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Abstract

Climate change leads to species’ range shifts, which may end up reducing the effectiveness of protected areas. These
deleterious changes in biodiversity may become amplified if they include functionally important species, such as herbivores
or pollinators. We evaluated how effective protected areas in the Brazilian Atlantic Forest are in maintaining the diversity of
tiger moths (Arctiinae) under climate change. Specifically, we assessed whether protected areas will gain or lose species
under climate change and mapped their locations in the Atlantic Forest, in order to assess potential spatial patterns of
protected areas that will gain or lose species richness. Comparisons were completed using modeled species occurrence data
based on the current and projected climate in 2080. We also built a null model for random allocation of protected areas to
identify where reductions in species richness will be more severe than expected. We employed several modern techniques
for modeling species’ distributions and summarized results using ensembles of models. Our models indicate areas of high
species richness in the central and southern regions of the Atlantic Forest both for now and the future. However, we
estimate that in 2080 these regions should become climatically unsuitable, decreasing the species’ distribution area. Around
4% of species were predicted to become extinct, some of them being endemic to the biome. Estimates of species turnover
from current to future climate tended to be high, but these findings are dependent on modeling methods. Our most
important results show that only a few protected areas in the southern region of the biome would gain species. Protected
areas in semideciduous forests in the western region of the biome would lose more species than expected by the null
model employed. Hence, current protected areas are worse off, than just randomly selected areas, at protecting species in
the future.
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Introduction

The implementation and maintenance of protected areas is still

the cornerstone of conservation actions [1]. However, due to

broad-scale environmental changes which will potentially shift the

distribution of suitable habitats for many species across the

geographic space [2,3], scientists have expressed concern that

existing networks of protected areas might not be able to

guarantee the long-term persistence of the species they are

supposed to protect [4,5].

Climate change poses a new challenge to the traditionally static

way conservation planning is usually done, by forcing planning to

become more dynamic [6]. Several species have already shifted

their ranges to cooler regions, both in temperate regions and in the

tropics, as a response to a warming climate [7–9]. Most solutions

ofereded by conservation scientists and practitioners to deal with

spcies’ range shifts focus on the establishment of new protected

areas that should cope with the effects of climate change on species

distribution [6,10–16]. However, the effectiveness of protected

areas may decrease as they become climatically unsuitable for

most species [5] and more suitable to invasive species [17,18].

Climate-driven modifications in species composition within

protected areas may disrupt species interactions [19] by altering

ecosystem functioning [20]. Therefore, it is necessary to take into

account forecasted changes in species distributions to evaluate the

future effectiveness of protected areas [5,6,21].

The effects of climate change on species distributions have been

generally inferred through ecological niche models (ENM) [22],

also referred to as ‘‘bioclimatic envelope models’’ (BEM) [23] or

‘‘species distribution models’’ (SDM) [24]. Araújo and Peterson

[25], Peterson and Soberón [26], and Rangel and Loyola [27]

have all provided recent clarifications on their conceptual

differences. However, different modeling methods and climate

models may produce very different outputs, increasing uncertain-

ties in projected distributions and their applicability to conserva-

tion efforts [3,28]. In the last decade, new modeling techniques

have been developed that take into consideration such impedi-

ments (e.g. model ensemble forecasting). Nonetheless, few studies

have applied modern techniques to predict the distribution of

invertebrates (but see Diniz-Filho et al., 2010a, b), despite an
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urgent need to evaluate the consequences of climate change to this

hyperdiverse group in order to plan for its conservation [29].

Lepidoptera is the second richest order of insects, with 150,000

species recorded in the world [30]. Butterflies and moths are

exclusive pollinators of many plant species [31,32]. The vast

majority of Lepidoptera larvae are herbivores, consuming almost

all orders of gymnosperms and angiosperms as well as mosses and

ferns [33]. Herbivory can influence the fitness [34], distribution,

composition and abundance of plant species [35], as well as the

rate of litter decomposition [36]. Lepidopterans are also important

food items for arthropods (in particular spiders and other insects)

and vertebrates (especially birds and bats). Changes in Lepidoptera

diversity, abundance, phenology, distribution and assemblage

composition driven by climate changes may affect ecosystem

functions and services, species interactions, as well as the structure

of plant communities and economic losses due insect infestation

and pestilence [37].

Many studies have found that climate change will alter patterns

of phenology, horizontal or vertical range (distribution and area),

and the abundance of Lepidoptera species (reviewed in [38]). For

example, Conrad et al. [39] studied the population dynamics of

the tiger moth Arctia caja (Arctiinae) between 1968 and 1999 in

Great Britain and observed a decrease of about 30% of abundance

and proportion of occupied sites after 1984. Arctiinae (Erebidae)

(classification following [40]), in particular, comprises almost

11,000 species of moths, of which about 6,000 are found in the

Neotropics [41]. In Brazil, there are records for 1,391 species [42].

The Atlantic Forest has the richest Arctiinae fauna among all

Brazilian biomes (1193 species) and approximately 40% of these

species are endemic to this biome [43]. Arctiinae larvae feed on

angiosperms and gymnosperms, as well as algae, lichens, and

mosses [44]. Although Arctiinae are among the most polyphagous

lepidopterans [44], the proportion of generalist species decreases

toward the tropics. Many Arctiinae larvae and adults have

conspicuous coloration, are diurnal and many adults form mimetic

rings with Hemiptera, Hymenoptera, Coleoptera and unpalatable

butterflies [45]. As well as exhibiting warning coloration, most of

these moths are also toxic or unpalatable. Several secondary

compounds were found in all stages of Arctiinae (eggs, larvae,

pupae and adults), including pyrrolizidine alkaloids, which are

generally sequestered from their host plants during the larval stage

[45]. We choose this group because of its important roles in

ecosystems and also because of their extremely high diversity in

the region, so that we can run models using a great amount of data

and keeping the taxonomic group narrow.

Here, we evaluated the current and future climatic suitability of

protected areas located in the Atlantic Forest Biodiversity Hotspot

(in Brazil) based on species’ ecological niche models and diversity

patterns of tiger moths (Lepidoptera: Erebidae: Arctiinae). More

specifically, we addressed the following questions: (1) how will

climate change affect the geographical pattern of Arctiinae species

richness in the region? And (2) how does the spatial location of a

given protected area determine if it will gain or lose species under

different climate change scenarios?

We selected tiger moths as our case-study because they

comprise a species-rich subfamily, are well represented in Brazilian

collections (especially in the Atlantic Forest, which is the

geographical area covered in this study) [42] and because there

are several active researchers currently working with Neotropical

Arctiinae. These researchers helped with the identification of some

species and allowed for a nomenclatural update, incorporating

recent occurrence records in our dataset.

Methods

Study region
We focused our analyses on the Atlantic Forest Biodiversity

Hotspot [46]. The Atlantic Forest originally covered around 150

million ha (Fig. 1) with heterogeneous environmental conditions.

Its latitudinal range extends into tropical and subtropical regions,

and its wide longitudinal range harbors differences in forest

composition due to a diminishing gradient in rainfall from coast to

interior [47]. Although the Atlantic Forest has high diversity and

endemism (with more than 20,000 plant species, 261 mammal

species, 688 bird species, 200 reptile species, 280 amphibian

species, to name well-studied taxonomic groups), currently, only

ca. 1% of the original forests are legally protected [47]. An

effective reserve network, taking into account climate change to

ensure the species persistence in the long-term, is therefore

imperative to address conservation investment in appropriate sites.

Ecological niche models
We obtained occurrence records for 703 tiger moth species

inhabiting the Atlantic Forest from field surveys and museum

records. Tiger moth records included the period of 1920 to2008.

We overlaid these point-locality records for each species into an

equal-area grid (10 km610 km of spatial resolution) that covered

the full extent of the Atlantic Forest. Then, we built a species by

grid cell matrix, considering presences of species inside grid cells.

Species with less than five occurrences were excluded to avoid

model bias, and therefore, a total of 507 species were studied.

Figure 1. Original extent of the Atlantic Forest Biodiversity
Hotspot in Brazil.
doi:10.1371/journal.pone.0107792.g001
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We obtained current climatic data from the WorldClim

database (http://www.worldclim.org/current) and future climatic

scenarios from CIAT (http://ccafs-climate.org). These future

scenarios were developed by the Intergovernmental Panel on

Climate Change (IPCC) Fourth Assessment Report (AR4). For

each species, we modeled its distribution as a function of four

climatic variables: annual mean temperature, temperature sea-

sonality (standard deviation * 100), annual precipitation and

precipitation seasonality (coefficient of variation). These variables

represent interpolated climate data from 1950 to2000 [48]. For

future climatic conditions we used the same climate variables for

the year 2080, obtained from three Atmosphere-Ocean General

Circulation Models (AOGCMs) of the A2 emission scenario

(CCCMA-CGCM2, CSIRO-MK2.0 and UKMO-HadCM3),

that were generated by application of delta downscaling method

on the original data from IPCC’s report. Data original resolution

was 30 arc-seconds and both current and future climate variables

were re-scaled to our grid resolution.

We used presence derived from species’ occurrences and

climatic variables to model species’ ecological niche and project

their distributions. As reliable absence data were not available, we

fitted six presence-only modeling methods (which differ both

conceptually and statistically [27]), grouped them into two

separate sets (distance methods and machine-learning methods)

and applied the ensemble forecasting approach within each set (see

text below). Distance methods were Euclidian and Gower

distances [49] and Ecological Niche Factor Analysis (ENFA)

[50]. Machine learning methods were Maximum Entropy

(MaxEnt) [51], Genetic Algorithm for Rule Set Production

(GARP) [52] and Artificial Neural Networks (ANN) [53]. These

presence-only methods for modeling species’ ecological niches can

be grouped into three types of presence-only methods [54]. Firstly,

into methods based solely on presence records (e.g. Euclidian and

Gower distances), the prediction is made without reference to

other samples from the study area. Secondly, into methods using

‘‘background’’ climatic data for the whole study area (e.g. ENFA,

MaxEnt), which evaluate how the climatic conditions where

species are known to occur relates to the climate across the rest of

the study area (the ‘background’). Thirdly, into methods that

generate (sample) ‘‘pseudo-absences’’ from the study area (e.g.

GARP, ANN), assessing differences between occurrence sites and

a set of sites chosen from the study area which are used instead of

real absence data. In this case, the set of ‘‘pseudo-absences’’ were

selected randomly [52].

For all models, we randomly partitioned presence and pseudo-

absence data of each species in 75% for calibration (or training)

and 25% for validation (or test); repeating this process 10 times (i.e.

a cross-validation) and maintaining the observed prevalence of

each species. We converted continuous predictions in presence

and pseudo-absences finding the threshold with maximum

sensitivity and specificity values in the receiver operating

characteristic (ROC) curve and calculated the True Skill Statistics

(TSS) to evaluate model performance [55]. The ROC Curve is

created by plotting the fraction of true positives out of the positives

vs. the fraction of false positives out of the negatives, at various

threshold settings. The TSS range from 21 to +1, where values

equal +1 is a perfect prediction and values equal to or less than

zero is a prediction no better than random [55]. Although the area

under the receiver operating characteristic curve (AUC) is the

most common method to evaluate the accuracy of predictive

distribution models, we decided to use TSS. There are several

reasons why AUC should not be used for this purpose [56]. In

particular, AUC weighs omission and commission errors equally

and the total geographic extent of the study highly influences its

scores [56].

We did an ensemble of forecasts to produce consensual

predictions of species distributions [3,10,23,28,57–59]. We pro-

jected distributions to current climatic conditions and obtained 30

projections per species within each set of methods (3 modeling

methods 610 randomly partitioned data). We also projected

distributions to future climate, obtaining 90 projections per species

(3 modeling methods 63 climate models 610 randomly

partitioned data). This allowed us to generate a frequency of

projections in the ensemble. We then generated the frequency of

projections weighted by the TSS statistics for each species and

timeframe within each set of methods, i.e. best models have more

weight in our consensus projections. We considered the presence

of a species only in cells with 50% or more of frequency of

projections, but a continuous value was held when this occurred.

Then, we defined species richness as the sum of the ranges which

overlapped (predicted by ENMs) for each cell. So, for example, if

twenty different species were projected in a given cell the species

richness for that cell was considered as twenty. Finally, we

calculated species turnover between contemporary and future

species distributions in each cell (G+L/S)/S+G, where ‘‘G’’ was

the number of species gained, ‘‘L’’ the number of species lost and

‘‘S’’ is the contemporary species richness found in the cell.

Evaluation of protected area effectiveness under climate
change

The locations of the 187 protected areas (IUCN Categories I–

IV) currently established in the Atlantic Forest were obtained from

the United Nations Environmental Programme, World Conser-

vation Monitoring Cemntre (UNEP-WCMC) [60]. These pro-

tected areas comprised 820 cells distributed in 11,461 Atlantic

Forest cells. We overlaid protected area polygons onto our grid

considering a grid cell as ‘‘protected’’ even if only a portion of it is

protected, assuming that all species occurring in that cell could

potentially benefit from the occurrence of a protected area in that

cell.

Our aim was to evaluate whether current locations of protected

areas are better than random allocations in protecting tiger moth

diversity in the face of climate change. For this, we generated a

null model that maintained size, form and orientation of protected

areas but removed other intrinsic effects that likely will affect their

suitability in the face of climate change (i.e. latitude, altitude). The

null model allocated the protected areas randomly in the Atlantic

Forest and obtained species richness in the present and the future

based on the projections of species distribution models. Since there

are many distinct possibilities to randomly allocate protected areas

in the Atlantic Forest, this procedure was repeated 1,000 times and

the average species richness obtained.

Results

For most species, TSS values were relatively high (mean TSS 6

SD = 0.5560.05 for distance methods; and 0.6460.14, for

machine-learning methods) indicating good model fit (Table S1).

Different modeling methods projected similar patterns of tiger

moth species richness both for current and future climates, except

for ENFA and ANN (Fig. 2). For all modeling methods, ensemble

projections indicated areas of high species richness in the central

and southern regions of the Atlantic Forest both for now and for

2080 (Fig. 3). However, these regions should become climatically

unsuitable in 2080 for many species, decreasing species’ distribu-

tion areas (Fig. 3, Table S2 and S3). We also found high species

temporal turnover (up to 100% for all methods) across the

Climate Change and Tiger Moths
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projections between current and future climates (Fig. 4). This

means that future scenarios showed dramatic changes not only in

species richness but also in turnover of species composition (Table

S4).

Central and northern sections of the Atlantic Forest should face

higher temperatures, with lower seasonality, whereas the south

should receive more rainfall, yet also have lower seasonality

(Fig. 5). Most species had a significant range contraction (Table

S3). Consensus of machine-learning methods projected up to 4.3%

of species that had their ranges reduced by 100%, whereas

consensus of distance methods projected 0.4% of species in the

same situation (Table S3).

Future species richness should be lower than contemporary

richness for most of the protected areas (Fig. 6). Differences

between future and contemporary species richness were more

varied for Distance than Machine Learning methods (Fig. 6A1

and 6B1). Distance models show a more optimistic result, with

some protected areas holding more species (green dots in Fig. 6A1

and protected areas in the Fig. 6A2) in the future than in current

time. These protected areas predicted to gain species richness are

mostly located in the mountainous southeastern portion of the

biome.

Machine-learning methods predicted that almost all protected

areas will lose species in the future (Figs. 6B1 and 6B2). The main

expectation of the null model of random location of protected

areas is the loss of species in the future, both for Distance

(Fig. 6A1) and Machine Learning (Fig. 6B1) methods. Among the

protected areas predicted to lose species (orange and red dots and

protected areas in Fig. 6), around half of them should experience

losses worse than those predicted by the null model (red dots and

protected areas in Fig. 6). These protected areas are concentrated

in the southwestern and northern sections of the biome.

Figure 2. Species richness patterns for tiger moths in the Atlantic Forest Biodiversity Hotspot, Brazil. Tiger moth species richness
patterns in the Atlantic Forest, Brazil (present and future, 2080, climate models CCCMA-CGCM3, CSIRO-MK2, and HCCPR-HadCM3) forecasted by
ecological niche models generated by different distance modeling methods (Euclidian and Gower distances, Ecological Niche Factor Analysis, ENFA)
and machine learning methods (Maximum Entropy, MaxEnt; Genetic algorithm for Rule set Production, GARP; Artificial Neural Networks, ANN).
doi:10.1371/journal.pone.0107792.g002
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In addition to the general trend of species loss, the baseline

comparison provided by the null model of random allocation of

protected areas (blue dots) indicated great variation between how

many species protected areas would lose (and also gain in case of

distance methods). For machine-learning methods, species richness

for current and future climates for the real locations of protected

areas was generally lower (red dots and protected areas in Fig. 6)

than those obtained from the random locations of protected areas

(blue dots in Fig. 6). Nearly half of currently established protected

areas should become climatically unsuitable at rates higher than

expected by a random distribution of protected areas (red dots and

protected areas in Fig. 6).

Protected areas predicted to gain species (particularly for

distance methods) are mostly located in the cooler southern region

of the Atlantic Forest (Fig. 6). Protected areas along the coast or in

adjacent mountainous areas should lose species, although those in

the north would do so at rates higher than those expected by our

null model (protected areas indicated in red). The western region

of the biome, which includes semideciduous forests, will experi-

ence a severe reduction in species richness due to climate change

(Fig. 6).

Discussion

We forecasted species’ range shifts and range contractions for

most tiger moth species inhabiting the Atlantic Forest to evaluate

the effectiveness of existing protected areas [61,62]. Our findings

indicate that most protected areas should become climatically

unsuitable for sustaining their current number of species under

climate change. As Atlantic Forest protected areas will become less

effective in safeguarding moths, it is important to anticipate how

climatic changes will lead to a decreasing species representation

across the entire network of protected areas.

Our results agree with Pearson and colleagues [63] which

detected similar accuracy among species distribution models,

although the spatial pattern in the predictions was different.

Distance methods are simple methods that do not consider

complex relationships between species occurrence and predictors,

use presence-only data and tend to underestimate the distribution

in novel conditions like those expected to occur under climate

change [24,63]. Alternatively, machine-learning methods are very

complex, assume different relationships and can underestimate or

overestimate distributions in novel conditions [24,63]. These

features help explain the differences in our results obtained by

distance methods when compared with machine-learning meth-

ods, especially regarding the pattern of species richness and

turnover rates.

The choice of a perfect set of modeling methods, however, is not

an easy task. When predicting climate change effects on species

distributions, commission errors lead to the overestimation of

range expansions whereas omission errors produce overestimates

of range contractions. If one is employing such models to predict

regions of climatic stability to guide conservation actions, both

omission and commission errors are of particular interest, as these

errors are likely to produce huge bias in the results of gap-analysis

as well. Distance models tend to inflate commission errors and

Figure 3. Consensus maps for tiger moth species richness in the Atlantic Forest Biodiversity Hotspot, Brazil. Maps of modeled tiger
moth species richness based on consensus projections of 507 species predicted to occur in the Atlantic Forest Biodiversity Hotspot, Brazil, for current
time (1950–2000) and 2080 (2051–2080) according to two different types of modeling methods and climate models. Models from distance and
machine-learning methods were combined through an ensemble of forecasts to generate these consensus maps.
doi:10.1371/journal.pone.0107792.g003
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individual species distribution, which are usually larger than

predicted by other models. Machine-learning models usually result

in smaller distributions when compared to other models. Thus, if

conservation practitioners want to reduce commission errors,

machine-learning models are perhaps the best option. Although,

in this case, one will probably face the inconvenience of a lack of

clarity and in turn, a difficulty of explaining results to stakeholders

and decision makers involved in the conservation process [27].

Our study predicts that up to 4.3% of tiger moth species should

face 100% of range contraction in the Atlantic Forest’s future.

Among these species that would disappear from the region, three

of them are endemic (Clemensia marmorata, Cosmosoma cingla,

and Arctiini NI92 morphospecies). The majority (n = 18) of species

predicted to have a 100% of range contraction belong to the

Arctiini tribe (in general robust, medium-sized moths and

polyphagous larvae) and the Lithosiini tribe (in general slender,

small-sized moths, and lichen-feeding larvae). Unfortunately, there

islittle, scattered information on the natural history of and the

appropriate climatic conditions for these species available (as for

the vast majority of Neotropical species). It is therefore hard to

make recomendations for conservation strategies for these species.

In general, the consequences of these extinctions can spread

through networks of interaction causing extinction cascades and

consequent disrupted ecological functions in ecosystems [19,64].

In addition to causing local and regional extinctions, climate

change can alter the size and location of the range and patterns of

abundance and phenology of species [38]. Many lepidopterans,

including Arctiinae species [65], are agricultural pests and changes

in range, abundance and phenology of these species may increase

the rate of invasion and increase the damage intensity they can

cause [66,67]. Furthermore, climate change can modify patterns

of synchronization between larvae and host plants, among adults

and flowers, and among the two life stages and their natural

enemies [68]. Some tiger moth species are important pollinators of

Atlantic Forest plants, including orchids [69], and the lack of

synchronization between flowering and pollinating may cause

more extinctions.

We also found an increase in species richness in the future in a

few southern areas of the biome, due to the expansion of the range

toward higher latitudes. This pattern has been observed in studies

on Lepidoptera [9,70] and other groups [8]. It is known, however,

that species with wide latitudinal ranges could be preadapted to

cope with climate change because they already find considerable

temperature variation across their habitats. However, low

dispersal capability and difficulties to cross open habiats may

prevent or at least slow down range shifts of Arctiinae [38]. For

instance, several studies have found that Arctiinae species disperse

over short distances in natural conditions [71,72]. The average

distance traveled by Dysauxes ancilla L. moths in two consecutive

days (at mark-released-recapture study), for example, was only

43 m [72]. The same author observed that moths rarely leave their

breeding area and did not cross very open areas or dense forest. In

fact, two other studies in Brazilian Biodiversity Hotspots, the

Atlantic Forest [73] and the Cerrado [74] found that Arctiinae

fauna of open vegetation (grassland) differed from the denser

vegetation (forest) and a very small number of species co-occurred

in these vegetation types. More importantly, these differences were

evident even when the sample sites were close to each other (about

100 m). Accordingly, the low dispersal capability of the species of

Arctiinae compounded with the low ability of the species to cross

open areas in fragmentated landscapes of the Atlantic Forest

should further complicate the future of these species. This is

particularly concerning in the Atlantic Forest, given that human

activity has degraded more than 85% of the biome [47].

One strategy to mitigate the loss of species in the Atlantic Forest

protected areas in the future would be the creation of protected

areas in southern regions and at higher altitudes of the Atlantic

Forest. Klorvuttimontara and colleagues [75], for example, despite

having recorded a reduction of approximately 30% of butterfly

richness in the protected areas of Thailand in the future (A2

scenario), observed that the effectiveness of protected areas

remained almost the same in the future. The explanation for this

was that most protected areas in Thailand are located at high

altitudes, allowing the butterflies to migrate from lowland areas to

higher altitudes as the climate becomes unsuitable in the future. Of

course, critical questions should be addressed to actually imple-

Figure 4. Species turnover pattern for tiger moths in the
Atlantic Forest Biodiversity Hotspot, Brazil. Maps of modeled
tiger moth species turnover based on consensus projections of 507
species predicted to occur in the Atlantic Forest Biodiversity Hotspot,
Brazil, for current time (1950–2000) and 2080 (2051–2080) according to
two different types of modeling methods and climate models. Models
from distance and machine-learning methods were combined through
an ensemble of forecasts to generate these consensus maps.
doi:10.1371/journal.pone.0107792.g004
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ment a decision like this, such as infostering the implementation of

protected areas in high-altitude regions. Some questions would be,

for example: what are the indications that these regions would

protect other taxa than moths? Weel, it seems defensible to predict

that they likely will be, because many species and communities are

likely to migrate south and to higher elevations in response to

climate change [7,8,10,17]. Should protected areas be placed to

span altitudinal ranges within the protected area itself, so that

species can start low and move steadily higher as the climate

changes? These questions are still difficult to answer, but we hope

our study is a step towards scientifically driven decisions in future

protected area establishment and management.

The establishment of protected areas is still one of our best

conservation actions to protect biodiversity. The Atlantic Forest

has been indicated as aconservation priority by several world

studies using different criteria [76,77]. Our approach is one of the

first to incorporate climate change threats on the long-term

assessment of protected areas (see [5,17,21,77,78]). In fact,

climatic changes are increasingly driving species out of protected

areas due to species range shifts [5,79,80].

It is important to highlight some of the caveats of our study.

Firstly, our database has a large number of records, which were

gathered from field studies and museum records. Although the

data is dense and trustworthy, there could be some bias towards

easily assessed sampling regions or toward large, colorful species,

as in all kinds of samplings. Further, some records were from as

early as 1920 and climate has likely shifted already since then.

Secondly, our models assume tiger moths are in equilibrium with

the current climate and have unlimited dispersal to tackle suitable

climates as they move in the geographic space. These are simple

assumptions allowing us to model all species distribution at a time.

Thirdly, we predicted future species distribution assuming that the

Figure 5. Expected changes for the four climatic variables used to model species’ ecological niches in the Atlantic Forest
Biodiversity Hotspot, Brazil. Maps show present conditions and values for future climate models CCCMA-CGCM3, CSIRO-MK2, and HCCPR-
HadCM3, in 2080).
doi:10.1371/journal.pone.0107792.g005
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vegetation types in the Atlantic Forest will remain in the same

regions of the current distribution. This last assumption can affect

our species distribution model predictions. Species’ range shifts

outside of the current limits of the biome or their preferential

habitat cannot be measured by our methods. Fourthly, the

effectiveness of protected areas tends to be overestimated given

that species were considered to be protected if any part of their

range overlapped with protected areas polygons [81]. However,

simple presence within a protected area is insufficient to ensure the

long-term persistence of many species. Most existing protected

areas in the Atlantic Forest were created without following any

ecological criterion and species representation in this network is

highly variable. Clearly, there is a need to update the current

protected areas to improve species representation and climate

change is an important factor to be considered.

As a final message, it is important to remember that species will

generally alter their distributions independently. How do we

prioritize which species to try to track through these changes? In

this paper we recognize this conundrum and selected Tiger moths

as our model group because of available data and diversity of

species. It is now cear that we simply can’t model or predict the

response of all species on Earth to climate change. However, there

are some generalities, such as the general tendency of species to

mode southward or uphill in the southern hemisphere that could

be helpful, if combined with models like the one we presented

here, to guiding decisions about how to better allocate finite

resources for biodiversity conservation.

Figure 6. Relationship between present and future tiger moth species richness in the Atlantic Forest Biodiversity Hotspot, Brazil.
Modeled present and future species richness of protected areas (filled circles) in the Atlantic Forest biome (A1 and B1). Open blue circles indicate
expected species richness according to a null model of random location of protected areas in the biome. Dashed lines are the extrapolated
regressions of the expected species richness according to the null model (A1: y,21.983+0.623*x; B1: y ,32.178+0.640*x). Filled red circles indicate
protected areas predicted to have severe species richness losses, defined as those in which future species richness will be lower than the predicted by
a null model of random location of protected areas (below dashed regression line). Orange filled circles indicate protected areas predicted to have
mild species richness losses, defined as those in which future species richness will be higher than the predicted by a null model of random location of
protected areas. Green filled circles indicate protected areas predicted to gain species richness. Solid lines indicates the regression of modeled species
richness in the future against modeled species richness in the present (A1: y,43.817+0.464*x, R2 = 0.362, F1,185 = 105.2, P,0.001; B1: y,22.736+
0.688*x, R2 = 0.850, F1,185 = 1051.0, P,0.001). Maps of protected areas predicted to gain (green) or lose (orange, red) species in future changing
climate (A2 and B2).
doi:10.1371/journal.pone.0107792.g006
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Artificial Neural Networks).

(XLS)

Table S2 Tiger moth tribes, species, and number of grid cells
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ecological niche modeling methods.
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contraction predicted to during baseline climate (1950–2000) and
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Table S4 Turnover measures for each of 11,464 grid cells

overlaying the Atlantic Forest, Brazil, in this study. Turnover is

shown for each modeling method (Euclidian and Gower distance,

ENFA, MaxEnt, GARP, and Artificial Neural Networks), and

climate model (CCCMA-CGCM, CSIRO-MK2, and HCCPR-
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