tree is based on the estimator

wa?b~log
P(a)

P(a)zP(b)
: P(a,b)

P(a)P(b)

� �
, ð2Þ

which assigns to each edge a?b a weight accounting for both the

relative and joint frequencies of the events – thus measuring

correlation. The estimator is evaluated after including % to each

sample of the dataset. In this definition the rightmost term is the

(symmetric) likelihood ratio for a and b occurring together, while

the leftmost is the asymmetric temporal priority measured by rate

of occurrence. This implicit form of timing assumes that, if a
occurs more often than b, then it likely occurs earlier, thus

satisfying

P(a)

P(a)zP(b)
w

P(b)

P(a)zP(b)
:

An oncotree is the rooted tree whose total weight (i.e., sum of all

the weights of the edges) is maximized, and can be reconstructed

in O(DGD2) steps using Edmond’s algorithm [26]. By construction,

the resulting graph is a proper tree rooted in %: each event occurs

only once, confluences are absent, i.e., any event is caused by at

most one other event. This method has been used to derive

progressions for various cancer datasets e.g., [27,28,29]), and even

though several methods that extend this framework exists (e.g.

[9,11,15]), to the best of our knowledge, it is currently the only

method that aims to solve exactly the same problem as the one

investigated in this paper and thus provide a benchmark to

compare against.

A probabilistic approach to causation
We briefly review the approach to probabilistic causation, on

which our method is based. For an extensive discussion on this

topic we refer to [19].

In his seminal work [18], Suppes proposed the following notion.

Definition 2. (Probabilistic causation, [18]). For any two events
c and e, occurring respectively at times tc and te, under the mild

assumptions that 0vP(c),P(e)v1, the event c is a prima facie
cause of the event e if it occurs before the effect and the cause raises
the probability of the effect, i.e.,

tcvte and P(eDc)wP(eD�cc): ð3Þ

As discussed in [19] the above conditions are not, in general,

sufficient to claim that event c is a cause of event e. In fact a prima

facie cause is either genuine or spurious. In the latter case, the fact

that the conditions hold in the observations is due either to

coincidence or to the presence of a certain third confounding
factor, related both to c and to e [18]. Genuine causes, instead,

satisfy Definition 2 and are not screened-off by any confounding

factor. However, they need not be direct causes. See Figure 1.

Note that we consider cross-sectional data where no information

about tc and te is available, so in our reconstruction setting we are

restricted to consider solely the probability raising (PR) property,

i.e., P(eDc)wP(eD�cc), which makes it harder to discriminate among

genuine and spurious causes. Now we review some of its

properties.

Proposition 1. (Dependency). Whenever the PR holds between
two events a and b, then the events are statistically dependent in a
positive sense, i.e.,

P(bDa)wP(bD�aa)uP(a,b)wP(a)P(b): ð4Þ

This and the next proposition are well-known facts of the PR;

their derivation as well as the proofs of all the results we present is

in the File S1. Notice that the opposite implication holds as well:

when the events a and b are still dependent but in a negative sense,

i.e., P(a,b)vP(a)P(b), the PR does not hold, i.e.,

P(bDa)vP(bD�aa).

We would like to use the asymmetry of the PR to determine

whether a pair of events a and b satisfy a causation relation so to

place a before b in the progression tree but, unfortunately, the PR

satisfies the following property.

Proposition 2. (Mutual PR). P(bDa)wP(bD�aa)uP(aDb)

wP(aD�bb).

That is, if a raises the probability of observing b, then b raises

the probability of observing a too.

Nevertheless, in order to determine causes and effects among

the genetic events, we can use our degree of confidence in our

estimate of probability raising to decide the direction of the

causation relationship between pairs of events. In other words, if a
raises the probability of b more than the other way around, then a
is a more likely cause of b than b of a. Notice that this is sound as

long as each event has at most one cause; otherwise, frequent late
events with more than one cause, which are rather common in

biological progressive phenomena, should be treated differently.

As mentioned, the PR is not symmetric, and the direction of

probability raising depends on the relative frequencies of the

events. We make this asymmetry precise in the following

proposition.

Proposition 3. (Probability raising and temporal priority). For
any two events a and b such that the probability raising
P(aDb)wP(aD�bb) holds, we have

P(a)wP(b)u
P(bDa)

P(bD�aa)
w

P(aDb)

P(aD�bb)
: ð5Þ

Inferring Tree Causal Models of Cancer Progression

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e108358



That is, given that the PR holds between two events, a raises the

probability of b more than b raises the probability of a, if and only

if a is observed more frequently than b. Notice that we use the

ratio to assess the PR inequality. The proof of this proposition is

technical and can be found in the File S1. From this result it

follows that if we measure the timing of an event by the rate of its

occurrence (that is, P(a)wP(b) implies that a happens before b),

this notion of PR subsumes the same notion of temporal priority

induced by a tree. We also remark that this is also the temporal

priority made explicit in the coefficients of Desper’s method.

Given these results, we define the following notion of causation.

Definition 3. We state that a is a prima facie cause of b if a is a
probability raiser of b, and it occurs more frequently:

P(bja)wP(bj�aa)andP(a)wP(b):

We term prima facie topology a directed acyclic graph (over

some events) where each edge represents a prima facie cause.

When at most a single incoming edge is assigned to each event

(i.e., an event has at most a unique cause, in the real world), we

term this structure single-cause prima facie topology. Intuitively,

this last class of topologies correspond to the trees or, more

generally forests when they have disconnected components, that

we aim at reconstructing.

Before moving on to introducing our algorithm let us discuss

our definition of causation, its role in the definition of the

reconstruction problem and some of its limitations. As already

mentioned, it may be that for some prima facie cause c of an event

e, there is a third event a prior to both, such that a causes c and

ultimately c causes e. Alternatively, a may cause both c and e
independently, and the causation relationship observed from c to e
is merely spurious. In the context of the tree-reconstruction

problem, namely when it is assumed that each event has at most a

unique cause, the aim is to filter out the spurious edges from a

general prima facie topology, so to extract a single-cause prima

facie structure (see Figure 1).

Definition 3 summarizes Suppes basic notion of prima facie

cause, while it is ignoring deeper discussions of causation that aim

at distinguishing between actual genuine and spurious causes, e.g.

screening-off, background context, d-separation [30,31,19]. For

our purposes however, the above definition is sufficient when (i) all

the significant events are considered, i.e., all the genuine causes are

observed as in a closed-world assumption, and (ii) we aim at

extracting the order of progression among them (or determine that

there is no apparent relation), rather than extracting causalities per
se. Note that these assumptions are strong and might be weakened

in the future (see Discussions), but are shared by us and [8].

Finally, we recall a few algebraic requirements necessary for our

framework to be well-defined. First of all, the PR must be

computable: every mutation a should be observed with probability

strictly 0vP(a)v1. Moreover, we need each pair of mutations

(a,b) to be distinguishable in terms of PR, that is, for each pair of

mutations a and b, P(aDb)v1 or P(bDa)v1 similarly to the above

condition. Any non-distinguishable pair of events can be merged

as a single composite event. From now on, we will assume these

conditions to be verified.

Performance measure and synthetic datasets
We made use of synthetic data to evaluate the performance of

CAPRESE as a function of dataset size and the false positive and

negative rates. Many distinct synthetic datasets were created for

this purpose, as explained below. The algorithm’s performance

was measured in terms of Tree Edit Distance (TED, [32]), i.e., the

minimum-cost sequence of node edit operations (relabeling,

deletion and insertion) that transforms the reconstructed trees

into the ones generating the data. The choice of this measure of

evaluation is motivated by the fact that we are interested in the

structure behind the progressive phenomenon of cancer evolution

and, in particular, we are interested in a measure of the genuine

causes that we miss and of the spurious causes that we fail to

recognize (and eliminate). Also, since topologies with similar

distributions can be structurally different we choose to measure

performance using structural distance rather than a distance in

terms of distributions. Within the realm of ‘structural metrics’

however, we have also evaluated the performance with the

Hamming Distance [33], another commonly used structural

metric, and we obtained analogous results (not shown here).

Synthetic data generation and experimental

setting. Synthetic datasets were generated by sampling from

various random trees constrained to have depth log (DGD), since

Figure 1. Prima facie topology. Example prima facie topology where all edges (a,b) represent prima facie causes, according to Definition 3: a is a
probability raiser of b and it occurs more frequently. In left, we filter out spurious causes and select only the real ones among the genuine, yielding a
single-cause prima facie topology.
doi:10.1371/journal.pone.0108358.g001
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wide branches are harder to reconstruct than straight paths, and

by sampling event probabilities in ½0:05,0:95� (see File S1).

Unless explicitly specified, in all the experiments we used 100
distinct random trees (or forests, accordingly to the test to perform)

of 20 events each. This seems a fairly reasonable number of events

and is in line with the usual size of reconstructed trees, e.g.

[34,35,36,37]. The scalability of the techniques was tested against

the number of samples by ranging DGD from 50 to 250, with a step

of 50, and by replicating 10 independent datasets for each

parameters setting (see the caption of the figures for details).

We included a form of noise in generating the datasets, in order

to account for (i) the realistic presence of biological noise (such as

the one provided by bystander mutations, genetic heterogeneity,

etc.) and (ii) experimental errors. A noise parameter 0ƒnv1
denotes the probability that any event assumes a random value

(with uniform probability), after sampling from the tree-induced

distribution. Algorithmically this process generates, on average,

DGDn=2 random entries in each sample (e.g. with n~0:1 we have,

on average, one error per sample). We wish to assess whether these

noisy samples can mislead the reconstruction process, even for low

values of n. Notice that assuming a uniformly distributed noise

may appear simplistic since some events may be more robust, or

easy to measure, than others. However, introducing in the data

both false positives (at rate Ez~n=2) and negatives (at rate

E{~n=2) makes the inference problem substantially harder, and

was first investigated in [22].

In the Results section, we refer to datasets generated with rate

nw0 as noisy synthetic dataset. In the numerical experiments, n is

usually discretized by 0:025, (i.e., 2:5% noise).

Results

Extracting progression trees with probability raising and
a shrinkage-like estimator

The CAPRESE reconstruction method is described in Algo-

rithm 1. The algorithm is similar to Desper’s and Szabo’s

algorithm, the main difference being an alternative weight

function based on a shrinkage-like estimator.

Algorithm 1. CAPRESE: a tree-like reconstruction with a

shrinkage-like estimator.

Figure 2. Optimal shrinkage-like coefficient for reconstruction performance. We show here the performance in the reconstruction of trees
(TED surface) with n~150 samples as a function of the shrinkage-like coefficient l. Notice the global optimal performance for l?0 when n?0 and for
l&1=2 when nw0.
doi:10.1371/journal.pone.0108358.g002
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1: consider a set of n genetic events G plus a special event %,

added to each sample of the dataset;

2: define a m|n matrix M where each entry contains the

shrinkage-like estimator mi?j~(1{l): P(jDi){P(jD�ii)
P(jDi)zP(jD�ii) zl: P(i,j){P(i)P(j)

P(i,j)zP(i)P(j)

according to the observed probability of the events i and j;

3: [PR causation] define a tree T~(G|f%g,E,%) where

(i?j)[E for i,j[G if and only if: mi?jw0 and mi?jwmj?i

and Vi’[G, mi,jwmi’,j :

4: [Independent progressions filter] define Gj~fx[GDP(x)wP(j)g,
replace edge (i?j)[E with edge (%?j) if, for all x[Gj , it holds

1
1zP(j)

w
P(x)

P(x)zP(j)
P(x,j)
P(x)P(j)

:

Definition 4. (Shrinkage-like estimator). We define the

shrinkage-like estimator ma?b of the confidence in the causation
relationship from a to b as

ma?b~(1{l)aa?bzlba?b, ð6Þ

where 0ƒlƒ1 and

aa?b~
P(bDa){P(bD�aa)

P(bDa)zP(bD�aa)
ba?b~

P(a,b){P(a)P(b)

P(a,b)zP(a)P(b)
: ð7Þ

This estimator is similar in spirit to a shrinkage estimator (see

[23]) and combines a normalized version of PR, the raw estimate a,

with a correction factor b (in our case a correlation-based measure

of temporal distance among events), to define a proper order in the

confidence of each causation relationship. Our l is the analogous

of the shrinkage coefficient and can have a Bayesian interpretation

based on the strength of our belief that a and b are causally

relevant to one another and the evidence that a raises the

probability of b. In the absence of a closed form solution for the

optimal value of l, one may rely on cross-validation of simulated

data. The power of shrinkage (and our shrinkage-like estimator)

lies in the possibility of determining an optimal value for l to

balance the effect of the correction factor on the raw model

estimate to ensure optimal performances on ill posed instances of

the inference problem. A crucial difference, however, between our

estimator and classical shrinkage, is that our estimator aims at

improving the performance of the overall reconstruction process,

not limited to the performance of the estimator itself as is the case

in shrinkage. That is, the metric m induces an ordering to the

events reflecting our confidence for their causation. Furthermore,

since we make no assumption about the underlying distribution,

we learn it empirically by cross-validation. In the next sections we

show that the shrinkage-like estimator is an effective way to get

such an ordering especially when data are noisy. In CAPRESE we

use a pairwise matrix version of the estimator.

The raw estimator and the correction factor. By consid-

ering only the raw estimator a, we would include an edge (a?b) in

the tree consistently in terms of (i) Definition 3 (Methods) and (ii)
if a is the best probability raiser for b. When P(a)~P(b) the

events a and b are indistinguishable in terms of temporal priority,

thus a is not sufficient to decide their causal relation, if any. This

intrinsic ambiguity is unlikely in practice even if, in principle, it is

possible. Notice that this formulation of a is a monotonic

normalized version of the PR ratio.

Proposition 4. (Monotonic normalization). For any two events
a and b we have

P(a)wP(b)u
P(bDa)

P(bD�aa)
w

P(aDb)

P(aD�bb)
uaa?bwab?a: ð8Þ

This raw model estimator satisfies {1ƒaa?b,ab?aƒ1: when it

tends to {1 the pair of events appear disjointly (i.e., they show an

anti- causation pattern), when it tends to 0 no causation or anti-

causation can be inferred and the two events are statistically

independent and, when it tends to 1, the causation relationship

between the two events is genuine. Therefore, a provides a

quantification of the degree of confidence for a PR causation

relationship. In fact, for any given possible causation edge (a,b),
the term P(bD�aa) gives an estimate of the error rate of b, therefore

the numerator of the raw model a provides an estimate of how

often b is actually caused by a. The a estimator is then normalized

to range between {1 and z1.

However, a does not provide a general criterion to disambiguate

among genuine causes of a given event. We show a specific case in

which a is not a sufficient estimator. Let us consider, for instance, a

causal linear path: a?b?c. In this case, when evaluating the

candidate parents a and b for c we have: aa?c~ab?c~1, so a and

b are genuine causes of c, though we would like to select b, instead

of a. Accordingly, we can only infer that tavtc and tbvtc, i.e., a

partial ordering, which does not help to disentangle the relation

among a and b with respect to c.

In this case, the b coefficient can be used to determine which of

the two genuine causes occurs closer, in time, to c (b, in the

example above). In general, such a correction factor provides

information on the temporal distance between events, in terms of

statistical dependency. In other words, the higher the b coefficient,

the closer two events are. Therefore, when dealing with noisy data

and limited sample sizes, there are situations where, by using the a
estimator alone, we could infer a wrong transitive edge to be the

most likely cause even in the presence of the real cause. For this

reason, we reduce the a estimator to the correction factor b,

which, for each given edge (a,b), is normalized within {1 and

(1{max½P(a),P(b)�)=(1zmax½P(a),P(b)�)vz1.

The shrinkage-like estimator m then results in the combination

of the raw PR estimator a and of the b correction factor, which

respects the temporal priority induced by a.

Proposition 5. (Coherence in dependency and temporal

priority). The b correction factor is symmetrical and subsumes the
same notion of dependency of the raw estimator a, that is

P(a,b)wP(a)P(b) uaa?bw0uba?bw0 and ba?b~bb?a: ð9Þ

The independent progressions filter. As in Desper’s

approach, we also add a root % with P(%)~1 in order to

separate different progression paths, i.e., the different sub-trees

rooted in %. CAPRESE initially builds a unique tree by using the

estimator; typically, the most likely event will be at the top of the

progression even if there may be rare cases where more than one

event has no valid parent, in these cases we would already be

reconstructing a forest. In the reconstructed tree, all the edges

represent the most confident prima facie cause, although some of

those could still be spurious causes. Then the correlation-like

weight between any node j and % is computed as
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P(%)

P(%)zP(j)

P(%,j)

P(%)P(j)
~

1

1zP(j)
:

If this quantity is greater than the weight of j with each

upstream connected element i, we consider the best prima facie

cause of j to be a spurious cause and we substitute the edge (i?j)
with the edge (%?j). Note that in this work we are ignoring

deeper discussions of probabilistic causation that aim at distin-

guishing between actual genuine causes and spurious causes.

Instead, we remove spurious causes by using a filter based on

correlation because the probability raising of the omnipresent

event % is not well defined (see Methods). In addition, we remark

that the evaluation for an edge to be a genuine or a spurious cause

takes into account all the given events. Because of this, if events are

added or removed from the dataset, the same edge can be defined

to be genuine or spurious as the set of events included in the model

is varied arbitrarily. However, since we do not consider the

problem of selecting the set of progression events, we assume that

all and only the relevant events for the problem at hand are

already known a priori and included in the model.

Finally, note that this filter is indeed implying a non-negative

threshold for the shrinkage-like estimator, when an edge is valid.

Theorem 1. (Independent progressions). Let
G�~fa1, . . . ,akg5G a set of k prima facie causes for some
b6 [G�, and let a�~ maxai[G�fmai?bg. The reconstructed tree by
CAPRESE contains edge %?b instead of a�?b if, for all ai[G�

P(ai,b)vP(ai)P(b)
1

1zP(b)
z
P(b)2

1zP(b)
: ð10Þ

The proof of this theorem can be found in the File S1. What this

theorem suggests is that, in principle, by examining the level of

statistical dependency of each pair of events, it would be possible to

determine how many trees compose the reconstructed forest.

Furthermore, it suggests that CAPRESE could be defined by first

processing the independent progressions filter, and then using m to

build the independent progression trees in the forest.

To conclude, the algorithm reconstructs a well defined tree (or,

more in general, forest).

Theorem 2. (Algorithm correctness). CAPRESE reconstructs a
well defined tree T without disconnected components, transitive
connections and cycles.

Additionally, asymptotically with the number of samples, the

reconstructed tree is the correct one.

Theorem 3. (Asymptotic convergence). Let T~(G|f%g,E,%)
be the forest to reconstruct from a set of s input samples, given as the
input matrix D. If D is strictly sampled from the distribution induced by
T and infinite samples are available, i.e., s??, CAPRESE with
l?0 correctly reconstructs T .

The proof of these Theorems are also in the File S1. These

theorems considered datasets where the observed and theoretical

probabilities match, because of s??. However, data often

contains false positives and negatives (i.e., data are noisy) and

resistance to their effects is desirable in any inferential technique.

With this in mind, we prove a corollary of the theorem analoguos

to a result appearing in [22].

Corollary 1. (Uniform noise). Let the input matrix D be strictly
sampled from the distribution induced by T with sample size s??,

but let it be corrupted by noise levels of false positives Ez and false
negatives E{. Let pmin~ minx[GfP(x)g, CAPRESE correctly
reconstructs T for l?0 whenever

Ezv

ffiffiffiffiffiffiffiffiffi
pmin
p

(1{Ez{E{)

and EzzE{v1.

Essentially, this corollary states that CAPRESE (and so the

estimator m) is robust against a noise affecting all samples equally.

Also, the fact that it holds for l?0 is sound with the theory of

shrinkage estimators for which, asymptotically, the corrector factor

is not needed to regularize the ill posed problem.

Optimal shrinkage-like coefficient
Theorem 3 and Corollary 1 state that with infinite samples and

mild constraints on the false positive/negative rates we get optimal

results with l?0. Precisely, for the uniform noise model that we

applied to synthetic data (see Methods) we have Ez~E{~n=2,

thus the hypothesis required by Corollary 1 is

nv

ffiffiffiffiffiffiffiffiffi
pmin
p

1=2z
ffiffiffiffiffiffiffiffiffi
pmin
p :

For pmin~0:05, which we set in data generation (see File S1),

this inequality implies correct reconstruction for nv0:3 (a 15%
error rate), with infinite samples. However, we are interested in

performance and the optimal value of l in situations in which we

have finite sample sizes as well. Here, we empirically estimate the

optimal l value, both in the case of trees and forests, as a function

of noise and sample size. In the next section, we assess

performance of our algorithm empirically.

In Figure 2, we show the variation of the performance of

CAPRESE as a function of l, for datasets with 150 samples

generated from tree topologies. The optimal value, i.e., lowest

Tree Edit Distance (TED, see Methods), for noise-free datasets

(i.e., n~0) is obtained for l?0, whereas for the noisy datasets a

series of U-shaped curves suggests a unique optimum value for

l?1=2, immediately observable for nv0:15. Identical results are

obtained when dealing with forests (not shown here). In addition,

further experiments with n varying around the typical sample size

(n~150) show that the optimal l is largely insensitive to the

dataset size (see Figure 3). Thus we have limited our analysis to

datasets with the typical sample size that is characteristic of data

currently available.

Summarizing, Figures 2 and 3 suggest that for sample size

below 250 without false positives and negatives the PR raw

estimate a suffices to drive reconstruction to good results (TED is 0

with 250 samples), i.e.,

ma?b &
l?0

aa?b ð11Þ

which is obtained by setting l to a very small value, e.g. 10{2, in

order to consider at least a small contribution of the correction

factor too. Conversely, when nw0, the best performance is

obtained by averaging the shrinkage-like effect, i.e.,
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ma?b ~
l~1=2 aa?b

2
z

ba?b

2
: ð12Þ

These results suggest that, in general, a unique optimal value for

the shrinkage-like coefficient can be determined, even in situations

not captured by Theorem 3 and Corollary 1.

Performance of CAPRESE compared to oncotrees
An analogue of Theorem 3 holds for Despers’s oncotrees

(Theorem 3.3, [8]), and an analogue of Corollary 1 holds for

Szabo’s extension with uniform noise (Reconstruction Theorem 1,

[22]). Thus, with infinite samples both approaches reconstruct the

correct trees/forests. With finite samples and noise, however, their

performance may show different patterns, as speed of convergence

may vary. We investigate this issue in the current section.

Figure 3. Optimal l with datasets of different size. We show the analogous of Figure 2 with 50 and 250 samples. The estimation of the optimal
shrinkage-like coefficient l appears to be irrespective of the sample size.
doi:10.1371/journal.pone.0108358.g003

Figure 4. Comparison on noise-free synthetic data. Performance of CAPRESE (dashed line) and oncotrees (full line) in average TED when data
are generated by random trees (left) and forests (right). In this case n~0 (no false positives/negatives) and l?0 in the estimator m.
doi:10.1371/journal.pone.0108358.g004
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In Figure 4 we compare the performance of CAPRESE with

oncotrees, for the case of noise-free synthetic data with the optimal

shrinkage-like coefficient: l?0, equation (11). Since Szabo’s

algorithm is equivalent to Desper’s without false negatives and

positives, we rely solely on Szabo’s implementation [22]. In

Figure 5 we show an example of reconstructed tree where

CAPRESE infers the correct tree while oncotrees mislead a

causation relation.

In general, one can observe that the TED of CAPRESE is, on

average, always bounded above by the TED of oncotrees, both in

the case of trees and forests. For trees, with 50 samples the average

TED of CAPRESE is around 6, whereas for Desper’s technique it

is around 13. The performance of both algorithms improves as

long as the number of samples is increased: CAPRESE has the

best performance (i.e., TED <0) with 250 samples, while

oncotrees have TED around 6. When forests are considered, the

difference between the performance of the algorithms reduces

slightly, but also in this case CAPRESE clearly outperforms

oncotrees.

Notice that the improvement due to the increase in the sample

size seems to reach a plateau, and the initial TED for our

estimator seems rather close to the plateau value. This empirical

analysis suggests that CAPRESE has already good performances

with few samples, a favorable adjoint to Theorem 3. This result

has some important practical implications, particularly considering

the scarcity of available biological data.

In Figure 6 we extend the comparison to noisy datasets. In this

case, we used the optimal shrinkage-like coefficient: l?1=2,

equation (12). The results confirm what observed without false

positives and negatives, as CAPRESE outperforms oncotrees up to

n~0:15, for all the sizes of the sample sets. In the File S1 we show

similar plots for the noise-free case.

We can thus draw the conclusion that our algorithm performs

better with finite samples and noise, since less samples are required

Figure 5. Example of reconstructed trees. Example of reconstruction from a dataset with 100 samples generated by the left tree (the theoretical
probabilities are shown, i.e., the doubly-circled event appears in a sample with probability.08), with n~0. In the sampled dataset oncotrees mislead
the cause of the doubly-circled mutation (w~0 for the true edge and w~0:014 for the wrong one). CAPRESE infers the correct cause (the values of
the estimator m with l~1=2 are shown, similar results are obtained for l?1).
doi:10.1371/journal.pone.0108358.g005

Figure 6. Reconstruction with noisy synthetic data and l~1=2. Performance of CAPRESE and oncotrees as a function of the number of
samples and noise n. According to Figure 2 the shrinkage-like coefficient is set to l~1=2. The magnified image shows the convergence to Desper’s
performance for n&0:1. The barplot represents the percentage of times the best performance is achieved at n~0.
doi:10.1371/journal.pone.0108358.g006
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to get good performances and a higher resistance to false positives

and negatives is shown.

Performance of CAPRESE compared to Conjunctive
Bayesian Networks

Inspired by Desper’s seminal work, Beerenwinkel and others

developed methods to estimate the constraints on the order in

which mutations accumulate during cancer progression, using a

probabilistic graphical model called Conjuntive Bayesian Networks
(CBN) [14,15]. While the goal of this research was to reconstruct

direct acyclic graphs and not trees per se, evidence presented in

[24] suggests that, in the absence of noise, these models perform

better than oncotrees even at reconstructing trees. For this reason,

we performed experiments similar to the ones suggested above,

comparing CAPRESE to the extension of CBN called hidden-
CBN (h-CBN) that accounts for noisy genotype observations [15].

This method combines CBNs with a simulated annealing

algorithm for structure search and a denoising of the genotypes

via the maximum a posteriori estimates to compute the most likely

progression. One aspect that complicates a comparison between

CAPRESE and (h-)CBN is that the methods assume different

models. For example, at the heart of CBN is a monotonicity

assumption (i.e., an event can only occur if all its predecessors have

occurred) not assumed by CAPRESE. Despite the differences

between the model assumptions, we present a preliminary

comparison between the methods in Appendix S3, indicating that

we not only outperform oncotrees, but h-CBNs as well. In

particular, this suggests that CAPRESE converges much faster

than h-CBNs with respect to the sample size, also in the presence

of noise.

We also analyze the rate of false positives/negatives reconstruct-

ed by CAPRESE when (synthetic) data are sampled from DAGs

(Appendix S3). The rate of false positives goes to 0 as the sample

size increases, implying that CAPRESE is capable of reconstruct-

ing a tree subsumed by the underlying causal DAG topology. In

addition, the number of false negatives approaches a value

proportional to the connectivity of the model from which the data

was generated. This is expected, since CAPRESE will assign at

most one cause to each considered event. However, it should be

noted that further experiments with samples selected from a wider

array of topologies should be performed to confirm these results

and compare both methods in full. While not within the scope of

the current paper, these issues will be addressed in future work.

Case studies
In the next subsections we apply CAPRESE to real cancer data

obtained by Comparative Genomic Hybridization (CGH) and Next
Generation Sequencing (NGS). This shows the potential applica-

tion of reconstruction techniques to various types of mutational

profiles and various cancers.

Performance on cancer CGH datasets
Encouraged by the results in previous sections, we test our

reconstruction approach on a real ovarian cancer dataset made

available within the oncotree package [8]. The data was collected

through the public platform SKY/M-FISH [38], used to allow

investigators to share molecular cytogenetic data. The data was

obtained by using the CGH technique on samples from papillary
serous cystadenocarcinoma of the ovary. This technique uses

fluorescent staining to detect CNV data at the resolution of

chromosome arms. While the recent emergence of NGS

approaches make the dataset itself rather outdated, the underlying

principles remain the same and the dataset provides a valid test-

case for our approach. The seven most commonly occurring

events are selected from the 87 samples, and the set of events are

the following gains and losses on chromosomes arms

G~f8qz, 3qz, 1qz, 5q{, 4q{, 8p{, Xp{g (e.g., 4q{ de-

notes a deletion of the q arm of the 4th chromosome).

In Figure 7 we compare the trees reconstructed by the two

approaches. Our technique differs from Desper’s by predicting the

causal sequence of alterations

8qz ? 8p{ ? Xp{ ,

when used either l?0 or l~1=2. Notice that among the samples

in the dataset some are not generated by the distribution induced

by the recovered tree, thus comparing the reconstruction for both

ls is necessary.

Figure 7. Reconstruction of ovarian cancer progression. Trees reconstructed by oncotrees and CAPRESE (with l?0, with l~1=2 the same
tree is reconstructed). The set of CGH events considered are gains on 8q, 3q and 1q and losses on 5q, 4q, 8p and Xp. Events on chromosomes arms
containing the key genes for ovarian cancer are in bolded circles. In the left tree all edge weights are the observed probabilities of events. In the right
the full edges are the causation inferred with the PR and the weights represent the scores used by CAPRESE. Weights on dashed lines are as in the left
tree.
doi:10.1371/journal.pone.0108358.g007
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At this point, we do not have a biological interpretation for this

result. However, we do know that common cancer genes reside in

these regions, e.g. the tumor suppressor gene PDGFR on 5q and

the oncogene MYC on 8q), and loss of heterozygosity on the short

arm of chromosome 8 is quite common (see, e.g., http://www.

genome.jp/kegg/). Recently, evidence has been reported that 8p

contains many cooperating cancer genes [39].

In order to assign a confidence level to these inferences we

applied both parametric and non-parametric bootstrapping
methods to our results. Essentially, these tests consist of using the

reconstructed trees (in the parametric case), or the probability

observed in the dataset (in the non-parametric case) to generate

new synthetic datasets, and then reconstructs again the progres-

sions (see, e.g., [40] for an overview of these methods and [41] for

the use of bootstrap for evalutating the confidence of oncogenetic

Table 1. Estimated confidence for ovarian progression.

Oncotrees (overall confidence 8.3%)

? 8qz 3qz 5q{ 4q{ 8p{ 1qz Xp{

% .99 .06 .51 .22 .004 .8 .06

8qz 0 .92 .08 0.16 .04 .02 .007

3qz .002 0 .04 0 0 .09 .04

5q{ .001 .002 0 .52 .39 .009 .16

4q{ 0 0 .27 0 .14 .05 .11

8p{ 0 0 .07 .08 0 .004 .59

1qz 0 0 0 .004 0 0 0

Xp{ 0 0 .003 .003 .04 .01 0

CAPRESE (overall confidence 8.6%)

? 8qz 3qz 5q{ 4q{ 8p{ 1qz Xp{

% .99 .06 .51 .22 .004 .8 .06

8qz 0 .92 .06 .16 .62 .01 .008

3qz .002 0 .03 .002 0 .09 .04

5q{ .001 .002 0 .5 .26 .009 .17

4q{ 0 0 .29 0 .09 .05 .12

8p{ 0 0 .07 .08 0 .004 .59

1qz 0 0 0 .004 0 0 0

Xp{ 0 .001 .003 .004 .01 .01 0

Frequency of edge occurrences in the non-parametric bootstrap test, for the trees shown in Figure 7. Bold entries are the edges recovered by the algorithms.
doi:10.1371/journal.pone.0108358.t001

Figure 8. Validating the SETBP1 - ASXL1 relation in atypical Chronic Myeloid Leukemia. Progression models where ASXL1 indel and non-
sense point are merged (left) and separate (right) suggest that a missense point mutation hitting SETBP1 can cause a non-sense point mutation in
ASXL1, that the observed ASXL1 mutations might be independent and that indel ASXL1 is an early event with high confidence.
doi:10.1371/journal.pone.0108358.g008
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trees.). The confidence is given by the number of times the trees in

Figure 7 are reconstructed from the generated data. A similar

approach can be used to estimate the confidence of every edge

separately. For oncotrees the exact tree is obtained 83 times out of

1000 non-parametric resamples, so its estimated confidence is

8.3%. For CAPRESE the confidence is 8:6%. In the parametric

case with false positive and false negative error rates of 0.21 and

0.027, following [22], the confidence of oncotrees is 17% while the

confidence of our method is much higher: 32%. When error rates

are forced to 0 the confidence of oncotrees raises to 86:6% and

90:9% respectively.

For the non-parametric case, edges confidence is shown in

Table 1. Most notably, our algorithm reconstructs the inference

8qz?8p{ with high confidence (confidence 62%, and 26% for

5q{?8p{), while the confidence of the edge 8qz?5q{ is only

39%, almost the same as 8p{?8qz (confidence 40%). The

confidences are similar with either l?0 or l~1=2.

Analysis of other CGH datasets. We report the differences

between the reconstructed trees also based on datasets of

gastrointestinal and oral cancer ([35,37] respectively). In the case

of gastrointestinal stromal cancer, among the 13 CGH events

considered in [35] (gains on 5p, 5q and 8q, losses on 14q, 1p, 15q,

13q, 21q, 22q, 9p, 9q, 10q and 6q), oncotrees identify the path

progression

1p{?15q{?13q{?21q{

while CAPRESE reconstructs the branch

1p{?15q{1p{?13q{?21q{:

In the case of oral cancer, among the 12 CGH events

considered in [37] (gains on 8q, 9q, 11q, 20q, 17p, 7p, 5p, 20p
and 18p, losses on 3p, 8p and 18q), the reconstructed trees differ

since oncotrees identifies the path

8qz?20qz?20pz

while our algorithm reconstructs the path

3p{?7pz?20qz?20pz :

These examples show that CAPRESE provides important

differences in the reconstruction compared to oncotrees.

Performance on cancer NGS datasets
In this section we show the application of reconstruction

techniques to the validation of a specific relation among recurrent

mutations involved in atypical Chronic Myeloid Leukemia
(ACML).

In [42] Piazza et al. used high-throughput exome sequencing
technology to identity somatically acquired mutations in 64 ACML

patients, and found a previously unidentified recurring missense
point mutation hitting SETBP1. By re-sequencing SETBP1 in

samples with ACML and other common human cancers, they

found that around 25% of the ACML patients tested positive for

SETBP1, while most of the other types of tumors were negative.

Assessing the possible relationship between SETBP1 variants and

the mutations in many driver ACML oncogenes such as (e.g.,

ASXL1, TET2, KRAS, etc.) no significant association or mutual

exclusion with SETBP1 was found but for ASXL1, which was

frequently mutated together with SETBP1, hinting at a potential

relation among the events. In particular, ASXL1 was presenting

either a non-sense point or a indel type of somatic mutation.

Hence, we reconstructed ACML progression models from the

datasets provided in [42], with the goal of assessing a potential
causal dependency between mutated SETBP1 and ASXL1. A

more extensive analysis is postponed, as we only seek to clearly

illustrate the functionalities of the algorithm here.

As a first case (Figure 8, left), we treated the ASXL1 missense

point and indel mutations as indistinguishable, and we merged the

two events in the dataset. Afterwards, we separated the two types

of mutations for ASXL1 (Figure 8, right).

In particular, it is interesting to notice that, when the ASXL1

mutations are considered equivalent, the inference suggests that

the mutations belong to two independent progression paths (i.e.,

the independent progression filters ‘‘breaks’’ every potential causal

relation among the events). Conversely, when the mutations are

kept separate, the progression model suggests that: (i) the missense

point mutation hitting SETBP1 can cause a non-sense point

mutation in ASXL1 and (ii) the observed ASXL1 mutations seems

to be independent. Concerning edges confidence, as before

assessed via non-parametric bootstrap, it is worth noting that the

confidence in the indel ASXL1 mutation being an early event

raises consistently in the latter case.

All in all, it seems that a progression model allows to test the

significance of the association firstly observed in [42] and also

refines the knowledge by suggesting a specific causal and temporal

relations among events. With this this in mind, ad-hoc sequencing

experiments might be set up to assess these predictions, eventually

providing a strong evidence that could be used to, e.g., synthesize a

progression-specific ACML-effective drug.

Discussion

In this work we have introduced a novel framework for the

reconstruction of the causal topologies underlying cumulative

progressive phenomena, based on the probability raising notion of

causation. Besides such a probabilistic notion, we also introduced

the use of a shrinkage-like estimator to efficiently unravel

ambiguous causal relations, often present when data are noisy.

As a first step towards the definition of our new framework, we

have here presented an effective novel technique called CAPRESE

(CAncer PRogression Extraction with Single Edges) for the

reconstruction of tree or, more generally, forest models of

progression which combines probabilistic causation and a

shrinkage-like estimation.

We prove correctness of CAPRESE by showing asymptotic

convergence to the correct tree. Under mild constraints on the

noise rates, this result holds for the reconstruction problem in the

presence of uniform noise as well. Moreover, we also compare our

technique to the standard tree reconstruction algorithm based on

correlation (i.e., Oncontrees) and to a more general bayesian

probabilistic graphical model (i.e., Conjunctive Bayesian Net-

works), and show that CAPRESE outperforms the state-of-the-art

on synthetic data, also exhibiting a noteworthy efficiency with

relatively small datasets. Furthermore, we tested our technique on

ovarian, gastrointestinal and oral cancer CGH data and NGS

leukemia data. The CGH analysis suggested that our approach

can infer, with high confidence, novel causal relationships which

would remain unpredictable in a correlation-based attack. The

NGS analysis allowed validating a causal and temporal relation

among key mutations in atypical chronic myeloid leukemia.

One of the strong points of CAPRESE is that it can be applied

to genomic data of any kind, even heterogeneous, and at any
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resolution, as shown. In fact, it simply requires a set of samples in

which the presence or the absence of some alterations supposed to

be involved in a causal cumulative process have been assessed.

Notice also that the results of our technique can be used not only

to describe the progression of the process, but also to classify
different progression types. In the case of cancer, for instance, this

genome-level classifier could be used to group patients according

to the position of the detected individual genomic alterations in the

progression model (e.g., at a specific point of the tree) and,

consequently, to set up a genome-specific therapy design aimed, for

instance, at blocking or slowing certain progression paths instead

of others, as was studied in [43].

Several future research directions are possible. First, more

complex models of progression, e.g. directed acyclic graphs, could

be inferred with probability raising and compared to the standard

approaches of [14,15,44], as we explained in the introduction.

These models, rather than trees, could explain the common

phenomenon of preferential progression paths in the target process

via, e.g., confluence among events. In the case of cancer, for

instance, these models would be certainly more suitable than trees

to describe the accumulation of mutations.

Second, the shrinkage-like estimator itself could be improved by

introducing, for instance, different correction factors. In addition,

an analytical formulation of the optimal shrinkage-like coefficient

could be investigated by starting from the hypotheses which apply

to our problem setting, along the lines of [45].

Third, advanced statistical techniques such as bootstrapping [40]

could be used to account for more sophisticated models of noise

within data, so as to decipher complex causal dependencies.

Finally, a further development of the framework could involve

the introduction of timed data, in order to extend our techniques to

settings where a temporal information on the samples is available.

Software availability
The implementation of CAPRESE is part of the TRanslational

ONCOlogy (TRONCO) R package and is available for download

at standard R repositories.
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