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Abstract

Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases.
However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding
mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding
partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine
learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked
boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability
effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms,
sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-
DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation
coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable
proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed
significant differences between various types of disease-associated mutations, as well as between disease and common
neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our
predictions unravel the molecular details governing the protein instability, and help us better understand the molecular
causes of diseases.

Citation: Berliner N, Teyra J, Çolak R, Garcia Lopez S, Kim PM (2014) Combining Structural Modeling with Ensemble Machine Learning to Accurately Predict
Protein Fold Stability and Binding Affinity Effects upon Mutation. PLoS ONE 9(9): e107353. doi:10.1371/journal.pone.0107353

Editor: Lukasz Kurgan, University of Alberta, Canada

Received May 9, 2014; Accepted July 21, 2014; Published September 22, 2014

Copyright: � 2014 Berliner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All data is available in the supporting
information file.

Funding: Disorder predictions were performed on the gpc supercomputer at the SciNet HPC Consortium. The authors acknowledge support from the Natural
Sciences and Engineering Research Council of Canada (NSERC). PMK acknowledges support from a NSERC Discovery Grant (#386671) and RC from a NSERC PGS-D
fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: pi@kimlab.org

. These authors contributed equally to this work.

Introduction

Any two human genomes differ in a number of different ways.

There are changes on the level of individual nucleotides (Single

Nucleotide Polymorphisms – SNPs or Single Nucleotide Variants

– SNVs, depending on frequency) as well as many larger ones,

such as deletions, insertions, and copy number variations. Any of

these may cause alterations in an individual’s phenotype, with

effect size ranging from near neutral to very strong. In addition,

many complex diseases, such as cancer, are caused by somatic

mutations (i.e., are acquired during the individual’s life). In

general, SNPs can occur either at non-coding [1] or at coding

regions [2], in which only non-synonymous SNPs (nsSNPs) induce

a change in the amino acid sequence and, generally, have stronger

effects on the phenotype. Identifying those nsSNPs that infer

susceptibility or protection to complex diseases will aid early

diagnosis, prevention and treatments [3]. Recent efforts to map

human genetic variation by sequencing exomes [4] and whole

genomes [5–7] have characterized the vast majority of common

and low frequency SNPs and many structural variants. In total,

about 64 million human SNPs have already been discovered and

genotyped [8]. In addition, comprehensive catalogues of somatic

mutations from different human cancer genomes are being made

in order to understand the primary causes of cancer [9,10]. Yet,

experimental characterization of the effects of every single

mutation is virtually impossible due to the time, cost and difficulty

[3,11].

The existence of these databases combined with available

biochemical data in single-point mutations on protein domains

[12] and complexes [13] prompted the development of automatic

computational methods able to predict the effect of mutations

accurately. These tools are based on either sequence, structure or

energy features, either in isolation or in combination using

machine learning approaches [14]. Most of the sequence-based

methods rely on evolutionary conservation of homologous protein

sequences, since functional regions are known to be conserved
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[15]. The most popular method among the sequence-based

algorithms is SIFT (Sorting Intolerant from Tolerant) [16], which

uses multiple sequence alignments of homologous sequences to

generate scores at each position based on patterns of amino acid

substitutions. However, they can’t provide molecular details that

can help understand the mechanism ultimately causing the

disease. As an alternative to increase accuracy, some methods

have complemented sequence features with structural ones in

globular domains incorporating parameters such as stability,

solvent accessibility and domain boundaries among others. In

order to extract the structural features, some methods map the

sequence to the closest 3D protein structure (if it exists) [17],

whereas others build homology models based on the closest

structure to increase accuracy [18]. All these methods are trained

using mutations with known phenotypes (e.g., from diseases) in

order to predict the effect of mutations with unknown phenotypes

at proteome scale.

Other methods predict free energy differences between wild

type and mutant variant by training in limited experimental

dataset, and while not perfect, are usually able to obtain a correct

trend [19]. The most accurate physical methods such as molecular

dynamics or Monte Carlo simulations, are computationally very

demanding, and hence, not applicable to large datasets [20–22].

In contrast, empirical potential approaches provide a fast and

quantitative alternative to estimate the contribution of a substitu-

tion to the stability of proteins [23–25]. These approaches

incorporate physical and statistical energy terms that are weighted

to fit experimental data, and have been proven to be qualitatively

accurate, although fail to provide precise values [19]. The most

successful methods to predict the effect of mutations in protein

cores use a combination of some of the above (i.e. sequence,

structural and energetic features) [24,26,27] by applying machine

learning methods, e.g., neural networks, support vector machines

(SVMs), or random forests. Such methods leverage information

about mutations to fit a non-linear function to experimental data

on protein stability changes upon single-point mutations [28–30].

Recently, a stability meta-predictor for core mutations was shown

to achieve remarkable performance by integrating the output of

several prediction tools [31].

With current approaches, mutations at the surface of a domain

are usually considered neutral. In globular domains, the effect of

each mutation is determined by its structural context; whereas

mutations in the core may alter the stability of the domain fold,

mutations at the surface regions that are involved in molecular

recognition may directly affect binding affinities. In fact, many, if

not most, disease-related mutations are located at the interface of

protein complexes [32,33]. A small subset of interface residues,

called hot spots, are critical for complex formation and their

identification is of major importance. Computational alanine

scanning methods based on empirical energy functions have been

extensively used to identify all relevant positions for complex

formation [34]. For the first time, these methods have been

evaluated in predicting the effects of multiple amino acid

mutations in new experimental data generated for single point

mutation variants of a given protein-protein interaction [35].

Their results confirm a weak performance of the current methods,

in which machine learning techniques show the best results. A

novel energy-based approach specifically trained for the prediction

of mutational effects in protein complexes has shown relatively

good results, although its performance was not comparable to the

methods evaluating core mutations [36]. This is presumably due to

the biophysical nature of protein-protein interfaces, where

properties more difficult to estimate, such as polar and electrostatic

terms, play a much more important role than in the domain core

[35]. Instead of predicting differences in binding free energies,

Agius and colleagues estimate the dissociation rates upon residue

mutation omitting association rates [37]. This is done by

performing computational alanine scans of the interfacial residues

pre- and post- mutation in order to capture synergistic effects that

help them to relate the changes in energetics to dissociation rates

upon mutation. Their best machine learning methods achieve a

correlation of 0.79 with experimental off-rates for the prediction of

stabilized mutants [37].

Energy-based predictive tools have never been exploited at

proteome scale, despite providing more accurate predictions than

sequence-based tools and also giving molecular insight into the

effect of the mutation [38]. Their applicability has been limited by

the extensive computational resources required and by the

relatively low structural coverage of the proteome [39]. Interest-

ingly, recent efforts have shown that the structures of many human

proteins and their complexes can be modelled using structural

templates of the PDB repository in a large scale, even at low

similarity between the homolog template and target sequences

[39]. Other studies have also shown that stability predictions in

structural models created with templates at different similarities do

not lose predictive power compared to the experimentally solved

structures [40]. An interesting study has recently analyzed the

effects of glioblastoma missense mutations affecting protein

complexes by modelling the structure of the complexes with a

mutation in the interface, and by evaluating the stability effect

using an empirical potential approach [41]. These results highlight

the importance of these strategies to understand the molecular

mechanisms of disease mutations, but their limitations also

underline the requirement of integrative machine learning

approaches to improve predictive accuracy.

Here, we developed a novel Ensemble Learning Approach for

Stability Prediction of Interface and Core mutations (ELASPIC).

The framework boosts predictive power by integrating a wide

range of sequence and structural features using the Stochastic

Gradient Boosting of Decision Trees (SGB-DT) algorithm. Using

high quality experimental datasets, our results show that ELASPIC

outperforms all other methods in predicting the effect of core, and

specifically, interface mutations. We also integrate our predictor

with homology modeling and demonstrate the accuracy of our

predictor when used on modeled structures, showing that our

predictor can be used at a proteome-wide scale. Finally, we show

that it correctly distinguishes harmless from diseases-associated

genetic mutations. Therefore, our work opens new perspectives in

genome-wide identification of disease-causing mutations, not only

in predicting stability changes in protein cores and interfaces, but

in rationalizing the molecular principles behind such mutations.

Results/Discussion

We developed ELASPIC, a method to predict stability effects

induced by mutations in the core of a domain and in the interface

of a complex. First, we extracted a set of sequence, molecular and

energetic features from the two training sets containing biochem-

ical data for wild type and mutant variant (Figure 1). We use the

wild type structure of the domain/complex and the modelled

mutant variant to extract the non-sequence features. In the model

building phase, we use a Stochastic Gradient Boosting of Decision

Trees (SGB-DT) algorithm to fit a non-linear function to minimize

the prediction error, and perform a comprehensive evaluation of

ELASPIC performance on predicting the effect of mutations in

core and interface of proteins, using both experimental and

homology-based modelled structures. Finally, we run ELASPIC at

proteome scale by modelling domains and domain-domain

Mutation Effects in Protein Cores and Interfaces
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complexes in a large-scale (Figure 1), and evaluate performance on

both published benchmark datasets as well as on newly obtained

disease related and HapMap mutation datasets.

Benchmark competition of core mutations on
experimental structures

To train and asses our model in predicting stability effects of

core mutations, we used ProTherm [12], the most extensive

database of experimentally measured stabilities for protein

domains with known structure. To avoid over fitting in our

predictions, we created an unbiased, non-redundant, high-quality

training set of 3,463 domains and their mutant variants, and

extracted the sequence, structure and energy features (Figure 1,

Table S1). The predictive power was assessed by a rigorous 20-fold

cross-validation procedure. Our training results show a Pearson

correlation coefficient (r) of 0.77 (standard deviation, s= 0.002

and root mean square error, RMSE = 1.20) between experimental

and predicted DDG values (Figure 2A). Interestingly, the correla-

tions only differ by 0.01% from training on full ProTherm dataset

(r = 0.78), pointing out a low redundancy of ProTherm dataset. To

gain a more comprehensive understanding of the importance of

single features in fitting the experimental data, we analyzed the

predictive power of each feature relative to the most predictive one

as inferred by the SGB-DT’s built-in feature importance

calculation method (Figure 3A and Methods). The two most

predictive features were the free energy difference between wild

type and mutant, DDGfold, and the DGmutant, calculated by FoldX.

Interestingly, sequence conservation based on scores from SIFT

are the third most informative feature in assessing the stability

change. This result is consistent with the view that residues

important for the domain fold will also show high evolutionary

conservation [42]. In addition, the molecular features describing

volumetric features of the wild type and mutant residues, such as

surface accessibility or van der Waals distances, show special

relevance, as previously described [43] (Figure 3A).

Many methods to predict stability effects of mutations have been

developed [14]. Unfortunately, a direct comparative analysis of the

methods is unfeasible [18]; different ProTherm [12] versions and

filtering methodologies have been used by the different authors. In

addition, most of these methods are only available as web servers

for small-scale prediction purposes, but not for training and

evaluation in batch mode, which is required for a proper

comparative experiment [18]. To make a comparison as unbiased

as possible with our method, we selected two sub-set datasets that

were widely used as benchmark in multiple comparative studies:

Potapov_09 [19] and Dehouck_09 [24]. We trained and validated

ELASPIC individually and independently for each dataset by a

20-fold cross validation procedure to compare our performance

with different methods: an energy-based method (Prethermut

[44]), a statistical method using sequence and structural descrip-

tors (PopMuSiC2.0 [24]), and a random forest-based method

combining the features of the two previous methods (ProMaya

[31]). ELASPIC consistently shows better performance than

previous methods evaluated on the same datasets showing a

consistent r of 0.77 (Figure 2C). However, the performance

increase is not large in the stability case, suggesting that previous

methods are already highly optimized, and that we are close to the

limit imposed by the intrinsic errors in experimental methods to

calculate protein stability. FoldX shows a loss of performance

compared to its original publication [23]. This behaviour has

already been observed in a previous comparative study [19], and

could be attributed to the different dataset used and the

parameters for the energy function that were calibrated a decade

ago for a small dataset. As expected, Prethermut does better than

FoldX, since it is a machine learning approach based on FoldX

energy terms. Pro-Maya uses its own sequence- and molecular-

based features in combination with the DDGfold scores from

Prethermut and the statistical potentials based score from

PoPMuSiC-2.0. As expected, ProMaya shows a better perfor-

mance compared to Prethermut and PopMuSiC2.0 independently

(0.74 vs 0.71 and 0.62, respectively). We attribute ELASPIC’s

improvement to two factors. First, we found that SGB-DT gave

slightly better performance (,0.02 higher) compared to the

Random Forest algorithm, which is the one used in ProMaya. We

presume that the number and variety of features might help our

method to better balance the different features in order to fit the

Figure 1. ELASPIC methodology. Schematic view of the strategy used to derive predictive features and train and validate ELASPIC for the
prediction of stability effects in domain core and domain-domain interfaces upon mutation.
doi:10.1371/journal.pone.0107353.g001
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experimental values, as observed in Figure 3A. The second factor

is that ProMaya relies on a single DDG prediction value from

Prethermut, whereas we provide all independent FoldX energy

terms as features in combination with molecular and sequence

features.

Benchmark competition of interface mutations on
experimental structures

Many disease-related mutations have been found at the

interface of protein complexes [32,33]. These mutations can

disrupt protein-protein interactions, affecting signalling pathways

and leading to diseases. Most current prediction methods are

almost entirely focused on protein cores, and can only predict the

effect of surface mutations as neutral or near-neutral, including

interface mutations. This lack of methods is due to a number of

factors, including to the relatively low coverage of existing

structures of protein interactions. Analogous to the core case,

features are extracted from experimental structures of a complex

and its mutant model (Figure 1). The interface method includes a

set of extra molecular and energetic features describing the

interface of the complex in detail (Table S1). The FoldX energy

terms are obtained from the calculation of the binding free energy

(DDGbind). To train and asses our model in predicting stability

effects of interface mutations, we obtained the training set from the

SKEMPI [13] database, the most abundant resource of experi-

mental DDG of mutations in the interface of protein-protein

Figure 2. Summary of the results. Correlation between predicted and experimental DDG values for our curated ProTherm core dataset (A) and
SKEMPI interface dataset (B). (C) Comparative histograms of the Pearson correlation among several state-of-the-art methods using three versions of
ProTherm datasets for the core predictions, and SKEMPI dataset for the interface prediction.
doi:10.1371/journal.pone.0107353.g002
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complexes. As for the core mutations, the predictive power was

assessed by a rigorous 20-fold cross-validation procedure (see

Methods). Our results showed a correlation coefficient of 0.81

(s= 0.003), significantly outperforming current methods. Accurate

analysis of the SKEMPI data revealed a high redundancy of

complexes and mutations, suggesting a biased and over-estimated

performance of the model. We corrected the problem by applying

a 90% sequence identity redundancy reduction step and obtained

873 out of 2,045 instances (see Methods). For machine learning

based approaches that rely on cross-validation for hyper-param-

eter optimization and performance assessment, this reduction is

crucial and performance would be mistakenly over estimated if

redundancy is not eliminated. Note that the problem is less severe

in the core dataset with less redundancy (,30%) than in the

interface dataset (redundancy ,60%) as also revealed by the small

difference in performance of pre- and post- redundancy removal

cross validation experiments.

With the curated dataset, our results decreased to a correlation

coefficient of 0.75 (s= 0.006, RMSE = 1.26), which is still

comparable in accuracy to the predictions of the core predictive

model (Figure 2C). A recently developed coarse-grained predictor,

BeAtMuSiC [36], reports a correlation of 0.40 on their SKEMPI

curated set, and 0.68 after removing 10% outliers. In our modified

dataset, we obtain r = 0.75, whereas BeatMuSiC obtains only 0.53

(Figure 2C). This significant improvement can be attributed to

both the inclusion of a large and diverse set of features and our

supervised machine learning approach. In this regard, the feature

importance analysis revealed as essential the role of DDGbind for

the interface prediction as it was DDGfold for core. Other energy

terms such as sidechain entropy, energy clashes and solvation of

mutant residues become also relevant. Sidechain entropy and

solvation might differentiate between mutations at the center or

rim of the interface, whereas energy clashes might indicate

impossible amino acid substitutions in the center of the interface

due to the size constraint. As for core, SIFT scores are of major

importance, suggesting a lower tolerance to mutation of highly

conserved residues in interfaces [45]. Many molecular features

play a minor role in the prediction of stability changes, including

most of the interface descriptors.

Prediction of the impact of a mutation on protein interfaces is

more challenging than on the protein core for several reasons. The

first one is the diversity of physicochemical properties of interfaces

(i.e., sizes and amino acid composition); some interfaces are wide,

flat and hydrophobic resembling protein cores, whereas others are

small and hydrophilic [46,47]. Second, the specific nature of many

interactions may be difficult to render accurately by the FoldX

energy function. Finally, it is more difficult to model the mutant

side-chain conformation since interfaces accept a greater variety of

residue changes [48], whereas good side-chain modelling is critical

for a good DDG estimation. This is reflected on our FoldX results,

Figure 3. Feature importance for core and interface predictions. Histogram representing the relative importance of the different features for
core predictions (A) and interface prediction (B). To avoid cluttering, only features with a relative importance of 10% or larger were considered and
coloured according to the three categories. Abbreviations: t: torsional, diS: disulfide, E: electrostatics, ion: ionization, dS: entropy, Hdipole: helix dipole,
cb: covalent bond, sb: salt bridge, hb: hydrogen bond, cisb: cysteine bond, wb: water bridge, vdW: wan der Waals, mc: main chain, sc: side chain, if:
interface, dm: domain, sasa: solvent accessibility, solv: solvation, ap: apolar, po: polar (see Table S1 for feature description).
doi:10.1371/journal.pone.0107353.g003

Mutation Effects in Protein Cores and Interfaces

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e107353



where we obtained a correlation coeficient of 0.54 for the core

predictions and 0.44 for the interface. To the best of our

knowledge ELASPIC is the first integrative approach that uses

multiple features to predict the stability changes of point mutations

in the interface of protein-protein complexes. The results are

comparable to our stability predictor for core mutations,

suggesting the suitability of the features to describe changes to

protein stability as well as to estimate binding affinities despite the

distinctive physicochemical principles governing both molecular

processes.

Quality assessment of predictions based on experimental
vs. modelled structures

While the coverage of the PDB of any given proteome is low, it

can be greatly expanded by modeling proteins and their complexes

using homologous structures as templates [39]. Hence, we

integrated a homology modeling component to generate structural

models for ProTherm and SKEMPI datasets, and evaluated the

potential loss in accuracy derived from the usage of imperfect

structural models to extract molecular and energetic features. In

order to maximize the amount of data and avoid biases, we trained

our predictor independently for each dataset by leave-one-family-

out cross validation to optimize the procedure (See Methods for

details). The modeled ProTherm dataset contains ,40% of the

models done with structural templates below 90% sequence

similarity. However, obtaining structural templates of protein-

protein complexes was more difficult to achieve for SKEMPI, and

our modeled dataset contained template similarity above 90% for

,80% of the cases. The generation of these modeled datasets,

specially for complexes, will improve with time by the increase of a

much more diverse set of solved structures of protein complexes in

the PDB repository.

Our training results show a correlation coefficient of 0.52 and

0.4 for ProTherm and SKEMPI, respectively (Figure S1 and S2).

As expected, the results using modeled structures are lower than

the correlations obtained using experimental structures (0.77 and

0.75), yet we still significantly improve the correlations obtained by

using FoldX alone (0.45 and 0.27). In addition, we observe that

modelling introduces systematic biases in the features (Figure S3

and S4), although the feature importance remains similar between

experimental and modelling-based training (Table S3). This may

be an inherent weakness in current homology modeling techniques

that we sidestep by building and retraining a separate predictor.

For the nine most important features for core and interface

mutations, the box plot distribution shows that features extracted

from modeled structures have a better agreement with the disease

mutation features (Figure S3 and S4). In addition, the figures show

that the range and the values of the features from diverse methods

are not suitable for training the model on one type of data and

using it on another. This result stresses the importance of training

on modeled structures in order to predict effects of mutations

proteome-wide, in which approx. 80% of the human proteome has

to be modelled [39]. We rely on the potential of the algorithm to

learn from modelling and energy calculation biases introduced by

the different methods to calibrate predictions. Yet, the overlap

between distributions should improve in the future by using much

larger datasets of stability and binding experimental measure-

ments, without the requirement of having an experimental

structure, as long as the proteins and their complexes can be

modelled by homology.

Stability prediction in disease associated mutations
In order to evaluate ELASPIC performance in identifying

significant differences between harmless and disease-related

mutations genome-wide, we created four mutation categories with

distinct phenotypic signatures. First, we collected a set of non-

synonymous SNPs from HapMap, which are thought to be neutral

or near-neutral. Second, we used mutations from OMIM, which

are high-penetrance mutations that cause congenital diseases and

follow Mendelian inheritance. As such, these are expected to have

a relatively strong effect. Finally, we collected somatic cancer

mutations from COSMIC that we split into two groups: ‘‘driver’’

mutations defined as causal mutations that lead to abnormal

growth and tumor formation, and ‘‘passenger’’ mutations, which

are results of a breakdown of the DNA repair mechanisms and

accumulate more or less at random.

We developed a methodology to map any mutation in the

proteome to a structural domain, and accurately distinguish

whether the mutation falls in the core, a binding region or another

surface region of the domain (Figure 1 and Methods section). The

approach combines Pfam domain detection with boundary

extension using the closest homolog of known structure. The

templates provide us with the core information and allows us to

model the structure of the domain. To identify binding regions for

a given protein domain, we check its partners in a protein-protein

interaction network and their domain composition (Figure 1; see

Methods). Only those domain-domain combinations between

proteins with an existing complex of known structure are selected

for further analysis. As for single domains, the closest homologous

template provides us with the interacting positions and allows us to

model the structure of the complex. Once a mutation is found

either in the core or interface, the modeled structure is used to

extract the respective features required for prediction. Only

mutation results showing DGwt #30 and relative DOPE score ,1

were accepted for comparative analysis (see Methods). These cut-

offs were obtained from the analysis of the modelled training set,

and should identify and eliminate aberrant models, non-folding

domains and non-interacting domain pairs. Finally, we predicted

the DDGDT (i.e., the predicted DDG based on our SGB-DT

model) for each mutation using our regression model that

represents in kcal/mol the stability of the domain fold for core

mutations, and the stability of the domain-domain complex for the

interface mutation.

In total, we obtained 2,637 mutations in domain cores, and

1,383 mutations in domain-domain interfaces distributed among

the different disease groups (Table 1). As shown (Table S4), our

DDGDT predictions for core mutations show a statistically

significant difference in the box plot distributions between groups

(Figure 4A and Table S4). HapMap SNPs show the lowest median

and, on average, only lead to a slight destabilization of the proteins

that harbour them, consistent with the fact that they are likely only

under weak purifying selection. Likewise, COSMIC passenger

mutations have a low median, again consistent with the fact that

these are random somatic mutations and do not undergo selection;

yet many outliers showing strong effects are observed, pointing out

that the border distinguishing driver from passenger mutations

based on occurrence of the mutation is not optimal. As expected,

OMIM SNPs and COSMIC driver mutations show much

stronger effects at the core of protein domains than HAPMAP

and COSMIC passengers due to their direct link to genetic

disorders and cancer, respectively. Our results suggest that in

many cases the phenotypic effect of the mutation might be caused

by the destabilization of the domain core, which might affect the

correct protein function. A difference of 2 kcal/mol that we

observe for these two disease related mutations is considered to

truly destabilize cores of proteins, something that has already been

observed to happen in OMIM disorders [49]. A small number of

Mutation Effects in Protein Cores and Interfaces
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disease mutations produce over-stabilization of domain cores that

show no differences between groups (Figure 4).

Our DDGDT predictions for interface mutations show differ-

ences in the box plot distributions between groups similar to the

observations made for the core distributions. Most of the

COSMIC driver mutations have binding energy differences

around 1.2 kcal/mol, while the other three groups have lower

values. Mutations destabilizing protein complexes should have a

DDG comparable to the contribution of a hot spot residue to

binding which is considered to exceed 1.5 kcal/mol [50,51]. It is

important to note that both HapMap and COSMIC passenger

mutations show similar distributions and contain mutations that

severely affect binding affinity, suggesting that many disruptions of

interactions may not lead to strong phenotypic consequences

Table 1. Disease mutations calculated for domain cores and interfaces.

Database Core Mutations Interface Mutations

HAPMAP 415 310

OMIM 700 291

COSMIC passenger 1445 736

COSMIC driver 77 48

doi:10.1371/journal.pone.0107353.t001

Figure 4. Summary of stability prediction of nsSNP mutations. Predicted absolute DDGDT box plots (right) are shown for (A) core and (B)
interface mutations and the three types of mutations (Hapmap, OMIM and COSMIC driver/passenger).
doi:10.1371/journal.pone.0107353.g004
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(Figure 4B and Table S4). However, the phenotypically more

severe OMIM and COSMIC driver mutations have a higher

fraction of interaction disrupting mutations. This suggests that

many of these diseases might be caused by disruptions of protein-

protein interactions that might affect the correct cellular function,

as suggested by the concept of ‘edgetics’ [52]. According to our

results there is only a limited number of mutations that over-

stablize protein complexes, especially for COSMIC drivers

(Figure 4B). Unfortunately, due to the small size of some datasets,

several differences between groups are not statistically significant

(Table S4). Nevertheless, we are already able to observe the

expected trend between disease classes that is also shown for core

mutation effects (Figure 4B). We expect this trend to improve in

the future with increasing number and diversity of structures of

protein complexes in the PDB that could facilitate homology

modelling.

Conclusions
The human population is estimated to have 67,000–200,000

common nsSNPs [53,54], and each person is thought to be

heterozygous for 24,000–40,000 nsSNP [53]. Experimental

characterization of the impact of each nsSNP on protein function

is unfeasible in terms of time, cost and difficulty. In addition, the

computational prediction of effects of mutations in the proteome at

high accuracy using energy based models is extremely challenging

[14]. Based on the assumption that mutations affecting protein

function tend to occur at evolutionary conserved regions, such as

active sites or in protein cores, current methods are based on

purely sequence features, such as SIFT [16]. Other methods

combined sequence with molecular features obtained from

homologous sequences, such as PolyPhen-2 [17], in order to

assess the effect of the mutation in the stability of the protein.

Despite the limitations of these techniques [17], there is no

integrative predictor including energetic features that has been

tested in a large scale.

We introduce ELASPIC, a novel ensemble learning approach

that is able to predict stability effects upon mutation in both

domain cores and domain-domain interfaces. We combine for the

first time semi-empirical energy terms, sequence conservation, and

a wide variety of molecular details with a Stochastic Gradient

Boosting of Decision Trees (SGB-DT) algorithm. Our 75 features

are mainly based on a molecular description of the mutated

position, the energy terms describing the free energy difference

between wild type and mutant variant, and the evolutionary

conservation of the mutated position. Our results show that

ELASPIC outperforms all other methods in predicting the effect of

both core and interface mutations in high quality experimental

datasets, achieving Pearson correlation coefficients of 0.77 for

stability, and 0.75 for affinity predictions. Our analysis shows a

major relevance of DDG and DGm together with molecular

features describing volumes and overlaps, and evolutionary

conservation for accurate prediction of stability changes. We also

show that our predictor works in conjunction with modelled

structures, thereby drastically increasing our coverage to a

proteome-wide scale. While the prediction accuracy on modelled

structures is lower, this will likely increase with better modeling

techniques or further optimization of the structures using

molecular dynamics or other related computationally expensive

techniques.

Finally, we demonstrate that our predictor significantly distin-

guishes various types of disease-associated mutations obtained

from Mendelian diseases, driver and passenger cancer mutations

and common neutral ones. Interestingly, these results highlight the

relevance of stability effects of mutations on domain folds and their

interactions to the prediction of disease phenotypes. However,

other relevant cellular factors, such as expression or protein

essentiality, should be taken into account [55]. Therefore,

ELASPIC should not be taken as a predictor of disease mutations,

such as the sequence-based methods MutationTaster [56] or

SNAP [57], since it was trained to predict stability rather than

phenotype effect of mutations. However, we anticipate that the

integration of physicochemical-based stability effects with genome

wide information has the potential to provide more accurate

predictions of disease phenotypes and better knowledge about the

cause of the diseases at molecular level.

Materials and Methods

Experimental Datasets
Core mutations. To predict the stability effects of mutations

in protein cores, we trained our core method on ProTherm [12], a

thermodynamics database of protein and mutant stabilities. The

list of proteins was curated at 90% identity using CD-HIT [58] in

order to avoid biases in the training set due to over representation

of some complexes. If multiple measurements were available, we

selected values in kcal/mol near physiological conditions. Our

modified ProTherm dataset used for training consists of 3,463

mutations in 159 proteins with crystal structures. To evaluate the

performance of our core methods against other existing methods,

we could not use our modified dataset, since these methods are not

available for re-calculating them with a new training set.

Alternatively, we used two benchmark datasets derived from old

versions of ProTherm [12] to evaluate our core method against

Popmusic2.0 [24], ProMaya [31] and Prethermut [44]. The

Dehouck_09 [24] dataset consists of 2,636 mutations in 134

proteins, and Potapov_09 [19] dataset consists of 2,104 mutations

in 79 proteins. To avoid redundancy, Potapov_09 selected the

mean of multiple measurements, whereas Dehouck_09 employed

a weighting scheme to prioritize mutations that were measured in

or near physiological conditions.

Interface mutations. Our interface method has been trained

and evaluated using the SKEMPI [13] database, in which

experimentally measured stability changes of protein complexes

upon amino acid mutation are available. To obtain an unbiased

training set for our interface predictive model, the protein-protein

complexes of SKEMPI were clustered using CD-HIT [58] with an

average 90% sequence identity cut-off by combining both chains.

From each cluster, the complex with the most available mutations

was taken. To identify mutations at the interface, a 5 Å cut-off

distance was applied between mutant atoms and the opposite

chain. Our modified SKEMPI dataset consists of 873 mutations in

54 protein-protein complexes with crystal structures. Our interface

method is evaluated against BeAtMuSiC [36] using ours and their

own dataset, in which multiple mutations and redundant entries

are removed from SKEMPI [13]. We could gather 2,027

mutations, which is comparable to the 2,007 obtained from

BeAtMuSiC.

Disease mutations. In order to evaluate ELASPIC perfor-

mance in identifying significant differences between neutral and

disease-related mutations, we created three mutation categories

with distinct stability signatures: OMIM, COSMIC and HapMap.

Online Mendelian Inheritance in Man (OMIM [59]) mutations

are those that cause Mendelian diseases, rare highly penetrating

diseases with severe phenotypic consequences. We downloaded

18,635 OMIM mutations from Swissprot and were able to map

10,071 of them to a structure. Cancer on the other hand is caused

by abnormal perturbations in cell regulation due to somatic

mutations that result in uncontrolled cell proliferation and tumor
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formation [60]. Such changes are caused by ‘‘driver’’ mutations,

i.e., mutations that provide a growth advantage. By contrast, the

majority of somatic mutations in cancer are ‘‘passenger’’

mutations that accumulate in the cancer genome as a result of a

breakdown of DNA repair processes [61]. To define driver and

passenger mutations, we used cancer mutation frequency infor-

mation from the Catalogue of Somatic Mutations in Cancer

(COSMIC [62,63]). Somatic missense mutations from 725,412

amino acid sites were downloaded from COSMIC (version 67).

For our analysis, we classified driver mutations based on their

occurrence in multiple independent tumor samples, whereas

passenger mutations were present in single tumor samples [64].

Missense mutations were defined as a driver mutation if at least 5

distinct COSMIC samples from at least 3 distinct studies. To

prevent bias from low throughput targeted gene analysis, we also

selected as driver mutations those coming from at least 3 distinct

genome screening based studies. Due to the computation resources

needed to process these many mutations, we prioritized the

calculations in decreasing order of reported mutation frequencies,

completing 15,951 mutations. Finally, we obtained mutations with

an expected neutral effect from HapMap, a catalog of common

genetic variants that occur in human beings. We downloaded

9,141 neutral HapMap nsSNPs from BioMart and were able to

map 1,206 to a structure.

Generation of stability predictive features
Our integrative algorithm includes three categories of predictive

features:

Sequence features. This category comprises domain length,

BLOSUM80 and SIFT scores that are directly calculated for a

given mutation in a protein. SIFT [16] software is used to predict

the degree of sequence conservation for each mutated amino acid

position and distinguish between deleterious from tolerated

mutations.

Energy features. These are generated from existing struc-

tures, and in their absence, domains and complexes are

structurally modeled. All mutated domains and complexes in

both, core and interface datasets, have the wild-type structure

associated to an entry in the Protein Data Bank, and experimental

measurements for both, wild type and mutant variant. The first

step to extract the structural features was to generate the wild type

structure by isolating the PDB chain/s listed in the dataset, and the

PDB ligands, defined as all HETATM excluding water molecules

(i.e ATP, Ca2+). An empirical potential method, FoldX [23], was

used to generate the mutant variant by inserting the single point

mutations to the wild type structure using its standard procedure.

FoldX was also used to perform a quick optimization in both wild

type and mutant structures using a probability-based rotamer

library to explore alternative conformations of the surrounding

side chains. We used FoldX to generate descriptive energetic

features derived from the calculation of stability and binding

energies for the wild type and mutant variants, including the

energy difference (DDG). The stability energy was calculated using

the Stability function from FoldX on the core datasets, whereas the

binding energy was calculated using its AnalyseComplex function

on the interface dataset. When using structures from homology

modeling, we included additional features that describe the

modelling accuracy: Modeller DOPE score and sequence identity

between template and target sequences.

Molecular features. A description of the mutated position

and its surrounding is obtained by several features. First, we

calculate the number of intra- and inter- contacts between the

residue of interest and the surrounding in order to describe the

volumetric and physicochemical differences. Second, we classify

atom contacts as hydrophobic (carbon-carbon), hydrophilic

(hydrogen bond donor-acceptor) or electrostatic (positive-negative

charged atom combinations). A distance cut-off of 5 Å and 4 Å

were set for hydrophobic and hydrophilic/electrostatic interac-

tions, respectively. For protein complexes, the solvent accessible

surface area (SASA) of the interface and the hydrophobic, and

hydrophilic contributions were calculated by subtracting the total

SASA from the sum of the individual protomer SASA values using

POPS software [65].

In total, we collected a list of 75 descriptors based on empirical,

molecular and sequence features (Table S1)

Identification and structural modelling of core mutations
To calculate the stability effects of disease-related mutations, we

first have to identify the mutations that fall in a protein domain.

For this, HMMER [66] software was used for searching Hidden

Markov Model (HMM) profiles from Pfam families (v.27) [67]

against the human sequences in Uniprot [68]. Once the family was

identified, the final sequence boundaries for each predicted

domain were extended using as a template the structure with the

highest sequence identity. The template was identified by iterative

pair-wise sequence alignments of the target protein sequence

against all family members using Clustal Omega [69], a sequence

alignment software. We distinguished core from surface mutations

by obtaining the solvent inaccessible residues on the template

structure, and mapping these positions to a target Uniprot domain,

using the previous target-template sequence alignment. POPS

software [65] was used to identify the core residues of the template

structure, defined as those residues having SASA/Å2 of all side-

chain atoms below 10 using a probe radius of 1.4 Å. For those

mutations happening at the core of the target domain, we

calculated the structural and energetic features. If an experimental

structure for the exact target protein was not available (as is the

case for the vast majority of proteins), we modelled the structure of

domains based on the previous template structure using the

software suite Modeller (v. 9.11) [70]. An accurate structure-based

sequence alignment of target-template was generated with T-

Coffee in "Expresso" mode, and modified to include HETATMs

and to be compatible with Modeller. For each modelling run, 5

structures and 3 rounds of loop refinement were generated. Each

structure was checked for knots with the KNOT [71] software to

identify and eliminate aberrant models. Finally, the structure with

the lowest normalized DOPE score (Modeller quality score) was

selected for further free energy calculation.

Identification and structural modelling of interface
mutations

We distinguished surface from interface mutations by combin-

ing a structural classification of domain complexes with a protein-

protein interaction network. First, we used physical interactions

from Biogrid (v 3.2.95) [72] to obtain all UniProt protein-protein

interaction pairs. For each protein pair, we obtained the domain

composition for both proteins and checked whether there were

interacting domain pairs of known structure in the PDB. Based on

the assumption that interactions are conserved at the family level

[39], we used SCOWLP [73] structural database of protein

complexes to extract the different binding regions for a given

domain-domain interaction. For each binding region, we obtained

the best structural template, defined as the member with highest

average sequence similarity per pair according to T-coffee, and

with the highest structural resolution. The alignment was used to

map the interfacial residues defined by SCOWLP to the template

structure. For those disease-related mutations located at the

interface, the domain-domain complex was modeled in the same
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way as for single domains (see previous section). Finally, the

structural model of the complex was used to extract the different

structure-based features as explained above (see Methods:

Generation of stability predictive features).

Predictive model
We treat the stability prediction problem as an instance of the

non-linear regression problem. Our model assumes as input a

vector of 75 derived features (Table S1), some of which are only

applicable for interface mutations and hence are ignored for core

mutations. We use the Stochastic Gradient Boosting of Decision

Trees (SGB-DT) algorithm to fit a non-linear function to minimize

the prediction error. SGB-DT belongs to the popular larger family

of ensemble methods, which are based on the idea of using several

weak predictors to build a powerful predictor. In our case, the

weak learners are decision trees because they can model any non-

linear functional dependencies without the need for complex pre-

processing of data, i.e. transformations and normalizations.

Ensemble methods differ in the way they combine the weak

predictors http://en.wikipedia.org/wiki/Ensemble_learning. For

example, http://en.wikipedia.org/wiki/Decision_treeboosting al-

gorithms build the model in iterations of ‘‘boosting steps’’, which

update algorithm-specific weights on data points at each iteration

by giving increasing focus to bad predictions. In particular,

Gradient Tree Boosting fits a decision tree at each iteration on the

residual errors of the ensemble model learnt up to the current

iteration. The tree is fit on a subsample of the training set drawn at

random without replacement, analogous to Random Forests,

thereby leading to stochastic training. It then updates the full

model by adding the newly learnt decision tree to the ensemble of

trees (Refer to the work by Friedman [74] for a brief description of

the algorithm). This provides scalability advantages as well as the

so-called regularization effect that prevents over-fitting. Lastly,

similar to Random Forest, SGB-DT has a built in feature

importance measurement functionality, which allows end users to

explore the predictive features in more details and understand the

mechanics better.

Training and testing with experimental structures
We trained and tested our method on the ProTherm (for core)

and SKEMPI (for interface) databases independently. We took

special precautions to prevent overlap and redundancy between

the training and testing datasets (see above). Proteins and

complexes in these datasets have experimentally solved crystal

structures, thus no modeling is needed. We used the SGDRe-

gressor implementation of the scikit-learn [75] machine learning

toolkit to optimize parameters using cross validations. The

parameters and the search space over which optimization is

performed is given in Table S2. We used a 20-fold cross validation

scheme with 50 repetitions in order to obtain a robust estimate of

the mean and standard deviation of the achieved explained

variance, i.e. Pearson correlation. This procedure was indepen-

dently repeated for each dataset. Within each dataset, the cross

validation scheme is used to split the dataset into training and test

subsets to ensure non-overlapping training and test sets. The

redundancy elimination in the pre-processing step (see above)

removes dataset specific redundancies.

Training and testing with modelled structures
In order to predict stability and affinity of mutations using

modelled structures, we trained a separate predictor. Specifically,

we discarded the experimental structures of the proteins in

ProTherm and SKEMPI and instead built modelled structures.

This was necessary as many features differed greatly between

modelled and experimental structures; while this may reflect an

inherent weakness in current homology modeling approaches, we

sidestepped the issue by building a separate predictor to use for

modelled structures. We hence modelled the sequences of the

proteins and complexes for each mutation in the datasets. All

possible template structures with resolutions #2 Å were taken

independently of the sequence identities. All features were

extracted as explained above in the modelling sections of the

Methods. Those models presenting DGwt values above 30 kcal/

mol, and a normalized DOPE above 1 were not accepted for

training. This cut-off was selected based on the maximum DGwt

folding/binding values observed for the subset of models done

using templates at 100% sequence identity. These cases represent

sequences modeled against their own experimental structure,

where systematic biases of modelling affect the features. Our final

modeled ProTherm dataset is composed of 4,449 mutations. From

those, 22% have 100% seqID (sequence identity), 64% have 90%

seqID or higher, and 14% have less than 50% seqID. Our

modeled SKEMPI dataset is composed of 2,061 mutations. From

those, 79% have 100% seqID (average sequence identity of both

chains); 81% have 90% seqID or higher, 4% have less than 50%

seqID. Unlike for the experimental dataset, we used a leave-one-

family-out cross validation scheme in order to optimize hyper-

parameters and measure model prediction performance. Each

domain was associated to its family using Pfam database. The

reason is to avoid family biases for those complexes with many

structural templates at various identity levels. Mutations within

these complexes would otherwise be represented by multiple

instances in the dataset. Conversely, mutations without homologs

in the PDB repository will be represented only once in the dataset

modeled at 100% sequence identity. Therefore, our modelling

strategy is also creating a family bias in terms of diversity. To cope

with the redundancy of mutations and the sparseness of family-

wise diversity, we utilized cross-validation at family level. At each

fold of cross validation, we left out all mutations from a given

family as test set, and built the regression model on the members of

the remaining mutations. All hyper-parameters were optimized

using the grid search as described in the previous section.

Prediction of diseases mutations
Once the core and interface SGB-DT regression models were

trained on the modeled (modified) datasets, we predicted the

stability effects of the different disease mutation datasets to test the

performance of our method on a larger scale. First, we identified the

mutations located at the core of domains and at the interface of

complexes. Then, we modelled the domains and complex structures

to extract the energetic and molecular features together with the

sequence features. Only significant models according to our

previous definitions were selected for analysis. Finally, using the

regression model we predicted the DDGDT (the predicted DDG

using machine learning) for each mutation. Results for each disease-

related mutation dataset were analyzed using R software [76].

Supporting Information

Figure S1 Correlation between predicted and experi-
mental DDG values for our modelled version of the
ProTherm core dataset (A) and SKEMPI interface
dataset.
(TIF)

Figure S2 Correlation between predicted and experi-
mental DDG values for our modeled version of the
SKEMPI interface dataset.

(TIF)
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Figure S3 Box plots representing the distribution of the
values for the most relevant features in core mutations.
Comparison is done for ProTherm experimental structures

(orange), ProTherm modeled structures (red) and diseases

mutations (yellow) in domain cores of proteins.

(TIF)

Figure S4 Box plots representing the distribution of the
values for the most relevant features in the interface
mutations. Comparison is done among SKEMPI experimental

structures (orange), SKEMPI modeled structures (red) and diseases

mutations (yellow) in protein interfaces.

(TIF)

Table S1 Description of predictive features.

(XLSX)

Table S2 Hyper-parameters and their ranges, over
which Stochastic Gradient Boosted Decision Trees
(SGB-DT) algorithm is optimized.

(XLS)

Table S3 Feature importance for the training set on
modeled structures for ProTherm and SKEMPI data-
sets.
(XLSX)

Table S4 P-values calculated with Wilcoxon Rank Sum
and Kolmogorov–Smirnov test for comparison of distri-
butions of stability predictions across various categories
of mutations.
(XLSX)

Acknowledgments

Disorder predictions were performed on the gpc supercomputer at the

SciNet HPC Consortium.

Availability
ELASPIC is available at http://www.kimlab.org/software/elaspic.

Author Contributions

Conceived and designed the experiments: JT RC PMK. Performed the

experiments: NB RC SGL. Analyzed the data: NB JT RC PMK. Wrote

the paper: JT RC PMK.

References

1. Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of

synonymous mutations to human disease. Nat Rev Genet 12: 683–691.

doi:10.1038/nrg3051.

2. Hagmann M (1999) A Good SNP May Be Hard to Find. Science 285: 21–22.

doi:10.1126/science.285.5424.21a.

3. Risch NJ (2000) Searching for genetic determinants in the new millennium.

Nature 405: 847–856. doi:10.1038/35015718.

4. Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, et al. (2012)

Evolution and functional impact of rare coding variation from deep sequencing

of human exomes. Science 337: 64–69. doi:10.1126/science.1219240.

5. Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, et al. (2010)

Human genome sequencing using unchained base reads on self-assembling DNA

nanoarrays. Science 327: 78–81. doi:10.1126/science.1181498.

6. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, et al. (2011) Mapping

copy number variation by population-scale genome sequencing. Nature 470:

59–65. doi:10.1038/nature09708.

7. Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A, Brooks LD,

et al. (2010) A map of human genome variation from population-scale

sequencing. Nature 467: 1061–1073. doi:10.1038/nature09534.

8. Consortium T 1000 GP (2012) An integrated map of genetic variation from

1,092 human genomes. Nature 491: 56–65. doi:10.1038/nature11632.

9. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, et al.

(2010) A comprehensive catalogue of somatic mutations from a human cancer

genome. Nature 463: 191–196. doi:10.1038/nature08658.

10. Lee W, Jiang Z, Liu J, Haverty PM, Guan Y, et al. (2010) The mutation

spectrum revealed by paired genome sequences from a lung cancer patient.

Nature 465: 473–477. doi:10.1038/nature09004.

11. Emahazion T, Feuk L, Jobs M, Sawyer SL, Fredman D, et al. (2001) SNP

association studies in Alzheimer’s disease highlight problems for complex disease

analysis. Trends Genet TIG 17: 407–413.

12. Bava KA, Gromiha MM, Uedaira H, Kitajima K, Sarai A (2004) ProTherm,

version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids

Res 32: D120–D121. doi:10.1093/nar/gkh082.

13. Moal IH, Fernández-Recio J (2012) SKEMPI: a Structural Kinetic and

Energetic database of Mutant Protein Interactions and its use in empirical

models. Bioinforma Oxf Engl 28: 2600–2607. doi:10.1093/bioinformatics/

bts489.

14. Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on

protein function. Annu Rev Genomics Hum Genet 7: 61–80. doi:10.1146/

annurev.genom.7.080505.115630.

15. Han J-H, Batey S, Nickson AA, Teichmann SA, Clarke J (2007) The folding and

evolution of multidomain proteins. Nat Rev Mol Cell Biol 8: 319–330.

doi:10.1038/nrm2144.

16. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-

synonymous variants on protein function using the SIFT algorithm. Nat Protoc

4: 1073–1081. doi:10.1038/nprot.2009.86.

17. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. (2010)

A method and server for predicting damaging missense mutations. Nat Methods

7: 248–249. doi:10.1038/nmeth0410–248.

18. Zhang Z, Miteva MA, Wang L, Alexov E (2012) Analyzing effects of naturally

occurring missense mutations. Comput Math Methods Med 2012: 805827.

doi:10.1155/2012/805827.

19. Potapov V, Cohen M, Schreiber G (2009) Assessing computational methods for

predicting protein stability upon mutation: good on average but not in the

details. Protein Eng Des Sel PEDS 22: 553–560. doi:10.1093/protein/gzp030.

20. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, et al. (2000) Calculating

Structures and Free Energies of Complex Molecules: Combining Molecular

Mechanics and Continuum Models. Acc Chem Res 33: 889–897. doi:10.1021/

ar000033j.

21. Yun-yu S, Mark AE, Cun-xin W, Fuhua H, Berendsen HJC, et al. (1993) Can

the stability of protein mutants be predicted by free energy calculations? Protein

Eng 6: 289–295. doi:10.1093/protein/6.3.289.

22. Funahashi J, Sugita Y, Kitao A, Yutani K (2003) How can free energy

component analysis explain the difference in protein stability caused by amino

acid substitutions? Effect of three hydrophobic mutations at the 56th residue on

the stability of human lysozyme. Protein Eng 16: 665–671. doi:10.1093/protein/

gzg083.

23. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of

proteins and protein complexes: a study of more than 1000 mutations. J Mol

Biol 320: 369–387. doi:10.1016/S0022-2836(02)00442-4.

24. Dehouck Y, Grosfils A, Folch B, Gilis D, Bogaerts P, et al. (2009) Fast and

accurate predictions of protein stability changes upon mutations using statistical

potentials and neural networks: PoPMuSiC-2.0. Bioinformatics 25: 2537–2543.

doi:10.1093/bioinformatics/btp445.

25. Kortemme T, Baker D (2002) A simple physical model for binding energy hot

spots in protein–protein complexes. Proc Natl Acad Sci 99: 14116–14121.

doi:10.1073/pnas.202485799.

26. Yin S, Ding F, Dokholyan NV (2007) Modeling backbone flexibility improves

protein stability estimation. Struct Lond Engl 1993 15: 1567–1576. doi:10.1016/

j.str.2007.09.024.

27. Masso M, Vaisman II (2008) Accurate prediction of stability changes in protein

mutants by combining machine learning with structure based computational

mutagenesis. Bioinformatics 24: 2002–2009. doi:10.1093/bioinformatics/

btn353.

28. Capriotti E, Fariselli P, Casadio R (2004) A neural-network-based method for

predicting protein stability changes upon single point mutations. Bioinformatics

20: i63–i68. doi:10.1093/bioinformatics/bth928.

29. Cheng J, Randall A, Baldi P (2006) Prediction of protein stability changes for

single-site mutations using support vector machines. Proteins 62: 1125–1132.

doi:10.1002/prot.20810.

30. Capriotti E, Fariselli P, Calabrese R, Casadio R (2005) Predicting protein

stability changes from sequences using support vector machines. Bioinformatics

21: ii54–ii58. doi:10.1093/bioinformatics/bti1109.

31. Wainreb G, Wolf L, Ashkenazy H, Dehouck Y, Ben-Tal N (2011) Protein

stability: a single recorded mutation aids in predicting the effects of other

mutations in the same amino acid site. Bioinforma Oxf Engl 27: 3286–3292.

doi:10.1093/bioinformatics/btr576.

32. David A, Razali R, Wass MN, Sternberg MJE (2012) Protein-protein interaction

sites are hot spots for disease-associated nonsynonymous SNPs. Hum Mutat 33:

359–363. doi:10.1002/humu.21656.

33. Wang X, Wei X, Thijssen B, Das J, Lipkin SM, et al. (2012) Three-dimensional

reconstruction of protein networks provides insight into human genetic disease.

Nat Biotechnol 30: 159–164. doi:10.1038/nbt.2106.

Mutation Effects in Protein Cores and Interfaces

PLOS ONE | www.plosone.org 11 September 2014 | Volume 9 | Issue 9 | e107353

http://www.kimlab.org/software/elaspic


34. De Baets G, Van Durme J, Reumers J, Maurer-Stroh S, Vanhee P, et al. (2012)

SNPeffect 4.0: on-line prediction of molecular and structural effects of protein-
coding variants. Nucleic Acids Res 40: D935–939. doi:10.1093/nar/gkr996.

35. Moretti R, Fleishman SJ, Agius R, Torchala M, Bates PA, et al. (2013)

Community-wide evaluation of methods for predicting the effect of mutations on
protein–protein interactions. Proteins Struct Funct Bioinforma: n/a–n/a.

doi:10.1002/prot.24356.
36. Dehouck Y, Kwasigroch JM, Rooman M, Gilis D (2013) BeAtMuSiC:

prediction of changes in protein-protein binding affinity on mutations. Nucleic

Acids Res. doi:10.1093/nar/gkt450.
37. Agius R, Torchala M, Moal IH, Fernández-Recio J, Bates PA (2013)

Characterizing Changes in the Rate of Protein-Protein Dissociation upon
Interface Mutation Using Hotspot Energy and Organization. PLoS Comput

Biol 9: e1003216. doi:10.1371/journal.pcbi.1003216.
38. Teng S, Madej T, Panchenko A, Alexov E (2009) Modeling effects of human

single nucleotide polymorphisms on protein-protein interactions. Biophys J 96:

2178–2188. doi:10.1016/j.bpj.2008.12.3904.
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