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Abstract

RNA sequencing (RNA-seq) enables characterization and quantification of individual transcriptomes as well as detection of
patterns of allelic expression and alternative splicing. Current RNA-seq protocols depend on high-throughput short-read
sequencing of cDNA. However, as ongoing advances are rapidly yielding increasing read lengths, a technical hurdle remains
in identifying the degree to which differences in read length influence various transcriptome analyses. In this study, we
generated two paired-end RNA-seq datasets of differing read lengths (2675 bp and 26262 bp) for lymphoblastoid cell line
GM12878 and compared the effect of read length on transcriptome analyses, including read-mapping performance, gene
and transcript quantification, and detection of allele-specific expression (ASE) and allele-specific alternative splicing (ASAS)
patterns. Our results indicate that, while the current long-read protocol is considerably more expensive than short-read
sequencing, there are important benefits that can only be achieved with longer read length, including lower mapping bias
and reduced ambiguity in assigning reads to genomic elements, such as mRNA transcript. We show that these benefits
ultimately lead to improved detection of cis-acting regulatory and splicing variation effects within individuals.

Citation: Cho H, Davis J, Li X, Smith KS, Battle A, et al. (2014) High-Resolution Transcriptome Analysis with Long-Read RNA Sequencing. PLoS ONE 9(9): e108095.
doi:10.1371/journal.pone.0108095

Editor: Emanuele Buratti, International Centre for Genetic Engineering and Biotechnology, Italy

Received May 28, 2014; Accepted August 18, 2014; Published September 24, 2014

Copyright: � 2014 Cho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All gene expression files are available from the
GEO databases (accession number GSE57862).

Funding: The Edward Mallinckrodt Jr Foundation and the National Institutes of Health (R01 MH10814) supported SBM on this project. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: smontgom@stanford.edu (SBM); ajbattle@cs.stanford.edu (AB)

¤ Current address: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of
America

Introduction

The application of next-generation sequencing (NGS) to RNA

has provided more complete means to annotate and quantify

transcriptomes. Specifically, it has improved the characterization

of many aspects of RNA biology including the detection of

transcription start sites [1–3], allele-specific expression [4],

alternative splicing events [5], fusion transcripts [6], RNA-editing

[7], and antisense transcription [8]. However, the analytical

properties of RNA-seq data with respect to rapidly changing

technological parameters, such as continually increasing read

lengths, remain challenging to ascertain. While it would be ideal to

sequence the full length of each mRNA molecule, current NGS

technologies are limited to analyzing short fragments of cDNA,

and only a limited number of bases can be read from each

fragment with reasonable accuracy. Paired-end sequencing

methods were developed to partially address this limitation, and,

notably, it has been shown that the paired-end reads enable more

accurate estimations of transcript abundances [9]. Moreover, it is

established that longer reads will improve performance in several

of the noted applications of RNA-seq, such as transcript assembly,

transcript quantification, and gene fusion detection [10,11].

However, as public RNA-seq data of variable read lengths are

increasingly available to the research community, ongoing

assessment of the effect of read length on various aspects of

transcriptome analysis will be necessary to understand the

practical implications of integrating and comparing such data.

For example, a recent work by Tilgner et al. [12] demonstrated

the ability of long reads to accurately capture gene structures in an

annotation-free manner and identified novel splicing patterns that

have not been previously reported based on short reads. In this

paper, we introduce a different viewpoint by focusing on

quantification of genomic elements and detection of allele-specific

patterns. To this end, we generated paired-end RNA-sequencing

datasets for the lymphoblastoid cell line GM12878 with 262 bp

reads (L262) and 75 bp reads (L75) and carried out a comparative

analysis.

One aspect of RNA-seq analysis we focused on was its ability to

quantify gene expression. Although RNA-seq is considered to be a

more robust quantification method than hybridization-based

microarray assays due to its wide dynamic range and ability to

detect novel sequences, various sources of bias inherent to RNA-

seq have also been identified, including GC-content [13],

transcript length [14], overdispersion [15] and mappability [16].

While biases arising from GC-content and transcript length can be

countered with appropriate normalization methods [13,14], the

inability of short reads to effectively disambiguate fragments from

non-unique regions of the genome can only be mitigated by using

longer reads. To evaluate the benefit of longer reads, we compared
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the number of reads that uniquely mapped to each gene in both

L262 and L75 datasets and investigated the differences that are

distinguishable from random biological variation. We found that

the proportion of reads in L262 that unambiguously aligned to

pseudogenes is roughly three times higher than that of L75, with a

similar observation in coding genes with low mappability.

Quantification of transcript-level expression from RNA-seq data

is a considerably harder problem than that of gene-level expression,

since alternative splicing patterns introduce ambiguity in mapping

each read to a particular transcript. To estimate transcript abunda-

nces from short-read data, several methods based on statistical

inference have been developed such as Cufflinks [17], TIGAR

[18], RSEM [19] and FluxCapacitor (http://sammeth.net/

to make an informed guess using available information, one

could improve the outcome or even make these tools obsolete by

using longer reads to reduce or remove the overall ambiguity in

mapping reads to transcripts. In this study, we looked at the

number of mRNA isoforms each read maps to and found that long

reads lead to better specificity. In particular, 32.98% of exonic

reads in L262 were unambiguously assigned to a single isoform,

compared to 25.04% for L75. To further evaluate this class of

methods, we evaluated the degree to which two different methods,

Cufflinks and FluxCapacitor, predicted transcript abundances

from the L75 data that were directly measured in the L262 data.

RNA-sequencing also supports the quantification of allele-

specific expression (ASE) and allele-specific alternative splicing

(ASAS), providing direct evidence of cis-regulatory effects within

an individual. Analysis of allele-specific patterns has the potential

to reveal additional regulatory variants and mechanisms, but

analysis in RNA-seq is limited to evaluation of reads containing at

least one heterozygous site, which is needed to differentiate

between the two copies of a gene. This significantly reduces the

effective library size and consequentially many tests are statistically

underpowered. Therefore, long reads are useful due to a higher

chance of containing a heterozygous site. Here, we report the

degree of improved detection of ASE and ASAS from longer read

data. We further identified compelling cases of ASAS, which give

us a glimpse of the complex regulatory mechanisms within

individuals.

One important practical consideration regarding read length is

cost-efficiency. Specifically, for any given analytical goal, it is not a
priori clear whether it is more cost-effective to use a long read

protocol, or a short read protocol with higher depth. We provide

some insight into this issue by carrying out a cost comparison

between L262 and L75, generated on a MiSeq and HiSeq,

respectively. Based on current sequencing prices, it is more cost-

effective to select a short-read protocol for many analyses.

Specifically, obtaining a target number of reads with isoform-

specificity can be achieved at lower total cost with short reads,

even though a larger number of reads must be sequenced; a similar

result is seen for obtaining haplotype-specific reads for ASE

analysis. On the other hand, the reduction in mapping bias, which

ultimately leads to more accurate quantification, is only accessible

via longer read lengths and cannot be achieved by simply

increasing the number of short reads. More broadly, some

elements (genes, transcripts, or loci) in low mappability regions

would remain under-represented in short read data, regardless of

depth or cost. As the price gap between long-read and short-read

RNA sequencing platforms becomes smaller, we expect the

benefits of longer read lengths to become more apparent.

Materials and Methods

Sample preparation and sequencing
GM12878 is a CEPH/UTAH family EBV transformed

peripheral blood B lymphocyte cell line (Cat# XC01463)

purchased from The Coriell Institute (Camden, NJ) and grown

in RPMI 1640 supplemented with 10% FCS and penicillin/

streptomycin in humidified 5% CO2 at a concentration of

approximately 16106 cells/ml. Total RNA was isolated from

16107 GM12878 cells using Trizol. RNA quality was assessed

with the Agilent Bioanalyzer 2100 and RIN scores above 9 were

used for cDNA production. One microgram total RNA was used

to isolate poly A purified mRNA which was used for library

construction using the Illumina TruSeq RNA Preparation Kit.

RNA fragmentation time was 8 minutes for samples to be used for

75 bp paired-end reads and 1 minute for 262 bp paired-end reads.

Strand specificity was performed using dUTP during second

strand synthesis. GM12878 cDNA was indexed with Illumina

adapters for use in multiplex HiSeq runs. GM12878 cDNA

sequenced by an Illumina HiSeq yielded 25,933,924 75 bp paired-

end reads (L75). For MiSeq sequencing, 6 pM cDNA was

denatured and loaded into a 500 cycle MiSeq sequencing cartridge

that yielded 9,524,186 262 bp paired-end reads (L262). All data is

freely available from GEO under the accession identifier

GSE57862.

Read alignment
Based on the observation that many read pairs in L262 come

from cDNA fragments shorter than the read length (262 bp)

(Figure S1), we identified and merged such pairs by searching for a

13 bp adapter sequence, which immediately follows the fragment

sequence when the fragment is shorter than the read length. We

discarded the fragments shorter than 20 bp and did not merge if

the two reads disagreed on more than ten bases. During merge, if

the two reads disagreed on a base, we chose the base with a higher

quality score. We observed such discrepancy in 0.20% of the

overlapping bases. This resulted in a bipartition of L262 into a

single-end library of 4,470,824 reads (L262S) and a paired-end

library of 5,051,896 read pairs (L262P). 1,466 read pairs were

discarded for being shorter than 20 bp after the merge or having

more than 10 mismatches. L262P and L262S were aligned to the

reference separately and then aggregated for comparison with

L75. Most of the read pairs in L75 came from fragments longer

than the read length (Figure S1), and thus we did not merge reads

in L75. We aligned each library using the following tools with

default settings: TopHat2 (version 2.0.5) [20], GSNAP (version

2012-07-20) [21], Bowtie2 (version 2.0.0-beta7) [22], and STAR

(version 2.3.0) [23]. For tools that required a list of known splice

sites, we used the reference gene annotations from GENCODE 15

[24].

Concordance analysis
The VCF file containing positions genotyped for GM12878 was

obtained from the 1000 Genomes Project (http://www.

1000genomes.org). After discarding insertions, deletions (indels),

and sites with incomplete genotypes, roughly 5.4 M sites remained

for analysis. For each dataset of aligned reads, genotyped sites

covered by at least 10 reads (20–40 K sites) were analyzed for

concordance between the DNA-seq based genotype from the VCF

file and the observed genotype from the RNA-seq reads. For each

genotyped site i, let ni be the total number of reads covering the

site, and xi be the number of mismatched reads, which is defined as

reads that contain an allele not supported by the known genotype.

Under the null hypothesis that there is no mapping error, the

Long-Read RNA-seq
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number of mismatched reads follows Binomial(ni,E), where E is

the per-base sequencing error rate. The discordance p-value is

defined as P(X§xi), where X*Binomial(ni,E). Intuitively, the

more significant this p-value is, the more confident we are that

mapping error affected RNA-seq reads at the corresponding site.

We estimated E separately for each dataset by dividing the total

number of mismatches across all sites by the total number of

aligned bases (Figure S3). Then, for each mapper, we compared

the distribution of discordance p-values between L262 and L75

using a one-sided Wilcoxon rank-sum test. We controlled for

differences in statistical power and technical variance by stratifying

the sites into four groups based on read depth and performing a

separate comparison for each bin: 1) 10–99, 2) 100–499, 3) 500–

999, and 4) $1000 reads. The read depth distribution was highly

similar across read lengths for each bin (Figure S4).

Mapping reads to genomic features
To assign each read to genomic features (genes or mRNA

isoforms), we constructed a feature set for each locus in the

reference genome representing the genes or mRNA isoforms in

GENCODE 15 [24] that contain the corresponding nucleotide.

Then, for each aligned read, we took the intersection of all

nonempty feature sets associated with the bases covered by the

read. Only considering the nonempty sets allows the reads to have

bases that are not explained by the reference annotations, as long

as the reads contain other informative bases. If the resulting set of

features (which we refer to as consistent features) has a single

element, it implies that the read pair is unambiguously mapped to

a feature. For mRNA isoforms, we also incorporated information

about splice junctions to obtain a more precise feature mapping;

when a read alignment included one or more splicing events, we

only considered the set of isoforms whose splicing patterns agree

with the read.

Detection of allele-specific expression patterns
Phased genotypes for NA12878 were inferred by family

relationships using Ped-IBD [25], while discarding sites with

Mendelian inconsistencies. For each aligned read, we examined all

heterozygous sites that appear in the read and assigned the read to

either the paternal or maternal haplotype only if all heterozygous

sites have the corresponding alleles. Gene-level ASE was assessed

with a binomial test based on the number of maternal and paternal

reads assigned to a given gene, assuming a balanced distribution as

the null. We detected ASAS by testing for differential usage of

individual exon blocks using a procedure developed in [9]. First,

the exonic regions of each gene were divided into ‘‘exon blocks’’

such that each block does not contain any of the exon boundaries

of known mRNA isoforms. Then we tested whether each exon

block exhibits a differential usage pattern using a chi-square test on

a 2-by-2 contingency table where the rows indicate whether a read

is maternal or paternal and the columns indicate whether a read

overlaps with the exon block of interest (as illustrated in Figure S5).

We excluded human leukocyte antigen (HLA) complex genes from

the analysis to avoid cases with possibly incorrect genotypes, and

also disregarded genes with low total read counts (less than 20 for

ASE and 40 for ASAS). Significant cases were called at 10% false

discovery rate using the Benjamini and Hochberg procedure [26].

Calculation of sequencing costs
We estimated the sequencing costs for L262 and L75 as follows.

For L262, a 500 cycle MiSeq sequencing cartridge cost $880,

which yielded a total of 9,524,186 read pairs (,4.99 billion bases).

For L75, Centrillion Biosciences charged us $2400 for a single

2675 lane, which we used to sequence six samples. Thus, a single

L75 sample alone costs roughly $400, which yielded 25,933,924

read pairs (,3.89 billion bases). The resulting cost estimate per

million bases is $0.176 for L262 and $0.103 for L75. The cost of

library preparation (approximately $60 for each library) is not

included in the estimate.

Results

Performance of read-mapping tools
To analyze the impact of read length on the performance of

currently available read-mapping tools, both L262 and L75 were

aligned to the reference genome (GRCh37/hg19) using Bowtie2,

TopHat2, STAR, and GSNAP (Methods). We emphasize that our

goal is not to compare the performance of different methods on a

particular dataset; rather, we aim to analyze how different

methods scale to longer reads. Figure 1a shows the percentage

of reads uniquely mapped to the reference genome. For tools that

adequately handle reads crossing over one or more splice junctions

(TopHat2, STAR, and GSNAP), the alignment rate of L262 was

consistently higher than that of L75, suggesting that longer reads

can improve overall alignment rate. The difference was most

dramatic for GSNAP, for which the rate was higher by 10.39

percentage points (pp) for L262 than for L75. In contrast, Bowtie2

suffered greatly for L262, achieving a rate 10.07 pp lower than

that of L75. This implies that the appropriate handling of splice

junctions is a crucial requirement for a mapping tool to be

effectively applied to libraries with longer read lengths, likely

because longer reads have a higher chance of crossing over one or

more splice junctions (Figure S6). To illustrate, in the GSNAP

output, 50.18% of uniquely mapped reads in L262 contain at least

one splice junction, while the same is true for only 38.24% of

uniquely mapped reads in L75. Higher alignment rate of longer

reads, however, comes at a computational cost: the execution time

of splice junction-aware mapping tools was much longer for L262

than for L75 (Figure 1b). Most notably, TopHat2’s average

runtime per read was approximately 58 times longer for L262,

suggesting that TopHat2’s underlying alignment algorithm is more

sensitive to read length than the other tools we tested. STAR was

the fastest tool for both libraries, but it used a considerably larger

amount of memory than others (data not shown). These results

demonstrate varying degrees of scalability of currently available

read-mapping tools.

RNA and DNA genotype concordance
The higher proportion of mapped reads observed in L262 could

in theory reflect an undesirable increase in uncertain, incorrectly
mapped reads. To address this possibility, we evaluate evidence of

read mismapping as indicated by genotype calls from RNA-seq

reads. We sought to compare the effect of read length on RNA/

DNA genotype concordance by analyzing separately the concor-

dance of SNPs and indels. For SNPs, using L75 and L262

mappings with STAR, GSNAP, and TopHat2, we calculated a

discordance p-value at each genotyped site, which represents the

level of deviation from the expected genotype due to inaccurate

mapping, while controlling for dataset-specific sequencing error

rate (Methods). The distribution of discordance p-values was

significantly higher (more concordant) in L262 across all read

depth bins for GSNAP and in all but one bin for STAR (Figure 2).

This suggests that, in addition to an increase in the proportion of

uniquely aligned reads, the longer read protocol resulted in a lower

rate of mapping errors. For TopHat2, the improvement in

concordance for long reads was not as clear, but we suspect this is

in part due to the lack of statistical power caused by low alignment

rate. Next, we sought to assess whether read length influences

Long-Read RNA-seq
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genotype concordance estimates for indels of varying size (Figure

S7). In general, we did not observe major effects of read length,

and STAR and GSNAP perform reasonably well in mapping

indels as large as 20 bp in length. STAR appears to perform

equally well in mapping insertions and deletions, performing best

with the long reads whereas GSNAP appears to have little gain

and an overall bias in mapping deletions. TopHat2, on the other

hand, is very limited in its ability to call indels, maxing out in its

ability to call an indel at 2 bp in length. We hypothesize that the

lack of improvement of indel genotype concordance for longer

reads across all methods indicates that current limitations are

predominantly algorithmic. Based on the mapping rate, the

GSNAP output was used for the remainder of the study.

Quantification of gene and isoform abundance
To analyze the effect of read length on the quantification of

gene abundance, we calculated the number of reads that

unambiguously mapped to each gene (Methods) and compared

the relative abundance between L262 and L75. Overall, the

normalized read counts were highly correlated between the two

libraries (Spearman r~0:90), but we found an excess of genes that

are more represented in L262 (Figure 3a). For instance, among

13,969 genes observed in both libraries (with a fraction of reads.

1026), 139 genes displayed more than tenfold increase in L262,

whereas only one gene (a pseudogene named RP5-857K21.11)

showed more than tenfold decrease in L262. Among the 139 genes

that were more represented in L262, 130 were pseudogenes, which

suggested that longer reads are more effective at capturing regions

of high sequence similarity with other regions in the genome. In

fact, 3.64% of uniquely mapped reads in L262 are from

Figure 1. The effect of read length on read-mapping performance. We compared the percentage of reads uniquely mapped (a) and the
average runtime per a million reads (b) of Bowtie2, TopHat2, STAR, and GSNAP on L262 and L75. Only the splice-mappers – TopHat2, STAR, and
GSNAP – achieved higher alignment rates for L262 compared to L75. The increase in runtime going from L75 to L262 varied greatly across the
mappers, TopHat2 being the most sensitive among the four mappers tested.
doi:10.1371/journal.pone.0108095.g001

Figure 2. The effect of read length on RNA genotype concordance. Results of comparisons of discordance p-values ({ log10 transformed)
between L262 and base-subsampled L75 stratified by mapper and read depth. Lower p-values (plotted at the top) represent stronger disagreement
between the observed and expected genotypes due to inaccurate mapping. After aligning reads to the reference without genotype annotations,
sites with known genotypes were stratified into four groups based on read depth in each dataset: 1) 10–99, 2) 100–499, 3) 500–999, and 4) $1000
reads. For each mapper, at each of the four read depths, a one-sided Wilcoxon rank-sum test was conducted to determine whether the p-values for
the L262 dataset were significantly higher compared to L75. The behavior of GSNAP agreed with our expectation where L262 displayed improved
concordance over L75 across all read depth bins. The red horizontal line represents a significance level of a~0:05. Each symbol represents an
independently subsampled data for L75.
doi:10.1371/journal.pone.0108095.g002
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pseudogenes, which is considerably larger than 1.25% for L75

(Figure S8). Among the few protein coding genes that displayed

more than tenfold increase in L262 were GLUD2 and NACA2,

which are known to be highly homologous to GLUD1 and NACA,

respectively. To further test whether long reads are more effective

at capturing non-unique regions, we used the mappability score

obtained from the UCSC Genome Browser [27] as a measure of

sequence uniqueness. Sorting the genes according to average

mappability score revealed that genes with low mappability score

tend to be more represented in L262 than in L75 (Figure 3c). The

same trend could be observed when we restricted our analysis to

protein coding genes. Leaving out pseudogenes and genes with an

average mappability score of less than one left 25,597 genes (out of

56,680), and the correlation between normalized read counts of

the two libraries for this subset was significantly higher (p-value ,

1024, r~0:92, Figure 3b, Figure S9).

We next asked how much more effective long reads are at

disambiguating mRNA isoforms. For each read in the library, we

calculated the number of known isoforms whose nucleotides and

splicing patterns are consistent with the read (Methods) and

compared its distribution between the two libraries. Overall, the

reads in L262 were assigned to fewer different isoforms than those

in L75 (Figure 4a). In particular, 32.98% of reads in L262 that

were assigned to at least one isoform were unambiguously assigned

to a single isoform, which is 7.94% higher than 25.04% observed

for L75. This agrees with intuition that longer reads have

increased likelihood of crossing a splice junction or containing

informative bases that allow disambiguation among candidate

isoforms. Furthermore, the same pattern could be observed within

a library; by stratifying the reads in L262 according to their

effective alignment length (the number of bases in the reference

covered by an aligned read pair; distribution shown in Figure S2),

we observed that reads with longer alignments tend to have fewer

matching isoforms indicating better specificity of the originating

transcript (Figure 4b). In fact, if we only take the subset of 104,910

read pairs in L262 with effective alignment length of 524 bp (the

longest possible), the unambiguous mapping rate increases to

40.96%.

As longer read data provides the opportunity to test the efficacy

of transcript abundance methods, we analyzed the relative ability

of both Cufflinks and FluxCapacitor to infer transcript abundances

from L75 data given known gene annotations. Here, we used the

L75 data mapped with GSNAP and ran both methods. We then

compared the correlation of estimated transcript abundances to

those directly measured in the L262 data. Transcript abundances

from L262 were obtained by identifying reads which unambigu-

ously mapped to single transcripts, summarizing counts for each

transcript, and further dividing each by the number of bases that

are unique to that transcript. The latter provides a means to

account for the fact that counts are biased by the effective

proportion of the transcript length that is unique. Using this

straightforward approach to evaluate this class of tools, we

identified better correlation with Cufflinks (R2~0:48) than

FluxCapacitor (R2~0:34; Figure 5). To address the concern that

transcript abundances measured by unambiguous reads might be

biased, we repeated the analysis over a restricted set of genes that

are less prone to bias, where the fraction of reads ambiguously

assigned to multiple transcripts was below different thresholds. We

found that Cufflinks consistently achieves higher correlation than

FluxCapacitor across a wide range of threshold values (Figure

S13).

Figure 3. Most of the difference in gene quantification arise from poorly mappable genes. (a, b) Log scatter plots of fraction of reads
mapped to each gene between L262 and L75. Only plotting genes that are not pseudogenes and have perfect mappability scores leads to a scatter
plot with near perfect correlation. Scatter plots that only show protein coding genes can be found in Figure S9. (c) Genes that are observed in both
libraries and are at least 500 bp long were divided into five groups according to the mean mappability score, which is obtained by summarizing the
75 bp mappability score track on UCSC Genome Browser. For each group, we computed the fraction of genes that had a higher proportion of reads
in L262 than in L75. The groups corresponding to lower mappability scores showed higher proportion of genes more represented in L262. The same
trend was observed even when we restricted our analysis to protein coding genes.
doi:10.1371/journal.pone.0108095.g003

Figure 4. Longer reads are consistent with fewer number of
mRNA isoforms. If all the bases of a read that maps to a gene are part
of the same isoform, this common isoform (which does not have to be
unique) is said to be consistent with the read. We compared the
cumulative distribution of the number of consistent isoforms of reads in
L75 versus reads in L262 (a) and across read groups within L262 (b)
divided according to the number of reference bases covered by the
alignment.
doi:10.1371/journal.pone.0108095.g004
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Detection of allele-specific expression patterns
Studies of allele-specific expression from RNA-seq data require

differentiating between alleles, which is possible for reads over one

or more heterozygous loci. Given full haplotype information for

GM12878, we evaluated the fractions for which the parental

haplotype in unambiguous (Methods). We were able to assign

7.01% of the reads in L262 to either maternal or paternal

haplotype as opposed to 4.26% for L75 (Figure 6a). This increased

rate of haplotype differentiation for longer reads could also be seen

within L262 when the reads were stratified by effective alignment

length (Figure 6b). Noting that the number of heterozygous sites in

a given interval approximately follows a Poisson distribution, we fit

a Poisson model to calculate the expected proportion of allele-

specific reads for libraries with a read length greater than 262

(Figure 6c). Our fitted model predicts that approximately a

quarter of the reads that cover 1,000 bases in the reference will

contain at least one heterozygous site.

Next, to evaluate the extent to which reference allele bias in

read-mapping affects the detection of allele-specific patterns in our

data, we ran the following simulation. Given the reads we classified

as either paternal or maternal, we flipped the bases at

heterozygous sites. We then remapped the modified reads and

calculated, for each gene, the proportion of reads that mapped to

the same location as before, which we refer to as mapping retention
rate. When we ran this procedure for both L262 and L75, we

found that L262 leads to significantly higher mapping retention

rate overall (Figure S10). The fraction of genes with retention rate

lower than 0.9 was 19.27% for L75, while it was only 7.09% for

L262. This suggests that allelic imbalance estimates measured by

long reads are more reliable than those from short reads, and

specifically less subject to false positives arising from mapping

artifacts. For the remaining parts of this study, we disregarded

genes with mapping retention rate lower than 0.9 for each library

to avoid calling allelic effects as significant that may only reflect

mapping errors.

Because longer read length leads to more reads with heterozy-

gous sites and fewer genes marked as untestable by the mapping

retention rate filter, L262 is expected to be statistically more

powerful in discovering allele-specific expression patterns. Indeed,

when we checked the number of significant cases of gene-level

ASE (Methods) at FDR = 10%, we got a considerably larger

number with L262 than L75, where the latter was randomly

subsampled in two ways for comparison by matching either the

number of bases or the number of reads (Figure 7a). We also

observed fewer significant cases (180 at FDR = 10%) in a

simulated short-read library constructed by truncating each read

in L262 to 75 bp. Interestingly, 206 out of 381 significant cases

found with L262 were not called significant by any of the

subsampled L75 libraries, and among those, 24 did not pass the

mapping retention rate filter in L75. One potential explanation for

cases that are only detected in L262 is related to mappability: the

mean mappability scores of genes with significant ASE in L262

that were not detected in L75 were significantly lower than that of

genes called significant in both (Wilcoxon rank-sum p-value:

3:70|10{4). To further validate significant ASE called with

L262, we cross-referenced our significant results with a list of

known eQTLs from a large population based study [4]. 46 out of

3,328 tested genes had a heterozygous site at a known eQTL SNP

for the gene, and 12 of those cases appeared in the final set of 381

significant ASEs, showing a considerable enrichment (x2 p-value

= 0.018). These results are further confirmed using a standard,

per-locus ASE test (as in [4]). In this case, we also observed a

higher rate of ASE detection in L262 (Figure S11).

We next looked for a more complex form of allelic effects, allele-

specific alternative splicing, by assessing haplotype-specific differ-

ences in isoform abundance with the exon inclusion-exclusion test

developed in [9] (Methods), in which the ratio of reads that

support the inclusion or exclusion of an exon block is compared

between the two haplotypes. At FDR = 10%, we obtained 69

significant cases of differential exon usage with L262, which

supported ASAS of 38 distinct genes. Subsampled libraries of L75

detected significantly fewer cases in general (Figure 7), resulting in

a median of 41 differentially used exon blocks (24 genes) for the

base-subsampled L75 and 6.5 exon blocks (4.5 genes) for the read-

subsampled L75. A simulated short-read library constructed by

truncating each read in L262 to 75 bp also resulted in fewer

discoveries (37 exon blocks, representing 25 genes). The coverage

plots of the top two cases detected from L262 – SNHG5 and

IFI44L – with raw p-value v10{12 show clear haplotype-specific

difference in distribution of reads across exons of the genes

Figure 5. Comparison of Cufflinks and FluxCapacitor on transcript quantification. We used transcript counts from L262 to assess
performance of (a) Cufflinks and (b) FluxCapacitor on L75. Cufflinks and FluxCapacitor were respectively applied on base-subsampled L75 to generate
FPKM/RPKM counts. On L262, we only counted reads that unambiguously mapped to each transcript, and divided each by the number of bases that
are unique to that transcript. We restricted our analysis to 41,539 transcripts of 12,964 protein coding genes with multiple isoforms that have at least
ten nucleotides uniquely assigned to any single transcript. Using this approach, we identified that Cufflinks has significantly better correlation to the
long-read data than FluxCapacitor (p-value v10{166).
doi:10.1371/journal.pone.0108095.g005
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(Figure 8). Among other significant findings, ZNF83 (raw p-value

= 1:44|10{4) and CASP3 (raw p-value = 3:22|10{4) are

supported by prior knowledge; they contain a differentially used

exon block that is known to be affected by an sQTL [28] where

this individual has a heterozygous genotype (Figure 8). CASP3 was

not called significant in any of the subsampled L75 libraries. These

examples of ASAS represent likely cases of a cis-acting genetic

variant altering splicing in this individual.

Sequencing cost comparison
While we have shown the degree to which longer read length

provides a number of key benefits for transcriptome analysis, it is

important to note that it is generally more expensive. Based on

actual costs, we estimated the sequencing cost per million bases of

L262 to be $0:176 in contrast to $0:103 of L75 (Methods), which

implies that one 262 bp paired-end read costs approximately the

same as six 75 bp paired-end reads. The sheer number of

additional short reads one can obtain in lieu of increasing read

length renders some of the benefits of longer reads cost-ineffective.

In particular, the number of reads unambiguously mapped to a

genomic location, an mRNA isoform, or a parental haplotype

would all be significantly higher if we were to use a short read

dataset that is six times larger than the cost-matched long read

dataset. In terms of the ability to detect allele-specific patterns,

L262 was approximately $364 more expensive than the base-

subsampled L75, which resulted in 24% fewer cases in ASE

detection and 44% fewer in ASAS detection on average. When we

matched the costs between the two libraries by using all reads in

L75 and 45.45% of the reads in L262, we found that L262 actually

detects 60% fewer ASE cases and 88% fewer ASAS cases on

average than L75, which detects 418 ASE and 106 ASAS cases

(Figure S12). Nevertheless, among the cases detected by the cost-

matched L262, 9% of ASE cases and 11% of ASAS cases were not

detected by L75 because they did not pass the mapping retention

rate filter. This implies that long reads, even with lower total

power than short reads at the same cost, more accurately capture

cases that are susceptible to mapping errors. Clearly, these results

depend on the current sequencing costs; as the price of long reads

Figure 6. Longer reads have a higher chance of containing a heterozygous site that allows us to differentiate the haplotype of
origin. We compared the proportion of reads unambiguously assigned to maternal or paternal haplotypes between L75 and L262 (a) and within
L262 (b), where reads in L262 were grouped by the number of reference bases covered by the alignment of (possibly overlapping) paired-end reads.
The observed data in (b) were extrapolated using a poisson model to even longer read lengths. To provide additional support for the extrapolation,
we directly approximated the proportion of reads containing at least one heterozygous site based on the GENCODE annotation and the genotype of
this individual, assuming that the true gene expression levels are the same as those observed in L262, that all mRNA isoforms of a gene are uniformly
expressed, and that each starting location of a transcript is equally likely to be included in the library. We only considered reads that mapped to
autosomal chromosomes. Our approximation agreed well with both the observed data and the extrapolation.
doi:10.1371/journal.pone.0108095.g006

Figure 7. Longer reads enable more effective detection of allele-specific patterns. To make a fair comparison, L75 was randomly
subsampled (n~10) down to the same number of bases (L75B) and the same number of reads (L75R) as L262. We ran the subsampled libraries and
L262 through the pipeline for detecting allele-specific gene expression and allele-specific exon inclusion-exclusion patterns. The figures above show
the number of significant cases we called at FDR = 10% using the Benjamini and Hochberg procedure [26].
doi:10.1371/journal.pone.0108095.g007
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becomes more comparable to that of short reads, we expect the

benefits of longer read lengths to become more apparent. In

addition, using longer reads fundamentally reduces the mapping

bias and leads to more accurate quantification of genomic

elements, which cannot be achieved by simply obtaining a larger

short read dataset.

Discussion

Longer read lengths in RNA-sequencing offer a number of

advantages ultimately supporting more accurate quantification of

diverse transcriptional effects, as demonstrated here through a

comparative analysis of two libraries from the same cell line with

different read lengths. First, the unique alignment rate of long

reads is observed to be higher, with GSNAP uniquely mapping

93.44% of long reads in contrast to 83.05% of short reads.

Intuitively, longer sequences are less likely to occur more than

once in the genome, even with the prevalence of regions sharing

sequence similarity, such as gene families and pseudogenes. In

addition to the higher mapping rate, our analysis of genotype

concordance suggests that longer reads are significantly less

affected by mapping biases.

Next, there are differences evident in the estimates of gene

expression quantified from the two libraries, which in principle

could be influenced by differences in read mapping. In our study,

genes with evidence of differential expression by read length were

primarily genes with low mappability, and the proportion of long

reads that unambiguously mapped to a pseudogene was roughly

three times higher than that of short reads, with a similar

observation in protein coding genes with low uniqueness. This

suggests that the improved mapping of longer reads also provides

more accurate estimates of gene expression. Furthermore, it

reinforces that mappability is an important parameter to consider

when comparing data between datasets with varying read lengths

(such as for differential expression analyses).

Long reads can also reduce the ambiguity between different

transcripts arising from the same gene. Because such transcripts

share large fractions of their sequence in common, transcript-level

quantification is a considerably harder task than gene-level

quantification. Only reads which span a splice junction or which

include bases simply not found in a particular transcript (such as

an exon excluded from one isoform) can directly disambiguate

between related transcripts. Here, we demonstrated that the

longer read protocol indeed allowed improved disambiguation; the

proportion of exonic reads unambiguously assigned to a single

isoform was 32.98% for L262 and 25.04% for L75. We further

provide data and a straightforward means for comparing

transcript abundance methods by comparing their inferences

from L75 to directly measured abundances in L262; using this

approach we have identified a better correlation for Cufflinks

compared to FluxCapacitor.

The use of RNA-sequencing to detect allele-specific transcrip-

tional effects offers the potential to pinpoint cis-regulatory effects

[4,29], but relies on identifying which allele (or haplotype) each

read arises from. Long reads not only increase the proportion of

reads unambiguously assigned to each haplotype (7% for L262

compared to 4% for L75), but also diminish the susceptibility of

ASE analyses to mapping biases as shown by our mapping

retention rate analysis. Thus, longer reads provide a more robust

quantification of allele-specific expression. We observed that the

longer read dataset actually detects more significant cases than the

short read dataset with the same total number of bases, and

identified two particularly compelling cases of ASAS supported by

a known sQTL, one of which could not be detected with short

reads. Detecting such allelic effects could dramatically improve our

understanding of the cis-regulation of alternative splicing within an

individual. However, initial efforts at quantifying allele-specific

alternative splicing have largely relied on indirect signals such as

apparent differences in insert size [4], or have been restricted to a

small number loci with high coverage near splice junctions [30].

Longer reads, which are both more likely to contain heterozygous

Figure 8. Examples of allele-specific isoform distribution detected with L262. Shown are the IGV [31] coverage plots of (a) genes
corresponding to the top two significant cases (raw p-value v10{12) and (b) two significant cases (FDR = 10%) with a strong prior support by having
a heterozygous site at a known sQTL from a large population-based study. The implicated sQTL and the exon that is known to be affected are noted
by a red line and a black box, respectively. Red asterisks above each plot denote blocks with significant differential inclusion-exclusion pattern
(FDR = 10%).
doi:10.1371/journal.pone.0108095.g008

Long-Read RNA-seq

PLOS ONE | www.plosone.org 8 September 2014 | Volume 9 | Issue 9 | e108095



loci and more likely to disambiguate among related transcripts and

isoforms, thus offer a particularly large advantage in quantifying

ASAS and identifying significant cis-regulated alternative splicing

effects.

Overall, the increasing availability of long read RNA-seq

libraries offers significant advantages in analysis of the transcrip-

tome. While the current long read sequencing technology is

considerably more expensive than short read sequencing, more

accurate quantification of various aspects of transcriptome due to

lower mapping bias can only be achieved with longer read lengths.

Where identification of alternative splicing, fusion events, and

novel transcripts have traditionally required sophisticated compu-

tational methods and statistical inference, longer reads will bring

us increasingly close to direct measurement of these events.

Further distinguishing the benefits, long reads allow more accurate

SNP genotype calls from RNA-seq data and, critically, increas-

ingly detailed analysis of allele-specific expression. As public data

increasingly includes RNA-seq data of different read lengths,

understanding these advantages and caveats will lead to better

tools and comparisons of heterogeneous data.

Supporting Information

Figure S1 Estimated fragment length distribution. We

used the reads that mapped to genes with exactly one transcript to

estimate the fragment length distributions for L262 and L75.

Fragment length was measured by counting the number of exonic

nucleotides between the leftmost and rightmost bases (inclusive) to

which a given read pair was aligned. The read alignments

produced by GSNAP were used. Using our reduced fragmentation

time for long-read library generation (1 min vs 8 mins), we did not

observe striking shift in the fragment size distribution suggesting

that increases in this distribution requires protocols complemented

with a gel-based size selection after fragmentation.

(TIF)

Figure S2 Histogram of number of reference bases
covered by each read. As a measure of information content, we

counted the number of bases in the reference genome covered by

each read pair. For overlapping reads, for instance, this will be less

than double the read length. From the histograms, we can see that

the vast majority of reads in L75 are non-overlapping while reads

in L262 show high degrees of overlap. Overall, however, L262

reads still have more information content than L75 reads.

(TIF)

Figure S3 Estimated per-base sequencing error rate for
each aligned dataset. Sequencing error rate is estimated as the

total number of mismatches in the alignments divided by the total

number of aligned bases.

(TIF)

Figure S4 Comparison of read depth distributions.
Genotyped sites were stratified into the same four read depth

bins as used in the genotype concordance analysis. This plot

compares the distribution of read depths within each category

across mappers and read length. The distributions within each

read depth category are highly similar across read lengths. L75

was randomly subsampled down to the same number of bases

(L75B) and the same number of reads (L75R) as L262.

(TIF)

Figure S5 Illustration of differential exon usage test. We

tested whether each exon block exhibits a differential usage

pattern using a chi-square test on a 2-by-2 contingency table

where the rows indicate whether a read is maternal or paternal

and the columns indicate whether a read overlaps with the exon

block of interest. Each example read (shown as single-end for

simplicity) is marked with the cell in the contingency table it is

counted towards.

(TIF)

Figure S6 Distribution of number of splice junctions
spanned by each read. For each read pair, we counted the

number of splice events represented in the alignment from

GSNAP. The bar graph shows the distribution of this number in

both L262 and L75. We can see that L262 reads tend to span

more splice junctions than L75.

(TIF)

Figure S7 Expected indel size from DNA-seq compared
to most frequently observed size from RNA-seq for L262
and L75. Points along the diagonal (gray line) in each plot

indicate a positive correlation between most frequently observed

indel size and expected size based on genotyping. In general,

STAR and GSNAP perform reasonably well in mapping indels as

large as 20 bp in length. Tophat, on the other hand, is very limited

in its ability to call indels, maxing out in its ability to call an indel

at 2 bp in length. STAR appears to perform equally well in

mapping insertions and deletions, performing best with the long

reads. GSNAP appears to have a bias in mapping deletions. The

L75 dataset was subsampled to match the number of bases in L262

for this analysis.

(TIF)

Figure S8 Breakdown of reads by gene category. The

fraction of reads mapped to each of the five major gene categories

in GENCODE annotation (version 15) is shown. L262 displayed a

relatively high proportion of reads originating from pseudogenes

compared to L75.

(TIF)

Figure S9 Comparison of gene quantification for pro-
tein coding genes. Log scatter plots of fraction of reads mapped

to each gene between L262 and L75. In (b), only the genes with

perfect mappability scores are plotted.

(TIF)

Figure S10 Genes quantified by longer reads display
higher mapping retention rate. Mapping retention rate is a

simulation-based metric that is inversely correlated with the

severity of allelic bias in allele-specific quantification. It is

computed for each gene as the proportion of reads that map to

the same location after flipping all bases that align with

heterozygous sites in the reference so that the new bases are the

alleles from the other parental haplotype. The above histogram

compares the distribution of mapping retention rates in L75 versus

L262.

(TIF)

Figure S11 Comparison of read mapping tools and read
length for ASE detection. A. Presents the total number of

heterozygous sites tested per mapper (Bowtie, STAR, GSNAP,

and Tophat) and read length (75 bp and 262 bp) combination.

The 75 bp read length data was subsampled to mirror the number

of bases (red) and reads (green) in the 262 bp data. The number of

tested sites is very similar between STAR and GSNAP regardless

of read length, while the number of tested sites for Tophat and

Bowtie is significantly lower (on the order of a few thousand sites).

This result is in keeping with the number of mapped reads from

STAR and GSNAP versus Bowtie and Tophat. B. Percent of

significant ASE sites (pvalue ¡.05) for each mapper and read length

pair. In general, the long read samples, regardless of mapper,

showed a higher percentage of significant sites. L75 was randomly
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subsampled down to the same number of bases (L75B) and the

same number of reads (L75R) as L262.

(TIF)

Figure S12 Comparison of allele-specific pattern detec-
tion with matching monetary costs. L262 was subsampled

down to 45.45% of the original data to match its monetary cost

with that of L75. This severely reduces the amount of information

contained in the subsampled L262 library, and thus results in a

significantly fewer discoveries compared to L75.

(TIF)

Figure S13 Comparison of Cufflinks and FluxCapacitor
based on varying degrees of ambiguity. We calculated the

ambiguity rate for each gene as the number of reads mapped to

multiple isoforms divided by the number of total reads mapping to

that gene in L262. Then, we compared how well transcript

abundance estimates from Cufflinks and FluxCapacitor derived

from L75 data correlate with the transcript abundances measured

directly by L262 unambiguous reads for the subset of genes with

multiple isoforms that have at least ten nucleotides uniquely

assigned to any single transcript and have ambiguity rates below a

certain threshold. This threshold is varied between zero and one to

obtain the curves in the figure. We expect abundance estimates

based on unambiguous reads in L262, which we used as the

ground truth, to be more accurate for genes with lower ambiguity

rates.

(TIF)
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