
Maximum Entropy Principle Based Estimation of
Performance Distribution in Queueing Theory
Dayi He, Ran Li, Qi Huang, Ping Lei*

School of Humanities & Economic Management, Lab of Resources & Environment Management, China University of Geosciences (Beijing), Beijing, P. R. China

Abstract

In related research on queuing systems, in order to determine the system state, there is a widespread practice to assume
that the system is stable and that distributions of the customer arrival ratio and service ratio are known information. In this
study, the queuing system is looked at as a black box without any assumptions on the distribution of the arrival and service
ratios and only keeping the assumption on the stability of the queuing system. By applying the principle of maximum
entropy, the performance distribution of queuing systems is derived from some easily accessible indexes, such as the
capacity of the system, the mean number of customers in the system, and the mean utilization of the servers. Some special
cases are modeled and their performance distributions are derived. Using the chi-square goodness of fit test, the accuracy
and generality for practical purposes of the principle of maximum entropy approach is demonstrated.
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Introduction

Queuing theory is mainly regarded as a branch of applied

probability theory. Its applications are in different fields, such as

communication networks, computer systems, machine plants, and

services. Fig. 1 is a typical queuing system with a single server.

Queuing theory tries to answer questions like the mean waiting

time in the queue, the mean system response time (waiting time in

the queue plus service time), the mean utilization of the service

facility, the distribution of the number of customers in the queue,

and the distribution of the number of customers in the system.

These questions are mainly investigated in a stochastic scenario,

where, for example, the inter-arrival times of the customers or the

serving times are assumed to be random typically Poisson arrivals

and to have exponent distribution serving times.

However, usually we are mainly interested in steady state

solutions (see Figure 2); that is, where the system after a long

running time tends to reach a stable state in which, for example,

the distribution of customers in the system does not change

(limiting distribution).

In a canonical way, the steady state of system performance can

be derived from assumptions on the distribution of inter-arrival

times and service times. Hence, these assumptions are the basic

requirement for analyzing queuing systems. However, in practical

situations the pre-assumed distributions are difficult to satisfy or to

acquire. To some degree, this fact limits the practical applications

of queuing theory.

The maximum entropy principle is applicable to queuing theory

because very often only partial information is available about the

probability distributions. With respect to queuing theory, the

principle of maximum entropy has been applied to solving

numerous systems including, but not limited to, M=G=1 and

M=G=1 queues ([1,2]), finite and infinite capacity G=G1 queues

([3,4]), multi-server queues ([5,6]), multiple class queues with

priorities ([7]), and queues with vacation ([8–10]) and queuing

networks ([11–13]). In fact, since the early 1970’s many attempts

have been made to apply the method of maximum entropy in the

field of queuing theory. Ferdinand [14] used the method to derive

the equilibrium solution of the M=M=1=N system by analogy

with statistical mechanics. Shore [15] built an abstract model from

which he determined the maximum entropy solution of the

M=M=? and M=M=?==N systems. Bard [16] applied entropy

maximization to a class of problems in the performance evaluation

of computer systems. El-Affendi and Kouvatsos [2] used the

maximum entropy principle to analyze the M=G=I{ and

G=M=1-queuing systems at equilibrium. Alfa and Chen [17]

developed a discrete time approach model for obtaining the

expected queue length of the M(t)=G=1 queue. Arizono, Cui, and

Ohta [18] analyzed M=M=S using the maximum entropy

principle. Falin, Martin, and Artalejo [19] presented information

on theoretic approximations for the M=G=1 queue with retrials.

Kouvatsos and Tabet-Aouel [20] applied entropy maximization to

characterize the distributional form of the steady-state probabil-

ities of a G=G=c=PR queue with c(§2) parallel servers and

R(§2) priority classes under a pre-emptive resume (PR) rule. Tadj

and Hamdi [21] dealt with a quorum queuing system with a

threshold level r(§1) that regulates the beginning and ending of

idle and busy periods as follows: an idle period starts when the

queue size drops below level r and a busy period starts as soon as

the queue accumulates the same number r. The single server
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processes r customers in one batch. They denoted this system as

M=Gr=1 by Kendall’s notation. They presented a maximum

entropy model to determine the distribution of related random

variables with known server utilization and mean queue length.

The work mentioned above applied the principle of maximum

entropy to certain kinds of queuing systems based on assumptions

concerning inter-arrivals and server times, which limited the

practical applications of queuing theory. In fact, if a queue system

is stable, this is not necessary when the maximum entropy method

is applied to a certain queuing system. In this study, we consider

the queuing system as a black box and derive a performance index

for the queuing system by the principle of maximum entropy only

on the assumption that the queue is stable instead of making

assumptions on the distribution of inter-arrival times and service

times. Meanwhile, from the viewpoint of expanding the practical

application of queuing systems, we use some easily accessible

indexes of queuing systems, such as the capacity of the system, the

mean of customers in the queue, and the mean utilization of the

system. Based on these indexes and the principle of maximum

entropy, optimization models are then developed to derive the

performance of queuing systems.

This paper is organized as follows. Section 2 is a simple review

of the maximum entropy principle. Sections 3 and 4 develop

different maximum entropy models with known mean numbers of

customers and the average value of busy periods under unlimited

and limited server capacity, respectively. Section 5 compares our

results with general models with known assumptions on the

distributions of inter-arrival times and server times by the x2

goodness of fit test. The last section concludes.

Methods: The Principle of Maximum Entropy

The principle of maximum entropy provides a solution to the

old problem of the assignment of a probability distribution to a

random variable that avoids bias while satisfying given or known

information about the random variable. Jaynes is credited with

having formalized the principle of maximum entropy in [22].

Mathematically the principle can be presented as follows:

consider a system H that has a finite or countable infinite set h of

possible states h0,h1, � � � ,hn, � � �. Let p(hi)~pi be the probability

that the system H is in state hi. Suppose all that is known about

these probabilities are (mz1) constraints of the form

Xn

i~0

pi~1, pi§0 ð1Þ

Xn

i~0

fk(h)pi~Mk, 1ƒkƒmv? ð2Þ

where fMkg are expectations defined on a set of suitable functions

ffk(h)g, which can be looked at as the known information. Since,

in general, the number of constraints is less than the number of

possible states, one is faced with an infinite number of distributions

fpig that satisfy these constraints. The problem is which one to

choose.

The maximum entropy principle states that, of all the

distributions satisfying the constraints supplied by the given

information, the minimally prejudiced distribution that should

be chosen is the one that maximizes the system entropy,

H(p)~{
Xn

i~0

pi ln pi: ð3Þ

Figure 1. Queuing System Structure with Single-Server.
doi:10.1371/journal.pone.0106965.g001

Figure 2. Stable and Unstable Queueing System.
doi:10.1371/journal.pone.0106965.g002
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To sum up, the maximum entropy principle can be described as

the following model for discrete variants.

max H(p)~{
Xn

i~0

pi ln pi

s:t:

Xn

i~0

pi~1

Xn

i~0

fk(h)pi~Mk, 1ƒkƒmv?

pi§0, i~0,1,2, � � � ,n

8>>>>>><
>>>>>>:

ð4Þ

This is a natural extension of Laplace’s famous principle of

insufficient reason, which postulates that the uniform distribution

is the most satisfactory representation of our knowledge when we

know nothing about the random variable except that each

probability is non-negative and that the sum of the probabilities

is unity.

The maximization of (3) subject to constraints (1) and (2) can be

solved by using the Lagrangian method of undetermined

multipliers leading to the solution:

pi~ exp ({l0{l1f1(h){ � � �{lmfm(h)), i~0,1,2, � � � ,n ð5Þ

where flkg are the Lagrangian multipliers corresponding to the

set of constraints (1) and (2). More details on the maximum

entropy principle and its generalizations can be found in [23,24].

Especially, if only the expected value E is known, the second

constraint converts to

Xn

i~0

ipi~E

and according to (5) the estimated distribution is

pi~ exp ({l0{l1i), i~0,1,2, � � � ,n

To be simple, let

a~ exp ({l0), b~ exp ({l1)

then

pi~abi, i~1,2, � � � ,n

Substituting the above equation into the constraints, we can get

Xn

i~0

abi~1

Xn

i~0

iabi~E

8>>>><
>>>>:

Hence,

Xn

i~0

iabi~E
Xn

i~0

abi[
Xn

i~0

(i{E)bi~0

where the coefficients of b in the above equation are increasing,

and (0{E)v0 and there exists an n that makes (n{E)w0, so

that there is only one change in sign in the coefficients of b.

According to Descartes’s rule of signs, there is only one positive

real root to the above equation. This indicates the solution

uniqueness of the maximum entropy estimation problem even if

there are only expected value and unit and non-negative

requirements, which provides the basis for the later study in this

article.

The maximum entropy approach to queuing systems is based

on finding a maximum-entropy performance distribution based on

the knowledge of some moments of the distribution concerned. To

simplify, we will only discuss a queuing system with a single server

and infinite customers, and where the dispatching rule is FIFO

(First In First Out). The queuing systems are classified by server

capacity into two types: queuing systems with either unlimited or

limited server capacity. In each type, we will estimate the

distribution of the system state by the maximum entropy principle

from the mean number of customers in the system and the average

value of a busy period.

Discussion

1. Queuing system with unlimited server capacity
If it has unlimited server capacity, a queuing system can serve as

many customers as possible. Generally speaking, it is hard to

discover the distributions of customer arrivals and departures.

Hence, for a queuing system it is easy and practical to acquire

knowledge of the mean number of customers and the busy periods

etc. if the queue is stable.

Let the mean number of customers in the system under steady

state be Ls (§0), and pi is the probability of the fact that there are

i(i~0,1,2,3, � � � ,) customers in the queuing system. According to

the maximum entropy principle, the following model can be

established if there is no more information.

max S~{
X?
i~0

pi ln pi

s:t:

X?
i~0

pi~1, (a)

X?
i~0

ipi~Ls, (b)

pi§0, i~0,1,2, � � � ,

8>>>>>>><
>>>>>>>:

ð6Þ
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Based on the method in Section 2, the distribution of the system

state is

pi~e{(1zl0){l1i~e{(1zl0)(e{l1 )i : ~abi ð7Þ

with (6.a) and (6.b),

X?
i~0

abi~1

X?
i~0

iabi~Ls

8>>>><
>>>>:

ð8Þ

As we know, the above equations have only one positive real root.

As for
X?

i~0
bi~

1

1{b
(bv1), we can get

X?
i~0

ibi~
b

(1{b)2

so with (8)

Ls

1{b
~

b

(1{b)2

then,

b~
Ls

1zLs

a~
1

1zLs

8>><
>>:

ð9Þ

so

pi~abi~
1

1zLs

Ls

1zLs

� �i

ð10Þ

Let

r~
Ls

1zLs

ð11Þ

then

pi~(1{r)ri ð12Þ

The results in (12) reflect the probability distribution function of

a single server queuing system with a known mean number of

customers and without limitation on system capacity, from which

we can obtain the performance indexes of this kind of queuing

system. It should be noted that the results presented here are

coherent with a M=M=1 queuing system. The intrinsic reason is

that the maximum entropy distribution with a known non-

negative mean value is a Poisson distribution [25].

Another situation is that the queuing system has unlimited server

capacity and a known mean server utilization of of 1{p0. Under

this situation, the maximum entropy model is changed to be:

max S~{
X?
i~0

pi ln pi

s:t:

X?
i~1

pi~1{p0

X?
i~0

ipi~Ls

pi§0, i~0,1,2, � � � ,

8>>>>>>><
>>>>>>>:

ð13Þ

With a similar approach, we can get

pi~abi ð14Þ

where

ab

1{b
~1{p0,

ab

(1{b)2
~Ls ð15Þ

that makes

a~
(1{p0)2

Ls{1zp0
, 1{b~

1{p0

Ls

ð16Þ

then

pi~
(1{p0)2

Ls{1zp0

Ls{1zp0

Ls

� �i

i~1,2, � � � , ð17Þ

Then, with a known Ls and p0, the system performance can be

achieved.

2. Queuing system with limited server capacity
In this section we will study the situation where the queuing

system has a limited capacity; that is, there are N customers at

most in the system, Nz1 customers will leave, and the other

assumptions are the same as before.

Firstly, we will consider the queuing system with only a known

mean customer Ls. Then, the maximum entropy model is:

max S~{
XN

i~0

pi ln pi

s:t:

XN

i~0

pi~1, (a)

XN

i~0

ipi~Ls, (b)

pi§0, i~0,1,2, � � � ,N

8>>>>>>>><
>>>>>>>>:

ð18Þ

By a similar method, we come to
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pi~abi, i~0,1,2, � � � ,N ð19Þ

where a and b are the roots of the following equations

a
XN

i~0

bi~1,

a
XN

i~0

ibi~Ls

8>>>><
>>>>:

ð20Þ

As we know, the above equations have only one positive root. And

we define

f (b)~
XN

i~0

(i{Ls)b
i~0 ð21Þ

And because

f (0)~0, f (1)~N
Nz1

2
{Ls

� �
, f (?)w0 ð22Þ

we can come to the following results:

i) if Lsv
N

2
, then bv1,

ii) if Ls~
N

2
, then b~1 and the distribution of steady state is an

average distribution,

iii) if Lsw
N

2
, then bw1.

Table 1 and Table 2 demonstrate the above results. In Table 1

the known mean number of customers is assumed to be 6 and in

Table 2 the number is assumed to be 8. In Table 1, the capacity of

the system is set to be N~6, when Ls is set to be different values,

we can get a’ and b’value by solving (20). Then, by using (19) the

value of pi can be calculated. Then, the maximum entropy can be

calculated too. By similar approach, Table 2 can be achieved.

If the system with limited server capacity has information of

mean customer number Ls and busy period 1{p0, the maximum

entropy model will be

max S~{
XN

i~0

pi ln pi

s:t:

XN

i~1

pi~1{p0

XN

i~0

ipi~Ls

pi§0, i~0,1,2, � � � ,N

8>>>>>>><
>>>>>>>:

ð23Þ

So we get

pi~cdi i~1,2, � � � ,N ð24Þ

where

T
a

b
le

1
.

M
ax

im
u

m
En

tr
o
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y

D
is

tr
ib

u
ti

o
n

(N
~

6
).
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s
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0
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c
XN

i~1

di~1{p0, c
XN

i~1

idi~Ls ð25Þ

that is

cd(1{dN )
1{d

~1{p0, c
d{(Nz1)dNz1zNdNz2

(1{d)2
~Ls ð26Þ

The solution is the root of the following equation:

1{(Nz1)dNzNdNz1

1{d{dNzdNz1
~

Ls

1{p0

ð27Þ

By equation (27) with known N , Ls, and p0, the value of d can

be decided and then c can be decided too by equation (26): then

we can get the steady state distribution fpig. Similar results can be

derived:

i) if
Ls

1{p0
w

Nz1

2
, then dw1,

ii) if
Ls

1{p0
~

Nz1

2
, then d~1,

iii) if
Ls

1{p0
v

Nz1

2
, then dv1.

In Tables 3 and 4, we assume N~6 and p0 equals 0.1 and 0.01,

respectively; then we calculate the system performance distribution

by changing the value of Ls. In Table 3, by using (26) the value of

c and d can be got. Then substituting c and d into (24) the value of

pi can be calculated and the corresponding entropy can be

calculated too. In similar procedure, we can get Table 4.

3. The chi-square goodness of fit test
Without any assumptions on the distribution of inter-arrival

times and server times, we deduced the performance distributions

of the queuing system by the maximum entropy principle above. Is

this method effective and feasible? We will test our method by the

x2 goodness of fit test to determine this.

Taking model (18) as an example, if we know the distribution of

inter-arrival times and server times follow the Poisson process,

then we get a M=M=1=N queuing system. Its performance

distribution is

p0~
1{r

1{rnz1

pn~p0rn

, r~
l

m
=1

8<
: ð28Þ

and the mean number of customers in the system is

Ls~
XN

n~0

npn~
r

1{r
{

(Nz1)rNz1

1{rNz1
ð29Þ

We can decide the value of N and Ls and get the value of r by

solving (29), the theoretic distribution can be calculated by using

(28). The results are shown in Table 5.

On the other side, if we only know N and Ls of the queuing

system, according to (18) we can arrive at the maximum entropy

distribution as shown in Table 1. Comparing Table 5 with
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Table 1, it can be found that the maximum entropy distribution is

very close to the theoretic distribution; that is, the x2 is almost

equal to 0. Hence, the maximum entropy distribution is a good

estimation.

Conclusions

Queuing system analysis is usually based on some assumptions

about the distributions of inter-arrival times and server times. This

study shows that there is no need to assume those distributions,

and if a queuing system is looked at as a black box, the system

performance can be estimated by the maximum entropy principle

with some easily accessible macro-level indexes. In this paper,

some common queuing system are studied including queuing

system with unlimited server capacity and queuing system with

limited server capacity. By utilizing the principle of maximum

entropy, and with known information of some easily accessible

macro-level indexes such as mean number of customers in the

system Ls, system capacity N and mean server utilization of of

1{p0, we demonstrate that maximum entropy method is a

feasible and effective approach to estimate the system performance

distribution.

However, our study focused on single server queuing systems.

For further research, multi-server queuing systems should be taken

into consideration. For multi-server queuing system, more factors,

for example queuing rules, server layout, system capacity et.al.,

should be considered. Hence, it will be more complicated.

However, with assuming on those factors and observed indexes

as presented in this paper, we can that our methods will be

applicable in those circumstances also.
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