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Abstract

Background: Enterococci are the third most common cause of healthcare-associated infections, which include urinary tract
infections, bacteremia and endocarditis. Cell-surface structures such as lipoteichoic acid (LTA) have been poorly examined in
E. faecalis, especially with respect to urinary tract infections (UTIs). The dlt operon is responsible for the D-alanylation of LTA
and includes the gene dltA, which encodes the D-alanyl carrier protein ligase (Dcl). The involvement of LTA in UTI infection
by E. faecalis has not been studied so far. Here, we examined the role of teichoic acid alanylation in the adhesion of
enterococci to uroepithelial cells.

Results: In a mouse model of urinary tract infection, we showed that E. faecalis 12030DdltA mutant colonizes uroepithelial
surfaces more efficiently than wild type bacteria. We also demonstrated that this mutant adhered four fold better to human
bladder carcinoma cell line T24 compared to the wild type strain. Bacterial adherence could be significantly inhibited by
purified lipoteichoic acid (LTA) and inhibition was specific.

Conclusion: In contrast to bacteraemia model and adherence to colon surfaces, E. faecalis 12030DdltA mutant colonized
uroepithelial surfaces more efficiently than wild-type bacteria. In the case of the uroepithelial surface the adherence to
specific host cells could be prevented by purified LTA. Our results therefore suggest a novel function of alanylation of LTA in
E. faecalis.
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Introduction

Enterococci are the third most common cause of healthcare-

associated infections, which include urinary tract infections,

bacteremia and endocarditis. Risk groups for invasive enterococcal

infections include neonates, Intensive Care Unit (ICU) patients

and immunocompromised hosts [1]. The increasing identification

of enterococcal strains resistant to multiple antibiotics in recent

decades represents a serious threat to therapy and emphasizes the

need for a better understanding of the pathogenicity of these

microbes.

Bacterial adherence is an important step in the disease process

by facilitating colonization and translocation across the mucosal

barrier, which eventually results in systemic dissemination within

the host [2]. Like other Gram-positive bacteria (e.g., Staphylococ-
cus aureus), the surface of E. faecalis is rich in exposed adhesins

that mediate binding to human receptors or to various compo-

nents of the extracellular matrix (ECM); they are thus considered a

member of MSCRAMM-microbial surface component–recogniz-

ing adhesive matrix molecules [3]. Basically, MSCRAMMs are

cell wall–anchored surface proteins that have characteristic

immunoglobulin-like folds [4].

Attachment of microorganisms to mucosal surfaces of the

urinary tract is important for the pathogenesis of UTI, because the

mechanical removal of colonizing bacteria by the urine flow is an

important innate defense mechanism. In the process of bacterial

cell adherence, infectious agents interfere with specific molecules

on epithelial cells [5–6]. Furthermore, it has been shown that the

tendency of certain bacteria to infect specific tissues is often related

to their ability to adhere to a specific target cell.

While UTI-specific virulence factors of E. coli have been studied

extensively, relatively little is known about E. faecalis cell-surface

structures with respect to UTIs [7–10 & 11]. In a model of

ascending UTI, the presence of an enterococcal surface protein

encoded by an acquired gene was shown to increase the

persistence of bacteria in the urinary bladders of mice [7] whereas

[9] demonstrated that E. faecalis has greater tropism for the

kidneys. Using a similar model, the MSCRAMM adhesion of

collagen of E. faecalis (Ace) was recently identified as a putative

virulence factor involved in colonization of renal tissue [12–13]. In

another study, Torelli et al. reported that a PavA-like fibronectin-

binding protein in E. faecalis called enterococcal fibronectin-

binding protein A (EfbA) contributes to the pathogenesis of

enterococcal UTIs. The EfbA mutant shows attenuated colonization
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in a mouse model of mounting UTI [11]. Ebp, a biofilm-associated

pilus, produces immunogenic and pleomorphic pili [14] and also

plays a role in UTI pathogenesis [15].

Generally, the functions of most E. faecalis cell surface

structures have been poorly investigated, especially with respect

to UTIs [7–10,16]. The enterococcal cell wall contains peptido-

glycan (PG) and a number of accessory cell-wall polysaccharides

and glycoconjugates such as LTA wall teichoic acid (WTA), a

rhamnose-containing cell-wall polysaccharide epa (enterococcal

polysaccharide antigen) [17–20] and a diheteroglycan [21].

Lipoteichoic acid (LTA) is an amphiphilic polymer consisting of

polyglycerolphosphate and a glycolipid anchor inserted into the

cell membrane [22–23]. The dlt operon includes four genes and is

responsible for the D-alanylation of LTA [24]. One of these genes,

dltA, encodes the D-alanyl carrier protein ligase (Dcl), which

activates the D-alanine and ligates it to the D-alanyl carrier

protein (Dcp). The involvement of LTA in UTI infection by E.
faecalis has not been studied. Here we examined the role of

teichoic acid alanylation in the adhesion of enterococci to

uroepithelial cells.

Materials and Methods

Cell culture
T24 human bladder carcinoma cells (Cell Line Service,

Eppelheim, Germany) were cultured in Dulbeccos Modified

Eagles Medium (DMEM, Sigma Aldrich), nutrient mixture F-12

Ham, supplemented with 5% fetal bovine serum (FBS Superior,

Biochrom AG) in a humidified 5% CO2 atmosphere at 37uC.

Bacterial strains and chemicals
E. faecalis 12030 strain is a clinical isolate obtained in

Cleveland, OH. It is a strong biofilm producer and is opsonized

by antibodies against its LTA [25]. E. faecalis 12030DdltA mutant

and its complemented strain E. faecalis 12030DdltAcompl were

kindly provided by C. Theilacker and F. Fabretti. All bacterial

strains were grown at 37uC without agitation in Caso Bouillon

(Carl Roth), and reagents were obtained from Sigma.

LTA extraction
LTA from E. faecalis 12030 wild type were isolated as described

[26] and with modifications by Theilacker et al., 2006 [25].

Bacterial cells were grown in tryptic soy broth, harvested after 3 h

and resuspended in 0.1 M citrate buffer (pH 4.7). The harvested

cells were disrupted using glass beads (Beadbeater; Glenn Mills,

Clifton, NJ) and stirred with an equal volume of n-butanol for

30 min at room temperature. After centrifugation, the aqueous

layer was dialyzed against 0.1 M ammonium acetate (pH 4.7) and

lyophilized. The material was redissolved in 15% n-propanol in

0.1 M ammonium acetate (pH 4.7) and applied to an octyl

Sepharose column for hydrophobic interaction chromatography.

Bound material was eluted with a gradient of 15–80% n-propanol.

Fractions were assayed for total phosphorus and by immunoblot

assay [26].

Invasion/Adherence assay
For the adherence assay, cells were cultivated in 24-well plates

to a density of approximately 16105 cells/well for 16 h. Bacteria

were inoculated at (OD600 nm , 0.1) and grown to mid-log phase

(OD600 nm , 0.4) at 37uC in Caso Bouillon. T24 cells were

incubated with bacteria for 2 h at a multiplicity of infection of

100:1. After infection of the monolayer, human bladder carcinoma

cells were washed five times with bovine serum albumin (PBS,

Biochrom AG) and lysed with DMEM F-12 Ham + 5% FBS +

0.25% Triton-X100 buffer for 15 min. Surface adherent and

intracellular bacteria were enumerated by quantitative bacterial

counts. Six replicates (wells) of each stimulation were prepared and

the full experiment was repeated 3 times.

Inhibition assays
For inhibition of enterococcal binding to T24 cells, purified

LTA (10–500 mg/mL) from wild type E. faecalis 12030 was added

to the cells 30 min before infection. The assay was then performed

as described above.

Mouse Urinary Tract Infection model
Female BALB/C mice (6–8 weeks old, Charles River, Sulzfeld,

Germany) were used for the experiments. To prepare the

inoculum, bacteria were grown in 5 mL for , 16 h at 37uC with

gentle shaking. For inoculum preparation the overnight culture

was diluted 1:100 in 50 mL fresh medium and grown to an

OD600nm , 0.3 at 37uC with shaking. The cells were pelleted for

10 min (6.0006g at 10uC) and resuspended in half of the volume

of 0.9% saline. Further dilutions were prepared in Caso Bouillon

and then plated to determine the actual inoculum. Before starting

the experiment, the bladder of the mouse was emptied by catheter

(20 mm). Subsequently, isoflurane-anesthetized mice were infected

via urethral catheterization with 100 mL of the bacterial suspen-

sion (3–56108 CFU/mL). After 2 h the same amount of bacteria

was injected again to achieve consistent infection. The urethral

catheter was removed immediately after this step, and all animals

had free access to food and water during the course of study. Mice

were euthanized by CO2 inhalation at 24 h and 48 h after

transurethral challenge. The urinary bladder and kidney pairs

were excised, weighed, and homogenized in 1 mL of 0.9% saline +
0.025% Triton X-100, and dilutions were plated onto Caso Agar

without antibiotics. The CFU/100 mg of bacteria for each tissue

(bladder or kidney) was calculated for each animal.

Statistical analysis
If not stated otherwise, the experiments were repeated three

times. All cell culture tests were made by multigroup comparisons

using ANOVA (PRISM4, GraphPad software). P value less than

0.05 was considered significant. Comparisons among groups were

made using the Mann-Whitney U test. P value less than 0.05 was

considered significant.

Ethics Statement
All animal experiments were performed in compliance with the

German animal protection law (TierSchG). The mice were housed

and handled in accordance with good animal practice as defined

by FELASA and the national animal welfare body GV-SOLAS.

The animal welfare committees of the University of Freiburg

(Regierungspräsidium Freiburg Az 35/9185.81/G-11/118) ap-

proved all animal experiments.

Results

E. faecalis 12030DdltA mutant shows strong adherence
to uroepithelial cells

To investigate the importance of LTA D-alanylation to in vitro

adherence to uroepithelia, we used T24 human bladder cell lines,

E. faecalis 12030DdltA mutant and the wild type E. faecalis
12030. As control, the E. faecalis 12030DdltA complemented

strain was used. As shown in Figure 1a, compared to the wild type

strain (0.66106 CFU/mL), the E. faecalis 12030DdltA mutant

showed up to four fold increased adherence (2.96106 CFU/mL,
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p,0.001) to uroepithelial cells. The complemented mutant strain

E. faecalis 12030DdltAcompl showed a partially restored effect of

the mutation (1.26106 CFU/mL, p,0.001).

Bacterial adherence could be inhibited by purified LTA
To study the specific interaction between bacteria and a still-

unknown receptor, T24 cells were first incubated with 100 mg/mL

purified LTA from wild type E. faecalis 12030 strain to saturate

binding sites and subsequently they were inoculated with bacteria.

As shown in Figure 1b, the E. faecalis 12030DdltA mutant with

LTA treatment showed significantly less adherence

(1.256106 CFU/mL, p,0.01) to the bladder epithelial cell line

as compared to without LTA treatment (2.96106 CFU/mL). In

the wild type, no significant differences in adherence properties

were observed using purified LTA and a dose dependent reduction

of adherence using LTA could also demonstrated in Figure 1c.

E. faecalis 12030DdltA colonizes uroepithelial surfaces
more efficiently than wild type bacteria

To study the effect of lipoteichoic acid on urinary tract

infection, a modified mouse urinary infection model was used

[9]. The wild type strain E. faecalis 12030 and the mutant E.
faecalis 12030DdltA were tested. The bacterial counts in the

bladder and in both kidneys were determined after 24 h and 48 h

of incubation as described elsewhere [9]. As shown in Figure 2

after 24 h, the mutant colonized the bladder (46105 CFU/

100 mg) significantly better compared to the wild type strain

(96103 CFU/100 mg), i.e. up to 1.5 log more bacteria (p,0.001).

This difference in colonization behaviour between mutant and

wild type strains was 2.4 logs higher in kidneys (p,0.001). The

mutant showed 36106 CFU/100 mg tissue compared to wild type

96103 CFU/100 mg. We observed colonization differences

between mutant and wild type strains to bladder and kidney

epithelia after the prolonged incubation time of 48 h. A

statistically significant difference (p,0.05) was observed only in

kidneys. Here the mutant colonized up to 96105 CFU/100 mg

tissue whereas the wild type achieved only 16103 CFU/100 mg.

In fact, the E. faecalis 12030DdltA mutant colonized the kidneys

at both time points considerably better than the wild-type strain.

Discussion

Attachment of microorganisms to mucosal surfaces of the

urinary tract is important for the pathogenesis of UTI because the

mechanical removal of colonizing bacteria by the urine flow is an

important innate defense mechanism. In the process of bacterial

cell adherence, infectious agents interfere with specific molecules

on epithelial cells [17,20,5–6,27,28]. While UTI-specific virulence

factors of E. coli have been studied extensively, relatively little is

known about E. faecalis cell-surface structures with respect to

UTIs [7–10 & 11].

In a model of ascending UTI, the presence of an enterococcal

surface protein was shown to increase the persistence of bacteria in

the urinary bladders of mice without histological changes [7]

whereas Kau et al. demonstrated that E. faecalis has greater

tropism for the kidneys [9]. Using a similar model, the

MSCRAMMs of E. faecalis such as collagen adhesion protein

(Ace) [12–13], PavA-like fibronectin-binding protein (EfbA) [11],

and a biofilm-associated pilus (Ebp) [14,15] contributed to the

pathogenesis of enterococcal UTIs.

The D-Ala-LTA formation racks up several functions, such as

cationic homeostasis maintenance, integration of metal cations

Figure 1. Attachment to T24 cells. (A) E. faecalis 12030 wild type, E. faecalis 12030DdltA mutant and the E. faecalis 12030DdltA complemented
strain were tested for their ability to adhere to and/or invade T24 uroepithelial cells. Bacterial titers in logarithmic scale (log scale). T24 cells were
cultivated in 24-well plates to a density of 16105 cells/well and incubated for 2 h with bacteria grown to mid-log phase (OD600nm , 0.4) at a bacteria-
to-cell ratio of 100:1. Total cell-associated bacteria include surface-adherent and intracellular bacteria. Bars represent average 6 S.E. The E. faecalis
12030DdltA mutant shows strongly increased adherence to uroepithelial cells compared to the wild type (p,0.001). B) Treatment of cells with
purified LTA. E. faecalis 12030 wild type and the E. faecalis 12030DdltA mutant were tested. Concentration of purified LTA was 100 mg/mL. The
adherence to uroepithelial cells was significantly reduced by E. faecalis 12030DdltA mutant (p,0.01) after LTA treatment and no differences were
obtained by wild type strain. In each experiment 6 replicates (wells) of each stimulation were prepared. The full experiment was repeated 3 times.
Multigroup comparisons were made by ANOVA (PRISM4, GraphPad software). P-values of ,0.05 (*), ,0.005 (**) and ,0.0005 (***) were considered
statistically significant. C) Dose-dependent reduction in adhesion using purified LTA. E. faecalis 12030DdltA mutant were tested with increasing
concentrations of LTA (10 – 500 mg/mL).
doi:10.1371/journal.pone.0107827.g001
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and inflection of autolytic actions and several other electrome-

chanical properties of the bacterial envelope when the surface of

gram-positive bacteria is exposed to disparate microenvironments.

The cell wall of gram-positive bacteria contains different types of

anionic molecules. Two different teichoic acids are present on the

surface of gram-positive bacteria: lipoteichoic acid (LTA), an

amphiphilic polymer non-covalently inserted into the cellular

membrane, and wall teichoic acid (WTA), covalently linked to the

peptidoglycan of the cell wall. These two molecules are synthesized

by separate biosynthetic pathways that have been well character-

ized in Bacillus subtilis and other gram-positive bacteria [29].

Nevertheless, D-alanyl-ester substituents of WTA originally derive

from LTA and are later transferred to WTA by transacylation. It is

a single dlt operon encoding the genes responsible for the D-

alanine incorporation [30–32].

The dltA operon has been studied in several gram-positive

bacteria revealing an identical organization [33]. Bacteria with

mutations in the dlt operon showed a variety of phenotypic

changes that could be attributed to the resulting charge

modification of their cell surface. The lack of D-alanine esters

resulted in a stronger negative net charge, because D-alanine

esters introduce positively charged groups into the otherwise

negatively charged teichoic acids [34]. In B. subtilis and S. aureus,
the absence of D-alanine has been shown to cause alterations in

the activity of autolytic enzymes [35,36]. Also possible is an altered

host immune response, leading to enhanced proliferation/persis-

tence.

In this work, the E. faecalis 12030DdltA mutant has been

investigated with regard to adherence to T24 bladder carcinoma

cells. Surprisingly, we observed that it displayed more than four-

fold increased adherence to human bladder carcinoma cells

compared to the wild-type strain. We could partially restore this

adherence to 1.3106 CFU/mL using a complemented mutant

strain (Figure 1a). Moreover, using purified LTA it was possible to

significantly inhibit adherence to human bladder cells, demon-

strating the specificity of binding (Figure 1b). A dose dependent

reduction of adherence using LTA could also be demonstrated

(data not shown). Interestingly, in contrast to our previous data,

which showed that the same mutant exhibits less binding to Caco2

colonic epithelial cells than wild-type bacteria, here we obtained

higher adherence to uroepithelial cells [3,25,37]. In addition, these

data are in contrast to previous studies using S. aureus and Listeria
monocytogenes, in which elimination of D-alanylation of LTA

impaired adherence to mammalian cells [38–40].

To assess the relevance of these results and the differences in

vivo, a modified mouse urinary infection model was used; our

results confirmed that the E. faecalis 12030DdltA mutant

colonized the kidneys significantly better than the wild-type strain

after 24 and 48 h (Figure 2). In addition, the mutant colonized the

bladder significantly better after 24 and 48 h albeit the differences

observed at 48 h were not statistically significant. This is assumed

by the fact that E. faecalis usually does not persist in the bladder,

resulting in decrease number of colony counts, because of

clearance of bacteria from the bladder by mechanical forces of

urine flow.

However, the same E. faecalis 12030DdltA mutant demon-

strated less colonization in a mouse sepsis model [37]. This

disparate finding suggests the existence of specific receptors on

bladder and/or uroepithelial cell surfaces. Our results therefore

show that D-alanylation of LTA can decrease adherence to

specific host cells and therefore suggest a novel function of

alanylation of LTA in E. faecalis. Differential expression of the dlt
locus may allow enterococci to adapt to specific ecological niches.
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