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Abstract

Gun violence continues to be a staggering and seemingly intractable issue in many communities. The prevalence of gun
violence among the sub-population of individuals under court-ordered community supervision provides an opportunity for
intervention using remote monitoring technology. Existing monitoring systems rely heavily on location-based monitoring
methods, which have incomplete geographic coverage and do not provide information on illegal firearm use. This paper
presents the first results demonstrating the feasibility of using wearable inertial sensors to recognize wrist movements and
other signals corresponding to firearm usage. Data were collected from accelerometers worn on the wrists of subjects
shooting a number of different firearms, conducting routine daily activities, and participating in activities and tasks that
could be potentially confused with firearm discharges. A training sample was used to construct a combined detector and
classifier for individual gunshots, which achieved a classification accuracy of 99.4 percent when tested against a hold-out
sample of observations. These results suggest the feasibility of using inexpensive wearable sensors to detect firearm
discharges.
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Introduction

Gun violence remains a persistent problem in U.S. communities

[1]. Each year, nearly 10,000 individuals are murdered with

firearms [2]. The traditional police response to this social problem,

increased deployment to suppress gunfire, is difficult to sustain in

today’s fiscal climate. Therefore, a number of jurisdictions have

turned to technological solutions, such as citywide acoustical

gunshot location systems, hoping these systems could enhance

their ability to detect or deter gun offenders. Unfortunately, these

systems have not yet proven to be effective at reducing outdoor

gun violence and, by design, are unable to locate indoor gun use

[3]. Other jurisdictions have focused their enforcement efforts on

monitoring the subset of individuals at highest risk of involvement

in fatal shootings based on research showing that the majority of

both homicide victims and perpetrators are on probation, parole,

or pretrial release [4–6]. However, this approach can be labor-

intensive. Furthermore, existing monitoring technologies (e.g.,

RF/GPS bracelets) can lead to information overload for officers

[7,8] in the absence of clear signals that the monitored individuals

are at the location of a reported gun crime, which occurs in less

than half of all outdoor gun discharges [3]. While the scale of this

problem suggests the need for a range of policy responses, the

present analysis suggests that an opportunity exists for advanced

offender monitoring technology, using low-cost wearable sensors,

to enhance public safety by detecting illegal firearm usage by

individuals already under the supervision of the criminal justice

system.

Prior work on gunshot detection has either focused on shooter

localization using acoustic triangulation [9] or localization of

muzzle flashes using infrared cameras [10]. In the domestic

application, acoustic triangulation has been the most common

implementation, with distributed microphone networks construct-

ed to provide location information for gunshot events in covered

areas [3].

This approach was disfavored in the current application due to

the difficulty of separating handgun-generated muzzle blasts from

other impulsive acoustical events, such as jack-hammering,—even

at close range—and the challenges of attributing a localized

muzzle blast to the wearer of a sensor. Instead, a motion-based

detection framework was chosen.

In related work, researchers have achieved success using

wearable accelerometers to detect and classify commonplace

human behaviors [11–15]. In addition, they have recently

demonstrated the potential of wearable accelerometers to detect

fall events [16], seizures [17], and concussive head trauma [18]

from a continuous stream of movement data. To date, however,

no published effort has been made to use these sensors to classify

firearm use. As a result, our only knowledge of the forces acting

upon the wrist during gunshot events comes from studies of

firearm movement in controlled settings using load sensors [19],

studies of human physiological response to blast pressure and other

recoil-related forces [20], and calculations of felt recoil under

theoretical conditions [21]. Even when detailed investigations have

been made of the firearm-human system, most studies have

analyzed shoulder-fired weapons rather than hand-fired weapons

and have examined their effects on shooter performance rather

than shooter kinematics [20,22].
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Even so, these studies provide several important insights into the

physics of firearm use, which aid in the classification of wrist

movement during gunshot events. First, gunshot events, from the

perspective of the shooter’s wrist, occur when the wrist is either at

rest or in constant acceleration in the fraction of a second before

discharge. This results from the need to aim the gun in the

direction of fire. Once the trigger is pulled, there is a sudden

change in acceleration. This jerk motion has little in common with

other human-initiated activities, which generally involve the

gradual acceleration of the wrist prior to peak acceleration (e.g.,

tennis swings, hand claps, punches, hammering). Instead, this

motion has much more in common with other impulse transfer

events that involve the hand and arm. These include the hand

being struck by a fast moving blunt force object or a high-speed

tool. The relative rarity of these impacts will likely provide much of

the separation needed to reliably detect gunshots. However, when

these confusable events do occur, they are unlikely to overlap

substantially with gunshots due to the following three components

of gun discharges.

1. Blast wave
Only 30% of the chemical energy in a bullet’s propellant

cartridge is converted to kinetic energy that is transferred to the

projectile [23]. This means that the majority of the cartridge

propellant is released in the gaseous muzzle blast mixture that

accompanies the projectile’s exit from the firearm barrel. The

resulting muzzle blast, generated by the collision of the rapidly

expanding gases with the slower moving air surrounding the barrel

of the firearm, forms a spherically propagating blast wave. This

blast over-pressure/under-pressure wave will degrade into an

acoustical wave within a short distance [24,25]. However, prior to

doing so, it will be detectable as a sudden spike in amplitude when

recorded by acoustical microphones and as a sudden spike in

acceleration when recorded using microelectromechanical systems

(MEMs) accelerometers. An example of such a gunshot-generated

blast wave is visible at 0 seconds in Figure 1, with the clearest wave

pattern present on the X-axis corresponding to acceleration along

the forearm from wrist to elbow.

2. Recoil
Recoil of hand-held firearms results from the transfer of energy

and momentum from the propellant to the cartridge case to the

firearm breach and then finally into the hand and arm. This

rearward impulse can be substantial, but it is only applied for the

length of time that the projectile remains in the firearm barrel.

This is roughly one ms in duration, assuming an average bullet

speed of 123.4 m/s and a barrel length of 12.7 centimeters [21].

For the purposes of the present application, the key attribute of

recoil is likely to be the timing of this rearward impulse rather than

its magnitude, which likely overlaps with other impulsive events.

This impulse will not immediately act upon the wrist. Instead, a

small delay will precede the transmission of this impulse to the

wrist as the gun compresses the soft tissue of the hand. The

estimated length of this delay for a shoulder-fired weapon, derived

from high speed photography, is approximately 20 to 50 ms [22].

Given the reduced soft tissue on the hand relative to the shoulder,

it is likely that this delay will be even shorter for hand-fired

weapons. This sequence of events is subject to slight alteration if

the weapon being fired contains a recoil absorbing mechanism,

such as a semi-automatic pistol. For an example of peak recoil

force, see Figure 1 at approximately 14 ms on the X-axis.

3. Muzzle lift
During the period when the projectile is moving forward but

still within the barrel of the firearm, the rearward pressure of the

shell casing on the breach of the firearm is pushing the firearm

backwards. Since the center of mass of the firearm is below the

plane of the barrel, this force also generates a rotational force

around the center of mass. The center of mass is located

somewhere along the arm of the shooter, with the exact location

being determined by the degree of joint lock and bracing. This

rotational force is what generates muzzle lift. In practice, there are

only small amounts (fractions of an inch) of upward movement of

Figure 1. Wrist-Measured Gunshot Example (.38 caliber). Acceleration along the (a) X-axis, (b) Y-axis, and (c) Z-axis.
doi:10.1371/journal.pone.0106664.g001
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the weapon-human system and therefore of the wrist [21]. Still,

like recoil, this motion occurs over a short period of time and is

therefore likely to be observable as a single-positive-peak in the

vertical plane occurring at or just after peak recoil. Like rearward

recoil, it will occur in too short a time for the human body’s

neuromuscular system to respond [22]. An example of peak lift

can be seen at approximately 18 ms in Figure 1 on the Y-axis.

Additional features of gunshot events and related wrist motions,

such as those seen in the Z-axis of Figure 1 (corresponding to

acceleration through and perpendicular to the palm of the hand),

will also contribute to the classification of gunshot events.

Materials and Methods

Recruitment consisted of three different subject pools. The first

subject pool included ten officers from the University of

Pennsylvania Police Department who were asked to participate

in a shooting task with six handguns that ranged from a .22 caliber

weapon to a .45 caliber weapon. Shot load varied from 36 grains

to 230 grains, depending on the weapon caliber. Weapon mass

varied from 0.70 to 1.10 kilograms. Weapons included a Rexio

Arms .22 caliber revolver, a Smith & Wesson .38 caliber (Model 6)

revolver, a Taurus semi-automatic 9 mm pistol (PT99AF), two

different Smith & Wesson M&P .40 caliber semi-automatic pistols,

and a Colt .45 caliber semi-automatic pistol (MK4 1911). These

subjects were instructed to discharge each weapon at a target

roughly twenty feet in front of them using both one-handed and

two-handed shooting grips. No further instructions on weapon

grip were given. While most subjects used standard weapon grips,

at least one subject discharged weapons with a wrist rotation of

approximately 45 degrees from vertical. In addition, one of the

subjects was left-handed, resulting in the inclusion of dominant-

hand and non-dominant-hand shooters. The second subject pool

consisted of three members of the general population who were

asked to engage in their normal routine life activities from morning

until evening. Finally, a sample of five construction workers were

recruited and asked to engage in their normal construction and

demolition tasks, including use of pneumatic nailguns, pneumatic

jack-hammers, .22 caliber powder-actuated fastener guns, and

other construction tools. The University of Pennsylvania’s

Institutional Review Board (Protocol 818910) approved this study,

and each participating subject completed a written informed

consent form.

Each subject was fitted on their right wrist with a wearable tri-

axis accelerometer [AX3 Watch, Axivity Ltd.], which is capable of

recording acceleration up to 16 Gs at a rate of 3.2 khz (or 3 times

per ms) for extended periods ($12 hours). Police subjects wore the

sensors for the duration of their shooting task (,20 minutes). Two

construction workers engaged in demolition of concrete wore the

sensors for two hours each, and the three remaining construction

workers engaged in framing work wore the sensors for 6 hours.

The three other control subjects wore the sensors for 6 to 8 hours

at a time. Once the data collection was completed, the subjects

were split into training/validation and test samples. Sensor data

from five police officers, three construction workers and two non-

construction control subjects formed the training/validation

sample. Data from the remaining five police officers, two

construction workers and the final non-construction control

subject formed the test sample. All sensor data is available online

(http://dx.doi.org/10.7910/DVN/25918).

The logged sensor data from both samples, consisting of over

68 hours of recordings, were pre-processed using a sliding-window

spike detector algorithm to identify all candidate ballistic spikes.

Each candidate spike was defined as any 1.5 G magnitude

increase on the X-axis over a 600 ms period preceded by a

magnitude increase of less than 1.5 G on the X-axis over the

previous 600 ms period. An example of a candidate spike can be

seen in Figure 1(a) at 0 ms. In practice, this simple detector

procedure identified the leading edge of each possible spike and

greatly reduced the number of candidates that needed to be

classified. For each candidate ballistic spike, of which there were

2787 in all, feature windows covering the period from 7.5 ms pre-

spike to 45 ms post-spike were then constructed with a pre-spike

window (a) covering 27.5 ms to 20.3 ms, a spike window (b)

covering 20.3 ms to 1 ms, and a post-spike window (c) covering

1 ms to 45 ms (Figure 2). Feature statistics were then calculated

for each candidate spike.

Given the nature of the gunshot event, all feature statistics were

calculated in the time-domain. Statistical features were designed to

capture different aspects of the tri-axis gunshot patterns observed

in Figure 2. These included the pre-spike sum of the differences

between the overall measured acceleration vector and the

acceleration due to gravity, which captured the amount of pre-

blast spike activity. For the blast spike, spike magnitude and

change in magnitude were calculated. The post-spike patterns

observed in Figure 2 were captured by a number of different

features including the peak recoil acceleration value, the distance

between the spike feature and the peak recoil acceleration, peak lift

value and its distance from the spike feature. Pre-spike and spike

statistical features were calculated using raw sensor data, while

post-spike window features were computed using smoothed sensor

data filtered by locally-weighted regression methods to eliminate

high frequency noise [26]. This filtering method estimates a non-

parametric regression surface similar to moving average calcula-

tions.

Due to the variation in the recorded signal (Figure 3) resulting

from sensor filtering, shooter bracing, and variability in firearm

Figure 2. Sample Averaged Gunshots with Feature Windows.
Tri-axis accelerometer readings for 359 aligned and averaged gunshots.
Windows for the calculation of statistical features cover the period from
27.5 ms pre-spike to 45 ms post-spike. Window (a) covers the pre-spike
period from 27.5 ms to 20.3 ms, window (b) covers the spike period
from 20.3 ms to 1 ms, and window (c) covers 1 ms to 45 ms.
doi:10.1371/journal.pone.0106664.g002
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mechanisms (e.g., revolver versus semi-automatic), a probabilistic

classification method was selected over a deterministic decision-

rule approach. All statistical features for each candidate spike were

entered into a logistic regression model predicting whether a spike

had been labeled as a gunshot or not. Feature selection was

accomplished using penalized regression as implemented in the

glmnet package in R [27]. This method fits a L1-regularized

logistic regression model to the full set of standardized features.

This shrinkage variable selection and weighting method was

selected because of its ability to handle the highly-correlated

features derived from the accelerometer data. Features and

corresponding feature weights were selected at the value of

regularization parameter (l) that provided the minimum mean

cross-validated classification error in the training/validation

sample.

Results

The resulting model excluded five statistical features and,

contrary to expectation, selected feature weights for the remaining

features that balanced feature value and location. This procedure

achieved a cross-validated classification accuracy of 99.760.1

percent in the training/validation sample. Since no gunshots were

excluded by the detector, this figure also describes the overall

accuracy of the detector-classifier system in the training sample.

Inspection of the standardized feature weights of the final model

suggested the relative importance of feature values over feature

locations. However, the use of a different non-parametric

modeling strategy might easily produce a different balance

between these two elements of the gunshot signal. In order to

verify that the gunshot classifier was not over-fitted to the training

sample, the test sample, comprised of the gunshots from the five

excluded police officers as well as the spikes from the remaining

control subjects, was classified using the trained gunshot classifier.

The results of this out-of-sample classification are reported in

Table 1. Of 358 gunshots in the test data, 354 were correctly

identified by the classifier, three were misclassified, and one was

excluded from classification by the candidate detector. In addition,

of the 693 confusable spikes, only three were classified as gunshots.

This produced an overall sensitivity of 0.989 and a specificity of

0.996 for the detector-classifier system.

Further analysis revealed that the three false negative misclas-

sifications were similar to their neighboring gunshots except for

having larger amounts of pre-spike activity and some cross-axis

feature splitting, possibly resulting from sensor frame rotation.

Examination of the three false positive misclassifications found

evidence of early y-axis peak lift values, excessive pre-spike activity

on the z-axis, and prolonged x-axis spikes. All three false negative

misclassifications differed visibly from gunshot events.

Discussion

Consistent with recent advances in human activity recognition

[11,12,16], the present study investigated the possibility that

firearm use could be reliably distinguished from routine human

activities and from known confusable activities using MEMs

inertial sensor technology. The results suggest that accelerometer-

based classification of firearm use is feasible and could form the

basis of a wearable and affordable gunshot detection sensor

system.

The apparent success of this recognition methodology likely

results from several of the peculiar features of firearm usage.

Unlike other impulsive events generated by the human body,

firearm usage begins with an essentially stationary body, which is

necessitated by the aiming task. Metal-on-metal collisions gener-

ated by the hand, such as hammering a nail, by contrast, are

generally preceded by considerable pre-event accelerations. And

common impulsive events that happen to the human body, such as

a collision or other physical impact, are not accompanied by a

preceding blast wave. Similarly, the human-weapon system,

having a center of mass below the barrel of the weapon, generates

a muzzle lift feature that aids in the classification task. This is most

strikingly seen in the successful discrimination of .22 caliber

firearm gunshots from .22 caliber powder-driven fasteners, both of

Figure 3. Gunshot Features with Averages. Individual and averaged gunshot acceleration readings along the (a) X-axis, (b) Y-axis, and (c) Z-axis.
Individual gunshot acceleration readings (in grey) are a 10 percent sample of the 359 gunshot acceleration readings (in black) in the sample average.
doi:10.1371/journal.pone.0106664.g003
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which use the same explosive charge. Taken together, these three

features contribute to the utility of wrist-measured acceleration as

a method for detecting firearm utilization. In addition, given that

single gunshots make up only a fraction of all non-self-inflicted

illegal firearm discharges, it is likely that a gun use detection system

based on the underlying gunshot detector-classifier reported in this

paper could have higher overall accuracy.

Before developing such a wearable gun use detection system,

which could be implemented as a logging monitor or an event-

triggered wireless remote monitor, several limitations of the

current classifier system should be addressed. First, implementa-

tion of a higher sampling frequency sensor would provide

improved capture of the blast wave feature. The current 3.2 khz

sensor provided a filtered signal that missed portions of the

characteristic ballistic N-wave for some gunshot events. Reduced

filtering would enable the use of a more discriminating spike

detector while also contributing additional information to the

classifier. Second, additional data, including data from additional

handguns but especially shoulder-fired weapons, would improve

the generalizability of the classifier. This latter class of weapons

was omitted from the present study due to the overwhelming use of

handguns in gun-related violent crimes. Likewise, testing this

classifier on data from non-expert shooters would provide a further

assessment of its generalizability. Finally, the possibility of firearm

use in the opposite and non-monitored hand would either need to

be addressed by use of dual wrist monitors or the development of a

second classifier for detecting opposite-wrist observable features

(e.g., blast waves).

The potential use of sensors to monitor firearm use among

community-supervised offenders also raises important public

policy and civil liberties concerns. These include the selection

criteria by which judges or other releasing authorities would place

individuals on this form of supervision; whether it would be used

on the existing community-supervised offender population or on

an otherwise incarcerated offender population; the necessary level

of sensor system accuracy before sanctions, such as revocation of

release, could be imposed; and the procedures that would be taken

to minimize the collection of non-firearm-related wearer informa-

tion. While none of these issues are peculiar to a wearable gunshot

detection system, these longstanding concerns regarding offender

monitoring systems should be revisited as monitoring technology

evolves.

In conclusion, this study suggests that low-cost and low-energy

motion sensors can be used to identify firearm discharges. This

development offers criminal justice practitioners a potential

alternative that overcomes the low signal-to-noise ratio that has

characterized many location-based behavioral monitoring tools

[7,8] and community-wide acoustical gunshot monitoring systems

[3]. This development would be more in keeping with the

experience of remote monitoring technology for detection of

substance abuse [28] and the promise that if reliable and low-noise

signals of other illegal conduct can be found, such conduct could

be reduced through enhanced detection or deterrence [29,30].

Acknowledgments
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