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Abstract

Graph search is attractive for the quantitative analysis of volumetric medical images, and especially for layered tissues,
because it allows globally optimal solutions in low-order polynomial time. However, because nodes of graphs typically
encode evenly distributed voxels of the volume with arcs connecting orthogonally sampled voxels in Euclidean space,
segmentation cannot achieve greater precision than a single unit, i.e. the distance between two adjoining nodes, and partial
volume effects are ignored. We generalize the graph to non-Euclidean space by allowing non-equidistant spacing between
nodes, so that subvoxel accurate segmentation is achievable. Because the number of nodes and edges in the graph remains
the same, running time and memory use are similar, while all the advantages of graph search, including global optimality
and computational efficiency, are retained. A deformation field calculated from the volume data adaptively changes
regional node density so that node density varies with the inverse of the expected cost. We validated our approach using
optical coherence tomography (OCT) images of the retina and 3-D MR of the arterial wall, and achieved statistically
significant increased accuracy. Our approach allows improved accuracy in volume data acquired with the same hardware,
and also, preserved accuracy with lower resolution, more cost-effective, image acquisition equipment. The method is not
limited to any specific imaging modality and readily extensible to higher dimensions.
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Introduction

Object segmentation has been widely used in image under-

standing and object recognition for decades [1], especially in

quantitative analysis of volumetric medical images [2,3]. Typically,

tissues are organized in layers, and to segment their boundaries or

surfaces, the segmentation problem can be transformed into the

problem of computing a minimum closed set in a node-weighted

directed graph [4,5]. Every node represents a single voxel, while

the graph represents the voxel grid. The optimal surface

corresponds to the upper envelope of the minimum closed set of

nodes. Because volume data is typically represented as an

orthogonal matrix of intensities, the surface segmentation can

not achieve greater precision than a single unit, or the distance

between two adjoining nodes in the graph.

However, higher segmentation accuracy than unit allows better

diagnosis and treatment of disease, and equal segmentation

accuracy with lower resolution image acquisition hardware allows

more cost-effective imaging.

Graph techniques, a generalization of 2D shortest path-based

segmentation [6,7], provide globally optimal solutions with respect

to a cost function for surface segmentation in three-dimensional

volumes in polynomial time [5]. They allow incorporation of

various feasibility constraints and regional information [8] for

simultaneous segmentation of multiple surfaces [9]. Additional

terms in the cost function make it possible to penalize local shape

or surface distance changes by learning the expected model during
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a training process [10]. Unfolding techniques were developed to

segment objects with complex shapes, such as knee bone and

cartilage [11], heart [12], pulmonary airway [2], vascular trees

[13], retinal lesions [14] and retinal vessels [15]. However, all

techniques use a graph in Euclidean space with nodes corre-

sponding to the center of evenly distributed voxels, thus limiting

segmentation precision to a single unit.

Volumetric images are formed by discretizing into voxels the

continuous intensity function sampled by sensors, resulting in

partial volume effects [16,17]. Partial volume effects contain

additional information that can potentially be exploited by graph

techniques. However, they are ignored if the intensity, or a

derivative thereof such as a gradient, measured at the center of

each voxel, is assigned to nodes as their costs in a graph in

Euclidean space. By generalizing the graph to non-Euclidean

space, i.e. allow non-equidistant non-orthogonal spacing between

nodes on any dimension, this previously ignored information can

be used, while all the advantages of graph techniques sketched

above are retained, including global optimality and computational

efficiency. We define such a graph search as non-Euclidean graph

search.

Specifically, we apply a non-Euclidean deformation in con-

structing the graph using a displacement field obtained directly

from the volume data. This principle is sketched in Fig. 1 using a

simplified 2D example. The density of nodes thus increases at

regions where salient transitions of image properties are more

likely to occur, while the displacement of each node is confined to

the same voxel. Overall the complexity of the graph structure in

terms of the number of nodes and arcs is unchanged, so that

memory requirements and running time are unchanged except for

the computation of the deformation field. The graph space is

deformed in a Euclidean way. However, since we do not define a

distance metric between nodes in the graph, we refer to this graph

structure as a non-Euclidean graph. Effectively, the deformation

field adaptively changes the regional node density so that this is

higher in regions where the target boundary is expected to pass

through, and lower in the remaining region, while retaining the

overall node density.

The purpose of this study is to introduce and describe this novel

approach, and validate its increased accuracy by comparing it to

conventional graph search segmentation of down-sampled optical

coherence tomography (OCT) volumes of the retina and magnetic

resonance imaging (MRI) of the carotid vessel wall. The non-

Euclidean graph approach turns out to have superior segmenta-

tion accuracy over conventional graph search. We use down-

sampled volumes as the input data for these comparative studies,

while the accurately segmented high resolution surfaces from the

original, higher resolution volumes serve as the reference standard.

The approach is general and can be adapted to other imaging

modalities as well.

Methods

0.1 Euclidean Space Graph Representation of Layered
Tissues

Let I be a given 3D volumetric image with a size of

n~X | Y | Z. For each (x,y) pair, 0ƒxvX and 0ƒyvY ,

the voxels with different z-coordinates, that is, the voxel subset

fI (x,y,z) D 0ƒzvZg, forms a voxel-column parallel to the z-axis,

denoted by p(x,y). Two voxel-columns are neighboring if their

(x,y)-coordinates satisfy some neighborhood condition. For

example, under the 4-neighboring setting, the voxel-column

p(x,y) is neighboring to the voxel-column q(x’,y’) if

Dx{x’DzDy{y’D~1. Henceforth, a model of the 4-neighboring

setting is used; this simple model can be easily extended to other

neighborhood conditions. Each of the target terrain-like surfaces

contains one and only one voxel in each column of I (Fig. 1 (a)).

The feasibility of the target surfaces is governed by the surface

smoothness and separation constraints. The surface smoothness

constraint is specified by two smoothness parameters, Dx and Dy,

which define the maximum allowed change in the z-coordinate of

a surface along each unit distance change in the x and y
dimensions, respectively. If I (x,y,z’) and I (xz1,y,z’’) (resp.,

I (x,yz1,z’’)) are two (neighboring) voxels on a feasible surface,

then Dz’{z’’DƒDx (resp., Dz’{z’’DƒDy).

In multiple surface detection, the surface separation constraint

specifies the minimum and maximum distances along the z-

dimension between any pair of the target surfaces of interest. Each

voxel I (x,y,z) has a real-valued cost ci(x,y,z) for each sought

surface Si, which is inverse to the likelihood that the voxel is on the

surface. For a given integer kw0, the surface segmentation

Figure 1. Graphs in Non-Euclidean space allow surface
localization with subvoxel accuracy. (a) the graph in conventional
Euclidean space allows graph search to find the lowest cost path
(darkest voxel intensity) with voxel accuracy, compared to the yellow
true surface; (b) the Non-Euclidean graph allows the green surface to be
segmented through the lowest cost path with subvoxel accuracy, after
the deformation field derived from the volume data (in this 2D example,
derived from the 8-neighborhood) is applied to the two central nodes
(blue arrows). Note the partial volume effect compared to their
neighboring voxels, indicating that the actual center of low cost path is
below the center of the upper dark voxel, as also indicated by the
yellow true surface.
doi:10.1371/journal.pone.0107763.g001

Figure 2. Non-Euclidean graph search proceeds in four steps.
doi:10.1371/journal.pone.0107763.g002
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problem seeks to identify an optimal set of k surfaces with

minimum total cost by summing the costs associated with all voxels

on all sought surfaces.

0.2 Conventional Euclidean Space Graph Search
Segmentation

Based on previously reported graph-theoretic segmentation

techniques [2,4,5,10], the surface segmentation problem in 3D

volumetric images I (X ,Y ,Z) is formulated as computing a

minimum closed set in a node-weighted directed graph. For single

surface segmentation (i.e. k~1), the graph G~(V ,E) consists of a

set of nodes V and a set of arcs E connecting pairs of nodes. Every

node u(x,y,z) is created from exactly one voxel of I (x,y,z). The

subset of nodes corresponding to a voxel-column p(x,y) of voxels

in I forms a node-column, denoted by Col(p). Arcs connecting

two neighboring nodes on the same column are intra-column arcs

while those connecting two nodes from neighboring columns are

inter-column arcs. The intra-column arcs pointing downward

enforce the constraint that a feasible surface S intersects each

voxel-column only once. The inter-column arcs impose smooth-

ness constraints between neighboring voxel-columns.

A closed set is a subset of nodes which have no arcs leaving the

set. Each non-empty closed set uniquely defines a feasible surface

S in I (X ,Y ,Z). In order to find a minimum closed set C whose

total cost is the summation of costs of all nodes contained in the

region bounded by surface S, the weight c(x,y,z) of each node

u(x,y,z) is assigned its original cost w(x,y,z) minus the cost of the

node immediately below it, i.e. cost w(x,y,z{1) of node

u(x,y,z{1) [2,4,5]:

c(x,y,z)~
w(x,y,z) if z~0,

w(x,y,z){w(x,y,z{1) otherwise:

�
ð1Þ

Figure 3. 2D deformation field of one B-scan in a OCT volume. (a) A single boundary was delineated in one B-scan of a OCT volume; (b) The
2D deformation field of the re-sampled B-scan indicates the actual boundary location within each voxel under partial volume effects.
doi:10.1371/journal.pone.0107763.g003

Figure 4. Impact of regularization on the deformation field of a 3D OCT volume. (a) Deformation field before regularization; (b)
Deformation field after regularization.
doi:10.1371/journal.pone.0107763.g004
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By solving the minimum closed set problem, each node gets a

binary label l indicating if it is contained in C. The upper envelope

of C corresponds exactly to the optimal surface with the same

minimum total cost in the original graph.

For simultaneously segmenting k interrelated surfaces, a similar

graph structure is duplicated k times with respect to a particular

surface. The costs assigned to each sub-graph reflects whether the

data favor the nodes belonging to that certain surface. Inter-

subgraph arcs are created to connect two nodes from correspond-

ing columns of different sub-graphs, imposing neighboring surface

separation constraints. The total cost is the summation of the cost

in k sub-graphs.

0.3 Steps in Non-Euclidean Graph Search
Non-Euclidean graph search proceeds in the following steps

(Fig. 2):

1. Obtain a deformation field from the volumetric intensity data;

2. Build the graph in Euclidean space as in Section 0.2;

3. Deform the Euclidean space graph into a non-Euclidean graph

using the deformation field;

4. Graph segmentation as in Section 0.1.

It is worth noting that after deformation, the globally optimal

solution is searched for in the new non-Euclidean graph space,

which fundamentally distinguishes our approach from those local

approaches, such as the one proposed in [18]. It starts from a

regular segmentation and interprets partial belongingness of graph

elements using cuts with sub-edge precision. The improvements

are essentially local adjustments in contrast to our globally optimal

solution.

0.3.1 Compute Deformation Field from Volumetric

Data. A shift of evenly distributed voxels to a deformed graph

space, defined as a non-Euclidean deformation field F(x,y,z)
acting on the center of each voxel (x,y,z):

(x’,y’,z’)~(x,y,z)zlF(x,y,z) ð2Þ

where l represents a normalization factor. For the worst case, the

error introduced by a voxel is equal to half of the voxel size d.

Therefore F(x,y,z) is normalized such that the maximum

deformation is equal to d=2:

l~
d

2:max(x,y,z) [ (X , Y , Z)DDF(x,y,z)DD
ð3Þ

Please note that the deformation in this study is not refer to the

deformation from a source to a target. It is a deformation along a

predefined direction up to a chosen allowable maximum.

The deformation field F(x,y,z) can be calculated from the

negative diffusion of the gradient vectors of cost w(x,y,z) derived

from intensity volume data I (X ,Y ,Z) [19]:

s (x,y,z) � w(x,y,z)� ð4Þ

where Gs(x,y,z) is a regularization imposed by a 3D Gaussian

the gradient and convolution operators respectively. Other

methods can be used to obtain F(x,y,z) as well, such as the

gradient vector flow field (GVF) [19], though we consider it less

important as long as a deformation field F(x,y,z) is obtained. As a

feature-preserving diffusion of the gradient, GVF is defined as the

vector field that minimizing the following energy function:

F(x,y,z)~arg min
X
½ mDD+I (x,y,z)DD2z

DD+w(x,y,x)DD2DDF(x,y,z){+w(x,y,x)DD2� ð5Þ

The parameter m regularizes the importance of the two terms

contributing to the energy function [19].

Figure 5. Structure of conventional graph (a) and non-Euclidean deformed graph (b). In (a), node u’ and its bottom-most neighbor are
shown in dark blue. In (b), node u, Top(u), Bottom(u) are shown in green and node u’, Top(u’), Bottom(u’) are shown in dark blue.
doi:10.1371/journal.pone.0107763.g005
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Fig. 3 shows the deformation field in a single B-scan of an OCT

volume, calculated according to Eq. 4. In Fig. 3 (a), a single

boundary S of high resolution imageH(x,y) (440|368 pixels) was

delineated by a red line. The B-scan H(x,y) was down-sampled to

I (x,y) by ten times to 37|44 pixels to mimic the imaging and

discretization process of the continuous tissue intensity function.

The down-sampling was performed by first reconstructing a

continuous signal from the original discrete signal by bicubic

interpolation [20]. Then a low-pass anti-aliasing filter was applied

to the reconstructed continuous signal. Finally the reconstructed,

antialiased continuous signal was re-sampled at the desired new

sampling rate to get the down-sampled signal, i.e. down-sampled

B-scan in this case. The boundary surface S was mapped from the

high resolution to its location in the re-sampled B-scan I (x,y) in

lower resolution. Part of a zoomed-in view of I (x,y) was shown

in Fig. 3 (b) with its 2D deformation vectors F(x,y) displayed as

blue arrows starting from the center of each pixel (x,y).

Fig. 4 demonstrates the effect of regularization Gs(x,y,z) in Eq.

4 on the deformation field of a 3D OCT volume, where the

spacing along each dimension was made equal to give an isotropic

illustration. Red voxels indicate high intensity values while blue

voxels indicate low intensity values in the original volume. The

impact of parameter s in Eq. 4 includes the capture range towards

the desired surface and its localization accuracy.

0.3.2 Content Based Graph Construction. We first con-

struct a directed graph G from the input image I using the

conventional graph search methods [2,4,5], as briefly described in

Section 0.1 (refer to Fig. 5 (a)). Then the deformation field

F(x,y,z) is applied to deform each node in G with Eq. 2. That is,

each node u at (x,y,z) is deformed to (x’,y’,z’) with

(x’,y’,z’)~(x,y,z)zlF(x,y,z). The deformation operation may

violate the surface smoothness constraints. Note that the deformed

graph nodes corresponding to the voxels on a voxel-column p(x,y)
still form a node-column Col(p) in G, and each target surface S is

monotonic with respect to each (deformed) node-column in G.

The intra-column arcs thus need not to be modified. In the

following, we will focus on the adjustment to the inter-column

(inter-subgraph) arcs to incorporate the surface smoothness

(separation) constraints.

For the surface smoothness constraints, consider two adjacent

columns Col(p) and Col(q) in G. For any two nodes

u(x,y,z)[Col(p) and u(x’,y’,z’)[Col(q), if Dz{z’DƒDx (u(x,y,z)
and u(x’,y’,z’) are adjacent along the x-dimension) or Dz{z’DƒDy

(u(x,y,z) and u(x’,y’,z’) are adjacent along the y-dimension), then

the corresponding voxel points I (x,y,z) and I (x’,y’,z’) can be

both on the target surface. By abuse of notation, we say that a

node u(x,y,z) is on the surface, which means that its corresponding

voxel is on the surface.

To explore the self-closure structure [4,5] of the surface

segmentation problem, we define the bottom-most neighbor and

the top-most neighbor of a node u(x,y,z)[Col(p) on its adjacent

column Col(q): the bottom-most (resp., top-most) neighbor of u,

denoted by Bottomq(u) (resp., Topq(u)), is a node on Col(q) with

the smallest (resp., largest) z-coordinate that can be on the target

surface together with u. In the case that the adjacent column is

clear, we can simply denote the bottom-most (resp., top-most)

neighbor by Bottom(u) (resp., Top(u)) (Fig. 5). Thus, each node

u(x,y,z) can interact with a range of nodes between Bottomq(u)

and Topq(u) on Col(q), called the neighbor range of u on Col(q).

In the conventional graph search method, the number of nodes

in the neighbor range for every node of Col(p) is the same [2],

which, however, may differ in the deformed graph space.

Fortunately, all the neighbor ranges of nodes on any column

Col(p) are properly ordered [4,5]: for any nodes u,u’[Col(p), if u’
is ‘‘above’’ u (that is, the z-coordinate of u’ is larger than that of u),

then Bottomq(u’) and Topq(u’) are no ‘‘lower’’ than Bottomq(u)

and Topq(u) (with respect to the z-coordinates), respectively, on

the adjacent column Col(q).

Denote by BL(S) all the nodes on or below a surface S. The

proper ordering of the neighbor ranges admits the intra-layer self-

closure structure: For any feasible surface S, the bottom-most

neighbors of every node in BL(S) are contained within BL(S).

Figure 6. Comparison of conventional graph construction and Non-Euclidean deformed graph model. (a) Conventional graph structure;
(b) Non-Euclidean deformed graph model; (c) Node distribution in conventional graph structure; (d) Node distribution in non-Euclidean deformed
graph model. Node created within each pixel is shown as red dot. Intra-column arcs are shown as yellow arrows while inter-column arcs are shown as
green and blue arrows, which represent smoothness constraints that can be incorporated in a typical graph search framework. The yellow curves
indicate the desired dark-to-bright surface location mapped from high resolution B-scan.
doi:10.1371/journal.pone.0107763.g006
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This is the very property that connects the optimal surface

segmentation to the minimum-cost closed set problem. In content

based graph construction, two types of arcs, intra-column arcs and

inter-column arcs, are illustrated in Fig. 5. The intra-column arcs

(yellow arrows) make sure that all nodes below a given node are

also included in the closed set, which enforce the monotonicity of

the target surface. The inter-column arcs impose the smoothness

constraints by directing to the bottom-most neighbors of a given

node. If simply the nodes estimated in the initially constructed

graph are deformed (i.e., the edges connecting the node pairs are

retained), the resulting graph may not correctly impose the surface

smoothness constraints or the surface separation constraints, due

to the non-uniform shifts of the nodes.

The same strategy can be used to extend the method to

simultaneously detect k interrelated surfaces with surface separa-

tion constraints. The surface separation constraints in a d-D image

can be viewed as the surface smoothness constraints of a (dz1)-D
image, consisting of a stack of k d-D images. Segmenting an

optimal set of k surfaces in a d-D image is equivalent to the

detection of a single optimal surface in a (dz1)-D image.

Fig. 6 compares the graph in Euclidean space (Fig. 6 (a)) to the

non-Euclidean graph after deformation (Fig. 6 (b)) within the

region highlighted by the yellow rectangle in Fig. 3 (b). After

deformation, a node is created within each voxel at the location

indicated by a red dot. Referring to the true boundary shown in

Fig. 3 (b), distances between neighboring nodes created in those

critical regions are smaller than the distance between voxel

centers, allowing subvoxel surface positioning accuracy to be

achieved. Fig. 6 (c) and Fig. 6 (d) shows the nodes in the

conventional and non-Euclidean deformed graph model, showing

that node density is increased near the expected surface, and

decreased elsewhere.

The costs associated with each node reflect the properties of the

node with respect to the underlying surfaces. For instance, to

identify layered tissues - terrain-like surfaces - separated by either

dark-to-bright or bright-to-dark transitions, the gradient compo-

nent along the z-dimension with an opposite orientation can be

Figure 7. Node density is higher around target surface after non-Euclidean deformation by stretching area of interest as the one
indicated by an arrow. (a) Original cost volume, where red voxels indicate high costs while blue voxels indicate low costs; (b) Cost volume after
non-Euclidean deformation.
doi:10.1371/journal.pone.0107763.g007

Figure 8. Experiment design for quantitative performance evaluation.
doi:10.1371/journal.pone.0107763.g008
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assigned as the on-surface cost associated with each node for

simplicity, derived from convolution of volume I with the first

derivative of 3D Gaussian kernel G’z(x,y,z) [21]:

w(x,y,z)~

{G’z(x,y,z) � I (x,y,z), dark-to-bright transition,

G’z(x,y,z) � I (x,y,z), bright-to-dark transition:

�
ð6Þ

Other costs can be employed as in conventional graph search

[2,5], which makes it possible to include not only boundary (on-

surface cost) but also region (in-region cost) properties.

Since the deformation field F(x,y,z) may deform each node

away from the voxel center (x,y,z), the original cost w(x,y,z)
derived from the evenly distributed voxel grid has to be deformed

or warped in a similar way, so that the nodes in the non-Euclidean

graph space are assigned the correct costs w�(x,y,z) according to

their updated locations:

w�(x,y,z)~w(x’,y’,z’)~w½(x,y,z)zF(x,y,z)� ð7Þ

If we plot the new costs as a volume confined on an evenly

distributed grid, as is shown in Fig. 7, the low cost regions in blue

(indicated by an arrow), i.e. regions with high likelihood of being

surface boundaries, are stretched out, which is equivalent to

adaptively increasing the local node density in those highly

relevant regions as explained in Section 0.3.

Results

Intraretinal Surface Segmentation of SD OCT Images
Quantitative analysis of retinal layers is crucial for diagnosis and

management of eye and systemic diseases, including diabetic

retinopathy, age-related macular degeneration, and glaucoma, as

well as hereditary diseases such as Best’s vitelliform maculopathy

[3,22]. Some tissues of interest are only one or two voxels thick

with even the most advanced clinically available OCT imaging

technology. We have previously shown the accuracy of graph

Figure 9. One B-scan of the high resolution OCT volume. (a) Original B-scan; (b) Two surfaces were identified.
doi:10.1371/journal.pone.0107763.g009

Figure 10. One B-scan of the down-sampled OCT volume. (a) One B-scan; (b) Two corresponding surfaces were identified by both
conventional graph search and non-Euclidean graph search.
doi:10.1371/journal.pone.0107763.g010
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search segmentation compared to human experts [9,23]. To be

able to fairly compare two segmentation algorithms, i.e. the

conventional approach and the non-Euclidean graph approach,

we consider the segmentation of standard volumes at full

resolution as the reference standard in this study. By down-

sampling the full resolution volumes, we create ‘‘input volume

data’’ which is segmented by the two approaches, and the resulting

segmentation compared to the reference standard, allowing

quantitative performance evaluation.

The process is illustrated in Fig. 8. Please note that in real

applications, the high resolution volume and segmentation are

unavailable. It is only used here to derive a reference standard for

performance evaluation. All that can be obtained in real scenarios

are the ‘‘input volume data’’. Concurrently, the accuracy

regarding to ‘‘voxel’’ or ‘‘sub-voxel’’ refers at the level of down-

sampled voxels in this experiment. The absolute improvement of

accuracy from voxel to subvoxel depends on the size of the voxel in

physical dimension.

In this study, we reused ten OCT volumes (1536 | 61 | 496

voxels, covering a region of 9:37 | 7:93 | 1:92mm3 of the retina,

Spectralis (Heidelberg, Germany)), from 10 eyes from 10 normal

subjects as published previously by us [22] (available in deidentified

form at http://webeye.ophth.uiowa.edu/abramoff/PLOSOne2014).

The University of Iowa Institutional Review Board (IRB) approved

the original study protocol and the reuse of data, the study was

conducted according to the principles expressed in the Declaration

of Helsink, and written informed consent was obtained from all

subjects. As reference standard, two surfaces, both with dark-to-

bright transitions, were identified using the Iowa Reference

Algorithms, a publicly available implementation of the conventional

graph search approach [3,24]. One B-scan with the resulting

segmentation is shown in Fig. 9.

The original OCT volumes were down-sampled to

40 | 40 | 40 voxels, resulting in ‘‘input volume data’’. The

uneven down-sampling rate compensates for the highly anisotropic

nature of typical OCT data and makes the partial volume effects

clearly visible. The two surfaces were identified in these ‘‘input

volume data’’ using the conventional graph search approach and

our new non-Euclidean graph search approach (Fig. 10).

All other parameter settings were kept same in the two methods:

the surface smoothness constraints between neighboring columns

were set at one voxel, while the minimum and maximum surface

separation constraint were at the usual 3 and 8 voxels respectively.

The parameter s in the 3D Gaussian derivative kernel used to

derive the deformation field and assign the cost was 0.3 voxel in all

3 dimensions. The choice of these parameters is primarily related

to the resolution and aspect ratio of the data to be analyzed, and

has always been used implicit in our previous work [3,9,10,23,25].

Though they were chosen for the Spectralis OCT volume data, we

have not changed them from previous studies.

The upper surface Su in Fig. 10 corresponds to the boundary of

the inner limiting membrane (ILM) in Fig. 9 and the lower surface

Figure 11. Example of tissue thickness map of the region bounded by two coupled terrain-like surfaces (the layer containing the
outer segments of the retinal photoreceptors) segmented by (a) Conventional graph search of ‘‘input volume data’’ delineated by
the red and green surfaces in Fig. 10 (b); (b) Non-Euclidean graph search of ‘‘input volume data’’ delineated by the yellow and cyan
surfaces in Fig. 10 (b); (c) Mapping from segmentation results of the reference standard volume.
doi:10.1371/journal.pone.0107763.g011

Table 1. Surface positioning error and thickness estimate error of region bounded by two coupled terrain-like surfaces (E1:
conventional graph search; E2: smoothed version of conventional graph search; E�: non-Euclidean graph search).

Errors in voxels Top Surface Su Error Bottom Surface Sl Error Tissue Thickness d Error

Signed Unsigned Signed Unsigned Signed Unsigned

E1 (conventional) 20.04+0.34 0.28+0.19 0.00+0.33 0.28+0.18 0.04+0.44 0.36+0.26

E2 (smoothed conventional) 20.07+0.31 0.26+0.19 20.04+0.31 0.25+0.18 0.03+0.31 0.25+0.19

E� (non-Euclidean) 20.02+0.23 0.16+0.17 20.03+0.19 0.15+0.13 20.01+0.24 0.18+0.17

Paired t-test p (E1 vs. E�) 0.0180 0.0000 0.0000 0.0000 0.0000 0.0000

Paired t-test p (E2 vs. E�) 0.0912 0.0000 0.9311 0.0000 0.0010 0.0001

doi:10.1371/journal.pone.0107763.t001
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Sl corresponds to the junction of the inner and outer photore-

ceptor segments, so that the layer itself corresponds to the assumed

length of the outer segments of the photoreceptors [22]. Note that

linear interpolation was applied to subvoxel surface segmentation

result to get its location on an evenly distributed grid at each A-

scan (x,y). Thus it is possible to compute the thickness d(x,y) of

the region bounded by those two surfaces Su and Sl at each A-scan

(Fig. 11) as:

d(x,y)~Su(x,y){Sl(x,y) ð8Þ

The layer thickness was most accurate in the map derived from

the surfaces identified by our new method at subvoxel accuracy,

which contains information that can not be approximated simply

by any post-processing steps following conventional graph search.

For example smoothing, which can also be observed from Fig. 1,

resulted in less improvement, while requiring the assumption of

monotonous thickness changes. The green surface located in Fig. 1

(b) is not a smoothed version of the red one in Fig. 1 (a). The

former better reflects the imaged structure in presence of partial

volume effects.

0.3.3 Statistical Analysis. Both the mean signed
Pn
i~1

Si{RSi

n

and unsigned
Pn
i~1

DSi{RSi D
n

surface positioning errors (i.e. error or

Figure 12. Box plot of unsigned error of tissue thickness among 10 subjects using conventional graph search (GS) and non-
Euclidean graph search with subvoxel accuracy (SVGS).
doi:10.1371/journal.pone.0107763.g012

Figure 13. Segmentation of OCT volume with conventional graph search. (a) Cross section of one B-scan; (b) Top view; (c) Cross section
perpendicular to B-scan; (d) 3D volume rendering.
doi:10.1371/journal.pone.0107763.g013
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distance from ground truth) and layer thickness errors were

calculated from the reference surface RS and then corrected for

the fixed bias caused by the downsampling boundary shift. The

difference between the mean errors for conventional graph search

and non-Euclidean graph search was tested for significance using a

paired t-test. Because the optic nerve head region is not a tissue

layer and requires entirely different non surface segmentation

approaches [25–27], a rectangular region of 7 | 9 A-scans was

excluded from analysis. The comparison is summarized in

Table 1, where the accuracy of a smoothed version of conven-

tional graph search is also listed as discussed above.

For these 10 subjects, the unsigned errors were significantly

smaller for non-Euclidean graph search than for both conventional

graph search and its smoothed version with a p-value v 0.0001.

The signed errors were not significantly different, because positive

errors and negative errors cancel out when there are oscillations

around the reference surface. The unsigned error of non-

Euclidean graph search is almost always smaller than that of

conventional graph search for the same subject at the same

location. A box plot comparison of unsigned error of tissue

thickness among all 10 subjects using conventional graph search

and non-Euclidean graph search illustrates this in a different

format in Fig. 12.

Interestingly, the maximum difference between the two

approaches is as large as 3.95 voxels even though the maximum

displacement applied to each node of the non-Euclidean graph is

not allowed to be more than half a voxel, as is shown in Fig. 10 (b).

This is because all nodes encode potential boundary locations

more precisely and the globally optimal solution is searched for in

the new non-Euclidean graph space with each node taking on the

minimum cost inside its corresponding voxel. More details are

shown in Fig. 13 and Fig. 14.

The unsigned thickness errors of both approaches over all

15370 A-scans ((40 | 40{7 | 9) | 10)were sorted in ascending

Figure 14. Segmentation of OCT volume with non-Euclidean graph search. (a) Cross section of one B-scan; (b) Top view; (c) Cross section
perpendicular to B-scan; (d) 3D volume rendering.
doi:10.1371/journal.pone.0107763.g014

Figure 15. Comparison of unsigned error of tissue thickness
produced by conventional graph search and non-Euclidean
graph search among 15370 A-scans.
doi:10.1371/journal.pone.0107763.g015
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order and plotted in Fig. 15 for comparison. Non-Euclidean graph

search reduces the percentage of A-scans with an error larger than

0.5 voxel from 27.25% to 3.14% compared to the conventional

graph search method.

Vascular Wall Segmentation Using 3-D MR Dataset
The algorithm was also applied to identify the vascular wall –

the lumen - intima surface, in 3-D MR image data already

described in [5]. Two 3-D volumes with size of 141 | 141 | 16
voxels were cylindrically unwrapped at the center of the volume to

Figure 16. One slice of vascular wall segmentation by conventional graph search and non-Euclidean graph search. (a) Original slice;
(b) Segmentation results; (c) Unwrapped slice. Result from the conventional graph search is shown in red, the non-Euclidean graph search in green
and the ground truth in yellow.
doi:10.1371/journal.pone.0107763.g016

Figure 17. Zoomed in view of vascular wall segmentation results in the unwrapped slice. (a) the left region marked as a cyan rectangle in
Fig. 16 (c); (b) the right region marked as a cyan rectangle in Fig. 16 (c).
doi:10.1371/journal.pone.0107763.g017
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360 | 16 | 70 voxels. One terrain-like surface was identified

using both conventional graph search and non-Euclidean graph

search (Fig. 16). The surfaces were then mapped back to original

volumes to highlight the cylindrical vascular wall (Fig. 16 (b)). The

original volumes were manually annotated by an expert and

superimposed in Fig. 16 (b) as reference. The manually traced

boundaries were unwrapped and superimposed in Fig. 16 (c).

More details were shown with two zoomed-in regions in Fig. 17.

The manual boundaries may not correspond exactly to the

maximum intensity transitions at every location along the vascular

wall due to its non-reproducible nature, thus preventing quanti-

tative error measurements. Compared with conventional graph

search, the surface identified by non-Euclidean graph search is

closer to the manual delineation. Again, because the globally

optimal solution is searched for in the new non-Euclidean graph

space with each node taking on the minimum cost inside its

corresponding voxel, the differences between the two approaches

are larger than one voxel at a number of places even though the

maximum displacement applied to each node is no more than half

voxel.

Discussion

We have generalized three-dimensional graph search to allow

search in non-Euclidean graph space, and demonstrated that this

results in increased segmentation accuracy, at a subvoxel level, for

the surfaces of layered tissues. The graph is initially constructed in

Euclidean space and then deformed using a deformation field so

that the node density is increased near the expected surfaces, and

decreased elsewhere. Because the total number of nodes and edges

are unchanged, the memory requirement and running time are

not affected, except for the time required to determine the

deformation field from the volume data, which is negligible

compared to the time spent for graph search. Our approach is

agnostic with respect to the calculation of the deformation field,

the only requirement is that it aligns node density with the inverse

of the expected cost.

All advantages of graph search are thus retained including

globally optimal surfaces in the time complexity of computing a

single maximum flow [5] in polynomial time, the flexibility of

combining various in-region and on-surface costs for simultaneous

segmentation of multiple surfaces [9], and the capability of

incorporating shape priors as in recent papers by Dufour and Song

[8,10].

We developed multi-scale graph search in order to limit

memory requirements and run time required for multiple surface

segmentation of large 3D volumes [25]. The non-Euclidean

approach introduced here also supports multi-scale framework. At

the finest scale subvoxel accuracy is achieved as under a regular

framework.

The results on SD-OCT volumes of the retina and the vascular

MR images of the vascular wall show that subvoxel precision is

achieved and that segmentation accuracy compared to conven-

tional search of the graph in Euclidean space is superior. In the

present study, we demonstrated the improvements in accuracy

using a non-Euclidean approach, using Optical Coherence

Tomography and Magnetic Resonance Imaging based images.

We would like to emphasize that our approach is not limited to

these two modalities, but instead this approach is, in fact, very

general and allows subvoxel accuracy in any multidimensional

intensity based image where the intensities are the result of an

imaging transform.

To our knowledge, this is the first attempt to construct the graph

based on the underlying image content, using a generalized

approach that allows non-equidistant representation of voxels on a

single axis - hence the use of the term non-Euclidean for our

approach. It is general in the sense that given any regular graph

structure for segmentation, we can always achieve subvoxel

accuracy by deforming that graph to a non-Euclidean one,

regardless of imaging modalities or the underlying objects. This

approach can be readily extended to higher-dimensional image

segmentation, such as example 3D + time.

The advantages of increased, subvoxel accuracy while retaining

memory and runtime requirements seem obvious, and allow either

more accurate measurements in images obtained with the same

image acquisition hardware, as well as, measurements with the

same accuracy in images obtained at lower resolution, more cost-

effective image acquisition hardware.

Acknowledgments

The authors would like to thank Dr. Honghai Zhang for his help in

accurate 3D surface visualization.

Author Contributions

Conceived and designed the experiments: MDA. Performed the experi-

ments: LT KL. Analyzed the data: MDA LT XW. Contributed reagents/

materials/analysis tools: MDA KL. Wrote the paper: MDA LT.

References

1. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via

graph cuts.’’ Pattern Analysis and Machine Intelligence, IEEE Transactions on

23.11: 1222–1239.

2. Li K, Wu X, Chen DZ, Sonka M (2006) Optimal surface segmentation in

volumetric images-a graph-theoretic approach. Pattern Analysis and Machine

Intelligence, IEEE Transactions on 28.1: 119–134.
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