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Abstract

The tripartite interactions in a pathosystem involving wheat (Triticum aestivum L.), the Barley yellow dwarf virus (BYDV), and
the BYDV vector aphid Sitobion avenae were studied under field conditions to determine the impact of these interactions on
aphid populations, virus pathology and grain yield. Wheat varietal resistance to BYDV and aphids varied among the three
wheat varieties studied over two consecutive years. The results demonstrated that (1) aphid peak number (APN) in the
aphid + BYDV (viruliferous aphid) treatment was greater and occurred earlier than that in the non-viruliferous aphid
treatment. The APN and the area under the curve of population dynamics (AUC) on a S. avenae-resistant variety 98-10-30
was significantly lower than on two aphid-susceptible varieties Tam200(13)G and Xiaoyan6. (2) The production of alatae (PA)
was greater on the variety 98-10-30 than on the other varieties, and PA was greater in the aphid + BYDV treatment on 98-10-
30 than in the non-viruliferous aphid treatment, but this trend was reversed on Tam200(13)G and Xiaoyan6. (3) The BYDV
disease incidence (DIC) on the variety 98-10-30 was greater than that on the other two varieties in 2012, and the disease
index (DID) on Tam200(13)G was lower than on the other varieties in the aphid + BYDV and BYDV treatments in 2012, but
not in 2011 when aphid vector numbers were generally lower. (4) Yield loss in the aphid + BYDV treatment tended to be
greater than that in the aphid or BYDV alone treatments across varieties and years. We suggested that aphid population
development and BYDV transmission tend to promote each other under field conditions. The aphids + BYDV treatment
caused greater yield reductions than non-viruliferous aphids or virus treatment. Wheat varietal resistance in 98-10-30 affects
the aphid dispersal, virus transmission and wheat yield loss though inhibits aphid populations from increasing.
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Introduction

Tripartite interactions among crop host, plant virus and insect

vector are more complicated than that we have imaged. The most

devastating viruses of crop plants around the world are vectored,

often obligately, by hemipterous insects among which aphids,

whiteflies and leafhoppers predominate [1–3]. Some insect vectors

are also important pests of crop plants. The host plant, vector and

virus are always interdependent components of a complex

pathosystem that co-exists within the field ecosystem [4]. The

host plant is sessile within such a plant pathosystem, however, the

plant characteristics (e.g. growth, reproduction, emitted volatiles

and plant nutrients) can be altered substantially by pathogen

infection. The primary traits of insect vectors, such as fecundity,

survival, and behavior are altered in response to altered host plant

characteristics [4–13]. These changes in the host plant and insect

vector could affect the spread of the insect pests and the viruses

they carry. From a practical perspective, a change in the status of

virus and its vectors is expected to affect the yield of the host crop.

Plants can have various levels of resistance to an insect vector,

which can increase pest mortality, extend the development time of

nymphs, and decrease offspring production [14]. Unfortunately, at

present we do not know how such resistance characters in plants

that influence the population dynamics of viruses, insect vectors

and the overall tripartite interactions in the field.

Wheat, Triticum aestivum (L.), is one of the most important

crops in the world, and the aphid Sitobion avenae (F.) is an

important worldwide pest of wheat. S. avenae has a strong

preference to feeding on the rachis and base of the spikelets of the

wheat head. It can lead to yield component changes including

reducing the number of wheat heads per plant, grains per wheat

head and grain weight. Barley yellow dwarf viruses (BYDVs) are

phloem-limited Luteoviruses that infect most members of the

Poaceae family including wheat, barley (Hordeum vulgare L.) and

oat (Avena sativa L.). The viruses interfere with plant physiological

processes, which cause dwarfing, chlorosis, stunting, and yield loss

[15–17].
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The typical population development of S. avenae includes an

initial slow build-up, rapid multiplication, slow down, stagnation,

and a final rapid decrease. In northern China, the initial slow

build-up phase of S. avenae population occurs from mid-March to

mid-April, the rapid multiplication phase occurs from the end-

April to the mid-May, the slow down and stagnation phases occur

at the end of May, and the rapid decrease occurs at the beginning

to the mid-June [18–20]. Aphid population proliferation in early-

and mid-May can cause direct yield loss [19]. S. avenae occurs

almost every year in central Shaanxi Province, China [20].

Chinese BYDV isolates have been classified into four species

according to Rochow’s system, namely GAV, PAV, GPV and

RMV. BYDV-GAV is most efficiently transmitted by Schizaphis
graminum (Rondani) and S. avenae. Efficient insect vectors of

BYDV-PAV, BYDV-GPV and BYDV-RMV are S. avenae and

Rhopalosiphum padi L., S. graminum and R. padi, and R. maidis
(F.), respectively [21,22].

The acquisition of BYDV can directly alter host selection

behavior of its insect vector. For example, after acquiring BYDV,

R. padi prefers feeding on non-infected wheat plants, while non-

infective aphid prefers BYDV-infected plants [23]. This evolution

of strategies in plant pathogens enhances their spread to new hosts.

BYDV also could indirectly alter vector insect behavior through

inducing wheat plant biochemical changes. Wheat plants infected

BYDV have reduced chlorophyll content and lower rates of

photosynthesis [16], as well as increased total amino acid content

[24], which improved the nutritional quality of wheat leaf for

aphids. These biochemical changes in wheat affect the develop-

ment, fecundity, even field population dynamics of the vector [25–

27]. BYDV infection reduces the host plant’s suitability in terms of

aphid population growth potential, but aphids produced more

alatae on the virus-infected spring wheat [28]. More alatae

enhance the spread of the virus in the field and thus largely

influence the epidemiology of both the pest vector and disease.

Previously researchers have studied tripartite interactions in this

host-vector-virus pathosystem often under laboratory conditions

[24–28], and the nature of the interactions has not been validated

under field conditions.

Under field conditions, the yield reductions caused by aphids

and/or BYDV infection varies greatly in different years and in

different regions. Some factors, such as the viral isolates, time of

infection, varietal resistance to aphid vector and/or virus, planting

date and water stress have been identified to affect yield reduction

at a given aphid density or virus incidence [29–34]. Most previous

investigations focused on yield losses induced by non-viruliferous

aphid infestation or BYDV infection alone [29–52]. Few studies

were focused on the yield losses caused by both aphid infestation

and viral infection under field conditions [53–54].

The wheat-BYDV-S. avenae pathosystem provides an ideal

model to investigate tripartite interactions. It has been reported

that S. avenae plays an important vector role in spreading of the

BYDV-PAV from winter hosts to wheat, barley, and maize in the

spring in France [55]. Although S. graminum is an important

insect vector of the BYDV in some regions [56,57], S. avenae is a

more prominent aphid species in northwestern China, where it

plays an key role as a vector that spreads of this virus [18,43–

45,55–58], the proportion of S. avenae carrying BYDV-GAV,

which is a prominent BYDV species in China, ranged from 2.5–

91.5% in wheat fields [59]. Wheat varietal resistance is an

especially advantageous trait to suppress aphids [60], as it is an

efficient and environmentally friendly way to controlling them

[61]. However, few studies have reported the effects of varietal

resistance on wheat yield losses caused by both S. avenae
infestation and BYDV infection together. In this study, we used

the wheat-S. avenae-BYDV pathosystem to explore tripartite

interactions among aphid population dynamics, visual pathoge-

nicity, and yield responses of wheat varieties that vary in their

resistance to aphids and BYDV. Plant was infested by non-

viruliferous S. avenae alone, infected by BYDV alone, or jointly

infested by viruliferous S. avenae carrying BYDV under field

conditions. The results have clear implications for the broader

understanding of tripartite interactions of plant-virus-vector

pathosystems, including the epidemiology of insect-transmitted

plant viruses, the role of varietal resistance in wheat in natural

settings.

Methods and Materials

We state clearly that no specific permissions were required for

these locations/activities. We confirm that the field studies did not

involve endangered or protected species.

Plants, BYDV and Aphids
The cultivar Xiaoyan6, a hybrid offspring of T. sativum and

Agropyrum repens Beauvois ( = T. repens), was chosen because it

was widely grown in northern China with better quality, higher

yield and more stress tolerance than other varieties. However, it is

susceptible to S. avenae and BYDV [62]. The variety 98-10-30

was chosen due to its resistance to S. avenae [14] and susceptibility

to BYDV. The variety Tam200(13)G was chosen for its tolerance

to BYDV and susceptibility to S. avenae (XSH unpublished data).

The viruliferous S. graminum with BYDV were originally

obtained from an infected wheat field in Yongshou County,

Shaanxi Province, China. The BYDV species was identified as a

GAV using RT-PCR [59,63]. Viruliferous S. graminum were

transferred to clean wheat seedling (variety Batis, non-infested by

BYDV and non-infested by aphids) in a segregated cage at

2560.5uC (day), 2260.5uC (night) with a 16 h light: 8 h dark

photoperiod, and approximately 70610% R.H. When the wheat

seedlings displayed obvious chlorosis symptoms, the aphids were

cleaned using a brush, and BYDV-infected wheat seedlings were

obtained. The non-viruliferous S. avenae were originally collected

in a wheat field, Yangling, China, and was confirmed as BYDV-

free using multiplex RT-PCR [63]. The S. avenae were inoculated

on BYDV-infected wheat seedlings for one week to obtain

viruliferous aphids with BYDV-GAV.

The viruliferous and non-viruliferous S. avenae were separately

maintained on clean Batis seedlings in separate cages under

growth chamber conditions under the same conditions as

described above for one year before the experiments. The wheat

seedlings were replaced about once a month. The aphids were

examined regularly using RT-PCR to ensure that the populations

remain non-viruliferous or BYDV-GAV infected, respectively

[59,63].

Field experiments
The field experiments were performed in winter wheat

experimental fields at Northwest A&F University (central Shaanxi

Province, China, north latitude 34u 179 350, east longitude 108u 49

180). In the first year, the wheat was sown on Oct. 15, 2010, and

harvested on June 5, 2011; in the second year, the wheat was sown

on Oct. 11, 2011, harvested on June 6, 2012. The kernel weight of

each seed lot was determined prior to planting so that all varieties

were sown at the same rate (300 kernels m22). Prior to planting,

nitrogen in the form of ammonium nitrate at 10 kg/666.7 m2 was

applied to the experimental plots. An additional 10 kg/666.7 m2

of nitrogen was top-dressed in stem elongation stage of winter

wheat in March.

Tripartite Interactions of Aphid-BYDV-Wheat
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The field plots were arranged in a split-plot design with three

wheat varieties, Xiaoyan6, 98-10-30 and Tam200(13)G, as main

plot; and four aphid-BYDV treatments as subplots, five repeats

(blocks) for each treatment (Appendix S1: A). The area of repeat

block was 20 m2, and the blocks were 4 m long and consisted of 20

rows spaced 25 cm apart. The four aphid-BYDV treatments

included a non-viruliferous aphid treatment, a BYDV treatment

(virus infection alone), a combined aphid + BYDV treatment

(viruliferous S. avenae infestation), and a control (without aphid

infestation and virus infection) (Appendix S1: B). In the BYDV

treatment, 240 viruliferous aphids (5 adult aphids per 100 wheat

plants) were uniformly released to a 12 m2 (3 m64 m) area in the

center of each block (the same below). Three days later,

imidacloprid (2.5% WP 80006, 20 g a.i./hm2. Shijiazhuang

Yaoyuan Pharmaceutical Technology Co., Ltd., Shijiazhuang,

Hebei, China) was sprayed to kill the aphids. The control plots

were also sprayed with imidacloprid to eliminate any possibility of

aphid infestation. In the aphid treatment, 240 non-viruliferous

adult aphids (5 aphids per 100 wheat heads) were uniformly

released; and in combined aphid + BYDV treatment, 240

viruliferous aphids (5 adult aphids per 100 wheat heads) were

uniformly released. We were released all aphids on March 26,

2011, and March 24, 2012. Imidacloprid was applied again

because the aphid number increased to 100 per 100 wheat heads

in some blocks sampled of BYDV treated and control on May 6,

2012.

Data Collection and Analysis
Considering the dispersal of aphids among neighboring plots, all

data collection was performed on a 12 m2 (3 m64 m) area in the

center of each repeated block. Aphids in each block were counted

once a week after aphid infestation. Five points were sampled per

block, and 20 wheat heads per point each time. Wheat head

density, numbers of apterae and alatae, and visual BYDV

symptoms ratings were recorded in filling stage (May 14, 2011,

and May 12, 2012). And then the five points in one block were

added together (100 heads per block).

The aphid peak number (APN, max aphid number) and the

area under the curve of population dynamics (AUC) were

integrated to estimate the aphid population development. The

production of alatae (PA = alatae/total adults) was determined. A

BYDV rating from 0 to 10 was assigned according to the standard

of classification (Appendix S2) [64].

The BYDV disease incidence (DIC) and disease index (DID)

was calculated (DIC = symptomatic wheat heads/total wheat

heads; DID = 1006 [g (disease ratings 6 the number of that

rating)/(total wheat heads 610)] [64].

At plant maturity, when the stem, leaves and wheat heads had

dried, the grain yield and the yield components were measured.

Five points were sampled and 30 wheat heads per point were

recorded in each block (3 m64 m area in the center). The yield

components included the number of kernels per wheat head (HK)

and the weight of 1,000 kernels (KW). The actual grain yield (AY)

was measured. As different wheat varieties have specific yield

characters, the AY, HK and KW loss ratios were calculated using

the following formula: loss ratio = (control value - actual value)/

control value.

The parameters, APN, AUC, PA, DID, DIC, and the loss ratios

of HK, KW and AY were analyzed using split-plot design

ANOVA (DPS software) [65]. APN was transformed using natural

logarithm transformation; and PA, DIC, the loss ratios of HK,

KW and AY were transformed using arcsine transformation to

reduce the variance value. The means were separated by Tukey’s

test under a= 0.05. All figures were drawn with SigmaPlot 12.1

(Systat Software Inc., Chicago, IL, USA).

The full names of all acronyms in this paper were listed in

Appendix S3.

Results

S. avenae population dynamics on three wheat varieties
under aphid-BYDV treatments

Population of S. avenae displayed consistent patterns of

abundance according to the four treatments between years and

among the three wheat varieties (Fig. 1). The aphid peak number

(APN) occurred in the first half of May each year. The aphid peak

number occurred one week earlier when viruliferous aphids and

BYDV (aphid + BYDV treatment) were combined than when

non-viruliferous aphids alone (aphid treatment) were present.

Negligible numbers of aphids were found on plants in the control

and BYDV treatments at the time of peak numbers, as aphid were

suppressed before they could significantly affected the results.

Patterns of aphid pressure, as indicated by the aphid peak

numbers (APN) and the area under the curve of population

dynamics (AUC) were largely consistent according to treatment,

variety and year of study (Fig. 2). The averages both APN and

AUC were lower on the resistant variety 98-10-30 than on the

susceptible varieties Tam200(13)G and Xiaoyan6 in both years

(p,0.05, the same as in the following). While the APNs were not

significantly different between Tam200(13)G and Xiaoyan6 in

both years. The AUCs were not significantly different between

Tam200(13)G and Xiaoyan6 in 2012, but different in 2011.

Among the subplots (aphid and/or BYDV treatments), the

averages of both APN and AUC in the combined aphid + BYDV

treatments were significantly greater than those in the non-

viruliferous aphids treatments.

The APN and AUC differences between treatments for each of

three varieties in both years are presented in Fig. 2. On wheat

variety 98-10-30, the APNs were not significantly different

between aphid + BYDV treatment and non-viruliferous aphid

treatment in both years. However, the AUC in the aphid + BYDV

treatment was significantly greater than that in the non-

viruliferous aphid treatment in 2012. On Tam200(13)G, the

APN and AUC of aphid + BYDV treatment were significantly

greater than that in the non-viruliferous aphid treatment in 2011,

but not in 2012. On Xiaoyan6, the APN and AUC of non-

viruliferous aphid treatment were obviously lower than that of the

aphid + BYDV treatment in both years.

The production of alatae on 98-10-30 was significantly greater

than that on Tam200(13)G and Xiaoyan6. The aphid + BYDV

treatment produced 30.864.4% alatae in 2011, and 36.560.6%

alatae in 2012, which were obviously greater than that the non-

viruliferous aphid treatment in both years (22.362.6% and

30.861.8%, respectively) on resistant 98-10-30. However, this

phenomenon was not observed on Tam200(13)G and Xiaoyan6 in

both years (Fig. 3).

BYDV morbidity on three wheat varieties under aphid-
BYDV treatments

The differences of DIC according to the four treatments

between years and among the three varieties are shown in Fig. 4.

On two S. avenae-susceptible wheat varieties, the DICs in the

aphid + BYDV treatment were similar to that in the BYDV

treatment in two years. But on the S. avenae-resistant wheat

variety 98-10-30, the DICs in the aphid + BYDV treatment were

significantly higher than that in the BYDV treatment in two years.

Of the three varieties, the DIC on 98-10-30 was greatest in aphid

Tripartite Interactions of Aphid-BYDV-Wheat
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Figure 1. The population dynamics of S. avenae on three wheat varieties treated with S. avenae infestation, BYDV infection alone or
jointly (mean ± SD).
doi:10.1371/journal.pone.0106639.g001
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+ BYDV treatment; and it was significantly greater than those on

Xiaoyan6 and Tam200(13)G in 2012.

The differences of DID according to the four treatments

between years and among the three varieties are presented in

Fig. 4. The DIDs of the BYDV treatment were significantly lower

than those of the aphid + BYDV treatment on Tam200(13)G in

2011 and on all three wheat varieties in 2012. The DIDs were

similar between aphid + BYDV treatment and BYDV treatment

on 98-10-30 and Xiaoyan6 in 2011. The DID on Xiaoyan6 was

significantly higher than that on Tam200(13)G in the aphid +
BYDV treatment in 2012. The DIDs on Xiaoyan6 and 98-10-30

were significantly higher than on Tam200(13)G in the BYDV

treatment in both years.

Wheat yield components response of three wheat
varieties to the aphid-BYDV treatments

The yield losses of three wheat varieties according four

treatments in both years are presented in Fig. 5. In 2011, the

non-viruliferous aphid infestation did not induce significantly yield

loss compared with the control, but the BYDV and aphid + BYDV

treatment induced significantly heavier yield losses on all three

wheat varieties; the yield losses were not significantly different

between the BYDV treatment and the aphid + BYDV treatment.

In 2012, for 98-10-30, BYDV treatment and aphid + BYDV

treatment caused significantly higher yield loss, but non-virulifer-

ous aphid infestation did not. For Tam200(13)G, BYDV, non-

viruliferous aphid, and aphid + BYDV treatments all caused

obviously serious yield loss, the yield loss in the aphid + BYDV

treatment was higher than that in the non-viruliferous aphids

treatment and the BYDV treatment. For Xiaoyan6, the yield

losses in BYDV, non-viruliferous and aphid + BYDV treatments

were not significantly different. They were greater than those in

the control.

In 2011, the HK and KW loss ratios were similar between the

BYDV and the aphid + BYDV treatments, both higher than the

non-viruliferous aphid treatment and the control on 98-10-30 and

Xiaoyan22. The HK loss ratios were not significantly different

among all aphid-BYDV treatments, but the KW loss ratios in the

aphid + BYDV treatment was higher than that in the BYDV

treatment on Tam200(13)G. In 2012, the trends of HK and KW

loss ratios were similar to AY losses on 98-10-30 and Xiaoyan6.

Figure 2. The aphid peak number (APN) and the area under the curve of population dynamics (AUC) on three wheat varieties
treated with S. avenae infestation, BYDV infection alone or jointly (mean ± SD). Note: APN and AUC both were significantly different
among three wheat varieties (2011: pAPN = 0.006, pAUC,0.001; 2012: pAPN = 0.014, pAUC,0.001); among four treatments (pAPN and pAUC all less than
0.001 in both years); and interactions between varieties and treatments (2011: pAPN = 0.001, pAUC,0.001; 2012: pAPN = 0.001, pAUC,0.001). Different
little letters above the bar indicate the significance of differences according to treatment for same variety. Different capital letters in the bar indicate
the significance of differences according to varieties for same treatment (p,0.05).
doi:10.1371/journal.pone.0106639.g002
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The HK loss ratio in aphid + BYDV treatment was obviously

higher than that in the non-viruliferous aphid treatment, but the

KW loss ratio in the aphid + BYDV treatment was significantly

higher than that in the BYDV treatment on the Tam200(13)G.

Discussion

Virus infected plants had either positive or negative effects on

phytophagous vector insects that feeding on the plants [4–

13,16,21–28,66–71]. The biology and behavior changes of host

plant or vector insect that induce by plant virus infections and/or

vector insect infestation have the potential to enhance vector insect

fitness and virus transmission [5–6,16,23,24]. For example, the

persistently transmitted (PT) viruses tend to improve host quality

for vectors and promote them for long-term feeding, because the

PT viruses need vectors to feed on an infected host for a sustained

period to acquire and circulate (and sometimes replicate) virions

[4]. Luteoviruses (viruses in the family Luteoviridae), including

BYDV, are persistently transmitted viruses [72]. In this study, we

found that S. avenae infestation enhanced the BYDV transmission

and severity; and BYDV infection also accelerated the increase of

S. avenae population, which was in agreement with that Fiebig et

al. had reported [28]. The infection with BYDV might induce

physiological changes in wheat cultivars which are sensitive to the

virus, and hence improve their acceptability for S. avenae [71].

It takes less than a minute for S. avenae to acquire and transmit

BYDV-GAV [34], indicating that S. avenae has high transmission

efficiency. In our study, the viruliferous aphids had a shorter

period of transmission on the wheat plants in the BYDV treatment

(aphids admitted three days feeding) than in the aphid + BYDV

treatment (aphids admitted continuous feeding). This means that

the aphids could produce more viruliferous offspring in the aphid

+ BYDV treatment than in the BYDV treatment. Therefore, the

plants should have greater BYDV DICs or DIDs in the aphid +
BYDV treatments than that in the BYDV treatments. In fact, our

results showed the DICs were obviously different between aphid +

BYDV treatment and BYDV treatment on the S. avenae-resistant

wheat variety 98-10-30, but did not on the two S. avenae-

susceptible wheat varieties in both years. We found higher DIDs in

the aphids + BYDV treatment than in the BYDV treatment on

three wheat varieties in 2012. In addition, the DIDs on

Tam200(13)G were lower than that on Xiaoyan6 under BYDV

infection in both years and under aphid + BYDV infestation in

2012, but the APNs, AUCs and DICs were not significantly

different between Tam200(13)G and Xiaoyan6. These results

indicated that the characteristics of host varieties played an

important role in BYDV spread and development: a longer

duration of viral transmission by the viruliferous aphids increased

the disease severity (higher DID) on all wheat varieties; and

accelerated the BYDV transmission (higher DIC) on the aphid-

resistant variety 98-10-30, but did not on the other two aphids-

susceptible wheat varieties. Tam200(13)G (lower DID, higher

DIC) could limited BYDV symptom development, but it could not

prevent the spread of BYDV. It probably caused by the feeding

behavior difference of aphid on the host varieties with different

characteristics [71].

The production of alatae (PA) was increased when S. avenae
and R. padi reared on oats infected with BYDV [66]. In this study,

we observed that the PA did not increase on two aphid-susceptible

varieties in both years, but higher DIC was accompanied with

higher PA on aphid-resistant 98-10-30 in aphid + BYDV

treatment in both years. It seems that the increase of alatae

induced BYDV DIC increase, though aphid peak number (APN)

and the area under the curve of population dynamics (AUC) were

the lowest on the resistant variety 98-10-30. These results

indicated that the S. avenae-resistant variety 98-10-30 could

prevent S. avenae population from developing; however, it

increased alatae production and accelerated BYDV transmission.

It implicated that planting 98-10-30, a resistant variety to a vector,

poses a potential risk of virus transmitting and spreading widely.

The yield losses caused by S. avenae (or redeem economic losses

through pesticide application to control S. avenae) could reach

approximately 6–60% in New Zealand [35]; 10% to 30% or

higher in Germany [34,35]; less than 12% and 12–17% in the

Great Britain [38–40]; 2–63% in China [42–45,59]; 9–30% in

Canada [41]. Yield losses caused by BYDV were estimated at 7–

58% in the US [31–33]; 5–10% in England [46], up to 25% in

New Zealand [47], and 7–80% in Canada [48]. In the state of

Victoria, Australia, inoculation of BYDV before tillering lowered

grain yields by 9–79%, but inoculation of the virus at early stem

extension lowered only by 6–9% [49]. Similarly, grain yield could

be lowered by 63% in the fall infection and by 41% in the spring

infection in Illinois, the US [50]. Why was the yield losses range

caused by S. avenae or BYDV so wide? Generally, the effect

factors including the weather characteristics, wheat varieties, aphid

population density, time of infestation, and BYDV incidence and

index in different countries and regions. However, a significant,

but overlooked, factor was the complex combination of aphid

infestation and BYDV infection in the field. Riedell et al. (1999)

reported that 21% grain yield was reduced by the R. padi
treatment, 46% by the BYDV treatment, and 58% by the

combination of R. padi + BYDV treatment on four winter wheat

varieties under laboratory conditions which were absent from

additional environmental stresses [53]. In the 6/6 cases (three

varieties in two years) of this study, the aphid + BYDV treatments

shows higher grain loss than the other treatments. The binomial

probability of this result or one more extreme is p = 0.031,

suggesting that the aphids + BYDV treatment caused greater yield

losses than the aphid or BYDV treatment alone in the field, which

was in agreement with that reported by Riedell et al. [53].

Figure 3. Production of alataes on three wheat varieties
infested with non-viruliferous S. avenae or viruliferous S. avenae
(mean ± SD). Note: Different letters above the bar indicate the
significance of differences according to treatment for same variety (p,
0.05).
doi:10.1371/journal.pone.0106639.g003
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Generally, S. avenae does not cause damage when they

population abundance under 4 aphids/tiller [29]. Hence, the

economic thresholds always have been suggested to be 4–5

aphids/head around the flowering stage of the wheat in China

[59] and in England [51], and 3–5 aphids/head in Germany [52].

However, the economic thresholds of S. avenae have been

considered unreliable due to the low or poor correlation between

S. avenae abundance and yield loss [73]. In fact, the aphid and

BYDV population development varied on different wheat

varieties. Therefore, it induced different yield losses [31,74]. The

yield loss of a susceptible wheat cultivar ‘‘Abe’’ infected with

BYDV-PAV was more severe with increasing numbers of both R.
padi and S. avenae from 5 to 15 pairs/head [54]. In this study, for

the variety 98-10-30, we did not observe significantly yield losses in

the non-viruliferous aphid treatment compared with the control in

both years. However, for the variety Xiaoyan6, it displayed similar

yield losses in the three aphid-BYDV treatments compared with

the control in 2012. For the variety Tam200(13)G, a significantly

higher yield loss was found in the BYDV + aphid treatment than

those in the BYDV treatment or aphids treatment alone in 2012

(Fig. 5). Our results in here are consistent with those aforemen-

tioned reports [31,54,74]. In contrast, these results are not in

agreement with that yield reductions caused by BYDV were not

significantly different among the winter wheat varieties [33,75,76].

Our results did not show yield loss in aphid infected plots in

2011, but displayed significantly heavier yield loss in 2012. The

possible reasons were that the APN was less than 400 per 100

wheat heads in 2011 and was more than 800 per 100 wheat heads

in 2012 in the non-viruliferous aphid treatment. The historical

meteorological data showed that there were more than six dates of

moderate rain with wind velocity at 3–4 grade during April and

May in 2011, almost once in every ten days; in contrast, there were

no such heavy rains and strong wind in 2012. In addition, the

dates with low temperature were more in 2011 than in 2012. It

appears that rain, wind and low temperature played significant

roles in inhibiting the development of aphid population in 2011.

Figure 4. The BYDV disease incidence (DIC) and disease index (DID) of three wheat varieties infected with S. avenae, BYDV alone or
jointly (mean ± SD). Note: The differences of BYDV DIC were significantly among treatments (2011: p,0.001; 2012: p,0.001); among wheat
varieties in 2012 (p = 0.012), not in 2011 (p = 0.887). The interactions between treatment and variety were significant in 2012 (p = 0.002), not in 2011
(p = 0.678). The differences of DID were significant among three wheat varieties (2011: p = 0.007; 2012: p,0.001); among different treatments in both
years (2011: p,0.001; 2012: p,0.001); and the interactions between treatment and variety in 2012 (p = 0.023), were not significant interactions
between treatment and variety in 2011(p = 0.153). Different little letters above the bar indicate the significance of differences according to treatment
for same variety. Different capital letters in the bar indicate the significance of differences according to varieties for same treatment.
doi:10.1371/journal.pone.0106639.g004
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Figure 5. The responses of the actual yield (AY) and yield components, kernels per wheat head (HK) and weight of 1,000 kernels
(KW) of three wheat varieties to infected with S. avenae, BYDV or both (mean ± SD). Note: AY losses were significantly different among
different aphid-BYDV treatments (2011: p,0.001; 2012: p,0.001); among wheat varieties in 2012 (p = 0.048), but not in 2011 (p = 0.598). Two factor
interactions were not significantly (2011: p = 0.998; 2012: p = 0.086) (Fig. 5 above). HK losses were significant among treatments (2011: p = 0.017;
2012: p,0.001); were not significant among wheat varieties (2011: p = 0.869; 2012: p = 0.142); and interactions between treatment and variety (2011:
p = 0.975; 2012: p = 0.338). KW losses were different among treatments in both years (2011: p,0.001; 2012: p,0.001); among wheat varieties in 2012
(p = 0.012), but not in 2011 (p = 0.564). The two factor interactions were significant in 2012 (p = 0.007), not in 2011 (p = 0.978). Different little letters
above the bar indicate the significance of differences according to treatment for same variety. Different capital letters in the bar indicate the
significance of differences according to varieties for same treatment. NS is not significant different.
doi:10.1371/journal.pone.0106639.g005
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In conclusion, we suggested that S. avenae infestation promoted

BYDV transmission and spreading, and BYDV infection increased

the S. avenae population development to some extent under field

conditions. Either non-viruliferous aphid infestation or BYDV

infection alone or the combination of aphid + BYDV significantly

reduced wheat yield. In general, the yield loss was heavier induced

by viruliferous aphid (aphid + BYDV treatment) infestation than

by non-viruliferous aphid infestation or BYDV infection alone.

The resistant characteristics of wheat variety affect the yield loss

that caused by BYDV-aphid treatments. Meanwhile, the environ-

mental factors cannot be ignored.

The BYDV-PAV isolates from different countries show great

divergences both in genomic sequences and in pathogenicity [77].

It is not yet clear whether the yield responses to different BYDV

species are similar. Thus, more advanced quantitative analyses are

needed to estimate the interactions of aphids, BYDV species and

wheat in the field in future.
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