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Abstract

Background: Metagenomics is a relatively new but fast growing field within environmental biology and medical sciences. It
enables researchers to understand the diversity of microbes, their functions, cooperation, and evolution in a particular
ecosystem. Traditional methods in genomics and microbiology are not efficient in capturing the structure of the microbial
community in an environment. Nowadays, high-throughput next-generation sequencing technologies are powerfully
driving the metagenomic studies. However, there is an urgent need to develop efficient statistical methods and
computational algorithms to rapidly analyze the massive metagenomic short sequencing data and to accurately detect the
features/functions present in the microbial community. Although several issues about functions of metagenomes at
pathways or subsystems level have been investigated, there is a lack of studies focusing on functional analysis at a low level
of a hierarchical functional tree, such as SEED subsystem tree.

Results: A two-step statistical procedure (metaFunction) is proposed to detect all possible functional roles at the low level
from a metagenomic sample/community. In the first step a statistical mixture model is proposed at the base of gene codons
to estimate the abundances for the candidate functional roles, with sequencing error being considered. As a gene could be
involved in multiple biological processes the functional assignment is therefore adjusted by utilizing an error distribution in
the second step. The performance of the proposed procedure is evaluated through comprehensive simulation studies.
Compared with other existing methods in metagenomic functional analysis the new approach is more accurate in assigning
reads to functional roles, and therefore at more general levels. The method is also employed to analyze two real data sets.

Conclusions: metaFunction is a powerful tool in accurate profiling functions in a metagenomic sample.
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Introduction

Metagenomics is the study of genetic material recovered directly

from natural (e.g., soil or seawater) or host-associated (e.g., human

gut) environmental samples that contain microorganisms orga-

nized into communities. The advancement of high-throughput

next generation sequencing technologies provides a powerful way

in metagenomic studies since they can be directly applied to an

environmental sample without the need of isolating and culturing

individual microbial species in a laboratory. More than 99% of

millions microbial species on Earth cannot be cultured in a

laboratory [1,2]. The massively parallel sequencing technologies,

such as 454FLX, Illumina Genome Analyzer (GA), and ABI

SOLiD, have enabled us to generate millions of reads (35-500 base

pairs (bp), depending on the platform) at a time [3]

The initial computational analysis of metagenomics focuses on

two main questions: who is out there and what they can do [1,2].

To answer the first question, scientists determine taxonomic

compositions in a particular metagenomic sample and determine

the abundance/proportions of the species. Many methods have

been proposed [4–7], particularly, TAMER8], GASSiC [9], and

TAEC [10] focus on the taxonamic analysis at a very low

phylogentic level - species.

To answer the question ‘‘what they can do’’ scientists need to

determine the gene contents, functional categories, and estimate

the relative functional abundances contributed in the metage-

nomic sample. According to Overbeek et al. [11], a functional role

corresponds roughly to a single logical role that a gene or gene

product may play in the operation of a cell, such as ‘Aspartokinase

(EC 2.7.2.4)’, and pathway or subsystem which is a collection of
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related functional roles (Figure 1). To characterize the functional

capacity of a metagenomic community, therefore, researchers can

perform analysis either at the functional role level or pathways/

subsystems level. Most recently published studies focused on

pathways or subsystems level [12–15]. However, a number of

questions about functional roles of microbial communities are still

ambiguous, e.g., do microbial communities consist of extensive

genetic diversity, how are they diverse in functional roles, how

does the diversity in functional roles of microbial communities

affect their interaction with environment? Performing function

analysis of metagenomes at functional roles level, therefore, is an

appropriate approach to addressing these issues. Through such

type of analysis, functional roles can be detected and further

metabolic pathways or subsystems that the functional roles are

involved can be established [14].

Several tools have been developed to detect/annotate functional

roles from a metagenomic sample [16]. Among the commonly

used publicly available pipelines, most of them are homology-

based tools, such as MEGAN [17], MG-RAST [18], IMG/M

[19], and CAMERA [20]. In MEGAN the functional analysis of

metagenomes is based on the SEED hierarchy [18]. The SEED

has consistent and accurate microbial genome annotations of any

publicly available source [11]. To perform a functional analysis,

MEGAN assigns each read to the functional role of the highest

scoring gene in a BLAST comparison against a protein database

(e.g., NCBI-NR), and then different functional roles are grouped

into SEED subsystems. The SEED classification can be repre-

sented by a hierarchical tree, where the internal nodes represent

subsystems and the leaves denote the functional roles (Figure 1).

However the MEGAN program has several disadvantages. First

of all, the best score assignment might miss putative functions.

Because of the existence of sequencing error [21], a sequence read

could come from a gene/function with aligned matches of 32 out

of 33 codons and could also from a gene/function with aligned

match of 31 out of 33 codons. The MEGAN method misses the

second or even the third best scoring functions that the read may

have. Furthermore, a gene could play multiple functions at the

same time. However MEGAN just assigns one function (with the

best match value) to the short read even when multiple functions

show the same best match values (e.g., the e-value, bitscore, or the

number of matched codons). For example, blastx output for a

short read shows two functions ‘‘Argininosuccinate lyase (EC
4.3.2.1)’’ and ‘‘N-acetylglutamate synthase (EC 2.3.1.1)’’ with the

same best match values, but MEGAN only assigns the first

function (alphabetically) to the read. Thus, MEGAN misses some

functions existing in the community and therefore underestimates

their abundance.

MG-RAST [18] can assign multiple functions to a read, but

some flat cutoffs, e.g., e-value , 1.0e-5 and identity cutoff . 60%

are used. Thus assignment of reads to different ranks of taxonomy

tree greatly depends on the threshold of bit-score or Expect value

used. As a consequence, the results lack specificity. IMG/M uses

the best BLAST hits for function assignment [19]. In CAMER

[20] open reading frames (ORFs) are clustered at a certain cutoff

of identity (e.g., 60%) over a certain threshold (e.g., 80%) of ORF

length. ORF clusters are then used for functional studies. Both the

best-hit approach (in MEGAN and IMG/M) and objective cutoff

approach (in MG-RAST and CAMER) lack of statistical support.

Motivated by both the advantages and limitations of these

methods and inspired by the statistical model in Jiang et al. [8] we

propose a two-step procedure to accurately assign functions to

reads. In the first step sequencing error is estimated through a

mixture model, which is proposed to model the translated

sequence reads at the base of codons and detect the possible

functions in a metagenomic sample. As a gene could be involved in

multiple biological processes, the functional assignment is adjusted

by utilizing an error distribution at the second step. The proposed

two-step method is comprehensively tested on simulated metage-

nomic data with diverse complexity of microbial community

structure, and also applied on two real metagenomic datasets.

Compared with MEGAN and MG-RAST for functional metage-

nomic analysis, the proposed approach demonstrates greater

accuracy in function identification and abundance quantification.

The R package ‘‘metaFunction’’ is available for download at

http://cals.arizona.edu/,anling/software.htm.

Figure 1. Illustration of subsystem tree structure in SEED.
doi:10.1371/journal.pone.0106588.g001
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Methods

For each sequence dataset we use BLASTX to search for

matched reference sequences (i.e., genes) in the NCBI-NR protein

database. Then genes are classified into functional role categories

as defined by the SEED classification. Based on the sequence reads

we need to estimate: (1) the sequencing error rate and (2)

functional roles contained in the metagenomic sample and their

relative abundance (i.e., proportions). To answer these questions,

we set up a mixture model based on the information from

BLASTX results. And then a binomial model for the sequencing

error (estimated by the mixture model) is proposed to adjust the

function assignment, and therefore the proportion estimation for

each function is adjusted accordingly. The adjustment on assigning

functions is to incorporate the fact that a gene/short read could

play multiple function roles. The flowchart for the proposed

procedure can be found in Figure 2.

Estimate sequencing error
Suppose we have n sequence reads that are mapped to sequence

homologs in the reference database (i.e., NR protein database) and

return K functions (i.e., gene families) in the result of homolog

research, e.g., BLASTX output. Let Cijdenote the number of

identical matched codons for read i under functional role j and Lij

represent the corresponding aligned codon length. LetLi denote

the maximum aligned codon length for read i across all candidate

functions, i.e., Li~ max
j

(Lij) then we have CijƒLi. If the read i

does not have matched sequences for function j, thenCij~0. We

assume that the larger the Cijvalue, the more likely that the read i
performs function j. Let Rj denote the proportion of reads having

function j, thus
PK
j~1

Rj~1. Even if the read i is from function j, it is

also possible that Cij is not exactly as same as Li, the maximum

aligned length. It may be due to the sequencing error and/or

single nucleotide polymorphism (SNP) effect or various sources

(i.e., organisms) for the same gene in the database. Let p denote

the probability of observing a mismatched codon, then 1{p is the

probability of observing an identity or conserved codon. Therefore

the probability that the read i performs function j with Cij

matched codons and Li{Cijmismatched codons is

Rjp
Li{Cij (1{p)Cij . Then the probability to observe the read i in

the dataset is

Pr (readi)~
XK

j~1

Rjp
Li{Cij (1{p)Cij

h i
ð1Þ

Hence the likelihood function of the data is:

‘(p,R1,:::,RK )~P
n

i~1
Pr(readi)~P

n

i~1

XK

j~1

Rjp
Li{Cij (1{p)Cij

h i
ð2Þ

In this likelihood function, the maximum aligned length Li and

the matches Cijcan be extracted from the BLASTX output. The

parameters p and Rj(j~1,2, � � � ,K) are then estimated by

Expectation Maximization (EM) algorithm [22]. As p is the

probability for observing a mismatched codon, for simplicity, we

just call p as sequencing error (rate) and a mismatched codon as a

mismatch.

Multiple-function assignment
One read could get involved in multiple functional roles. For

read i, assume its best mismatch (i.e., minimum number of

mismatched codons) across all functions is Mi0 , we can determine

the maximum allowable mismatch Mi1 for a given small

probability e such that:

Pr(Mi0
ƒmiƒMi1

)ƒe ð3Þ

where we assume that the mismatch mi follows a binomial

distribution with parameters (Li,p). Then read i can be assigned to

all the functions with mismatch #Mi1
. The relative abundance

Rjwill be updated by this new multiple function role assignment,

i.e., the updated one becomes:Rj
0
~

hj

n
, where hj is the number of

short reads assigned to the function j after the adjustment, and n is

the total number of short reads in the dataset. Thus we havePK
j~1

Rj
0
§1. The algorithm procedure for the multiple-function

adjustment can be summarized as below:

Based on the estimated sequencing error obtained in step 1 and

a pre-specified small probability e:

1) for read i calculate its maximum allowable mismatch Mi1

using eq. (3)

2) assign all functions with corresponding mismatch #Mi1 to

read i

3) repeat steps 1) and 2) for all reads

4) calculate the new roportion Rj
0
~

hj

n
for each function based

on these new assignments.

Figure 3 illustrates the calculation for multiple function

assignment based on a binomial distribution. In this illustration

the maximum length of the aligned codons is 32 and sequencing

error at the base of codon is 0.15. If the best mismatch is 0 and the

probability e = 0.05, then the maximum allowable mismatch is

calculated as 1. It means that the functions with matched codons

of 32 or 31 ( = 32-1) in BLASTX output are all possible and
Figure 2. Flowchart of the proposed method - metaFunction.
doi:10.1371/journal.pone.0106588.g002
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therefore the read is finally assigned to these functions. The small

probability e in equation (3) is suggested as one third of the

sequencing error at the codon level (estimated in the first step) or

just the sequencing error at the nucleotide level, if known or given.

More details about the selection of e can be found in the

simulation studies below.

Construct statistical inferences
None of the existing methods on functional metagenomic

analysis could further assess the uncertainty of the proportion of

assigned reads to functions. We propose to use bootstrap method

[23] for constructing the confidence intervals for the estimates. We

first draw a bootstrap sample by resampling the reads from the

original sequence reads with replacement; the relative abundances

are estimated using the described two-step procedure for the

bootstrap sample. We repeat this resampling/bootstrap for a large

number of times, e.g., 1000 times. Then the confidence intervals

can be constructed based on these bootstrap estimates. Since we

construct the confidence intervals for the abundances of the K
functions, Rj (j = 1,…, K) simultaneously, a multiple correction

method, e.g., Bonferroni method [24], is applied to guarantee a

pre-specified family-wise confidence level.

Simulation studies
Experimental data. Due to the complexity of metagenomic

data, simulation studies with verifiable structure are crucial to

benchmark the proposed approach and to conduct comparisons

with other existing methods. So far there is no literature about how

to set up a simulation study for functional metagenomics. We

propose to use the SEED database (http://pseed.theseed.org) and

conduct six different simulation studies. Basic information of these

six simulation settings is listed in Table 1. Similar to the studies in

MetaSim [25] which contain a small number of genomes in each

setting we simulate a small number of functions in each study.

Study 1 contains 10 function roles that are far away from each

other in the SEED tree. For each function role, 20% of the

sequences (i.e., FIGfams, very long sequences) from the SEED

database are chosen and the sampling rate for this situation is

20%. Then a short segment of 100 bp is randomly chopped from

the selected long sequence, and 2% sequencing error is added to it.

The sequencing error could be due to the substitution, deletion

and insertion. For the purpose of method illustration we only

consider the substitution error. It is well know that some genes are

involved in multiple functions in a microbial community. This is

also reflected from the gene sequences in the SEED database, i.e.,

some long sequences are labeled with multiple functions. As

expected, a few additional function names are obtained for the

short reads in the 10 pre-selected groups. We name them

secondary functions, and the 10 pre-selected functions as primary

functions (see the Table S1 in File S1). The number of short reads

for each function is also listed in the table S1 in File S1. Both types

of functions are treated as true functions since the functions in

either type are the true ones for the generated short reads.

Study 2 contains the same 10 primary functions as study 1 but

with various sampling rate (see the Table S1 in File S1). The

number of short sequence reads generated for each function is

based on the total number of long sequences in the function group

in the SEED database. Generally, the sampling rate varies

between 20%,40%. In studies 3 and 4 we use another set of 10

functions (see the Table S2 in File S1). Different from the studies 1

and 2, the 10 function groups here are very closely related (i.e.,

some functional roles are belong to the same subsystems). Study 5

contains the same 10 primary function groups as studies 1 & 2 but

the sampling rate is much larger, about 4,5 times of the first two

studies; similarly, study 6 contains the same 10 primary function

groups as studies 3 & 4 but the sampling rate is about 4,5 times of

these two studies (see the Table S1 and S2 in File S1). The

coverage, i.e., ratio of the number of simulated base pairs to the

total number of base pairs for the selected functions in the SEED

database, varies 2%,9% in these six studies.

Simulation Results. Three methods, MEGAN (best hit),

MG-RAST (flat cutoff) and the proposed method metaFunction,

are compared through these six simulation studies. The result for

the first simulation study is shown in Figure 4 where it plots the

relationship between the estimated (i.e., predicted) abundance for

each function and its true (i.e., expected) abundance. If all the

functions are detected and their abundances are correctly

estimated then the Pearson correlation between the expected

and predicted abundances is one. From the plot it is obvious that

the proposed approach has the largest correlation. Table 2

displays the summary of the correlations in all six studies for

these three methods. The new method outperforms the other two

methods in all studies in terms of correlation between the true and

estimated abundances. While MEGAN and metaFunction meth-

Figure 3. Illustration of calculation of multiple function assignment. In this plot e = 0.05 and the binomial distribution has p = 0.15 and
Li = 32.
doi:10.1371/journal.pone.0106588.g003
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ods perform better on the distant function studies (studies 1, 2 and

5) than on the closely related function ones (studies 3, 4 and 6),

MG-RAST seems work better on the closely related functions. It is

because in the distant function studies MG-RAST detects a false

function ‘‘decarboxylase’’ with a very large proportion. This

greatly affects the correlation calculation.

We also evaluate the performance of three methods via the

same simulations using another metric. A common measure for

error is root mean square of relative error [7,26]. In this definition

each feature group is assumed the same weight in the error

calculation, regardless the abundance of features in each group. In

function analysis of metagenomics a function group estimated with

a tiny number of counts actually should much less likely exist in the

sample than a group with large number of read counts. We modify

the error measure to weighted root mean square of relative error

(WRRMSE), i.e.,

WRRMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

j~1

wj(
aj{tj

tj

)2

� �vuut , where the weight

wj~
log(ej)Pm

k~1

log(ek)

,

ej is the estimated number of reads for function j, aj is the

estimated relative abundance (i.e., estimated proportion) and tj is

the true relative abundance, and m is the number of true function

groups. The WRRMSE results for six studies are shown in

Figure 5. In each of subplots the x-axis is the SEED system level.

Compared to the MEGAN and MG-RAST, the proposed method

Table 1. Basic information of six simulation studies.

Study Characteristic of the 10 primary functional roles Sampling rate from SEED database

1 Different fixed 20%

2 Different 20,40%

3 Closely related fixed 20%

4 Closely related 20,40%

5 Same as study 1 & 2 Large sample size

6 Same as study 3 & 4 Large sample size

doi:10.1371/journal.pone.0106588.t001

Figure 4. Scatter plot of the predicted vs. expected (true) relative abundance of the functions in Simulation 1.
doi:10.1371/journal.pone.0106588.g004
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has the lowest error at any level of the subsystems and for all

simulation studies. Decrease in Error on Sub 2 level in Figure 5 is

due to the unnamed subsystems in the SEED tree. For example, a

read is assigned to a level-3 subsystem but its parent node has no

name (i.e., NULL) then the assignment to this unknown level-2

subsystem will be excluded in calculating the error. The decrease

in error for sub 2 level is due to the removal of the NULL group

that may contain some wrong assignments.

The accuracy on estimation of relative abundance plays an

important role in metagenomic analysis, the accuracy of assign-

ment of short reads is also very interesting to biologists in

functional metagenomics as they need the information of what

reads do what kind of functions. As the MG-RAST does not give

the information of the assignment we compare the performance of

MEGAN and the proposed method metaFunction regarding the

assignment details. In each of six simulation studies we calculate

the proportion of correctly assigned (CA), wrongly assigned (WA),

and not assigned (NA, i.e., not aligned to the reference database)

across all functions. The assignment details are also examined at

other levels of the subsystem. The results of the simulation study 1

are displayed in Table 3. At any level of the subsystems (including

the function level) the proportions of NA using metaFunction are

lower than those from the MEGAN result. The WAs for

metaFunction are little higher than the ones for the MEGAN

but they are comparable (all ,1%). The new approach results in

much higher CA rate than MEGAN (about 90% vs 70%).

Consistent conclusions are obtained for other simulation studies

(data not shown).

Selection of e. The above results are based on e~0:01 in eq.

(3). We conduct another study to investigate the effect of selecting

different small probability e on the final result in terms of the error

metric defined above. Let e take various values of 0.01, 0.05, or 0.1

for the multiple role assignment. Within each of the above six

simulated experiments the WRRMSE values are very close for

these three different e values. That is, the absolute difference on

WRRMSE is less than 0.0001 between the two situations of

e = 0.01 and e = 0.05; and less than 0.008 between e = 0.01 and

e = 0.10. In terms of relative difference on WRRMSE, the values

are (0,2%) for different e. Therefore, the final result is not

sensitive to the selection of e. In the above six simulated

experiments 2% error is added to each short read, any value

between 0.01 and 0.05 is plausible for e.

Real Data Analysis

Real metagenomic data from an environmental study and a

human health study are analyzed using the proposed method -

metaFunction.

Environmental study
Metagenomic functions were compared between Lake Erie

(North America) and Lake Taihu (China) [27]. Toxic cyanobac-

teria blooms appear to be a global problem as toxins produced by

bloom-associated cyanobacteria can have drastic impacts on the

ecosystem and surrounding communities; in addition, the

produced bloom biomass can disrupt aquatic food webs and act

as a driver for hypoxia. Freshwater samples were collected from

different lakes to examine the bloom associated microbial

communities. We select two lakes - Lake Erie and Lake Taihu

as they represent different continents – to examine the gene

contents. After quality checking totally 750 thousands reads with

an average length of 425 bp are aligned to the NCBI non-

redundant database. Then the proposed method is applied to the

alignment output. The original study used both MEGAN and

MG-RAST for functional annotation and they addressed that the

two results are highly consistent. We compare our result to the

MG-RAST result in the original paper, which are downloaded

from the MG-RAST online server (http://metagenomics.anl.gov/

) under the identification numbers 4467029.3 (Erie), 4467058.3

(Taihu).

The functionality profiles of microbial communities in these two

lakes by metaFunction and MG-RAST are summarized at the

level 1 of subsystem (Figure 6). Generally, the results from these

two approaches are consistent: the subsystems found by one

method with big proportions are also detected by the other with

large amount. However there also exists some discrepancy

between the two results. The subsystem ‘‘Miscellaneous’’ is found

dominant by MG-RAST in both lakes but not ample by the new

method; ‘‘Virulence, Disease and Defense’’, ‘‘Virulence’’, ‘‘Mem-

brane Transport’’, and ‘‘Cell Wall and Capsule’’ are observed

more abundant by the new approach than by MG-RAST.

When compare the results between two lakes we found that

subsystems abundant in one lake by the MG-RAST often show

plenty in the same lake by the new method. For instance, ‘‘Amino
Acid and Derivatives’’, ‘‘Carbohydrates’’, ‘‘Nucleosides and Nucle-
otides’’, and ‘‘Membrane Transport’’ are found more abundant in

Lake Taihu than in Lake Erie. Meanwhile ‘‘Cell Division and Cell
Cycle’’, ‘‘Regulation and Cell signaling’’, ‘‘Cofactors, Vitamins,
Prosthetic Groups, Pigments’’ are lower in Lake Taihu. A big

difference tween the results from two approaches is that the new

method can provide confidence interval information for the

proportion estimation, which is displayed as the small bars in

Figure 6. Thus the new method can provide more information

about the group comparisons. Comparison between two lakes at a

lower level of subsystems - level 3 - is shown in the Figure S1. Not

surprising, the results from two approaches in Figure S1 are more

disparate than at the higher level of subsystems in Figure 6.

Human Health study
Human oral microbial samples were studied for oral cavity

problem using 454 pyrosequencing [28]. Two healthy samples and

two cavity samples are selected for our analysis, with one at an

intermediate stage and the other one at an advanced stage of caries

development. After quality checking, 0.5 Gbp of sequence with

Table 2. Summary of the correlation values in all six studies by three methods.

Study 1 Study 2 Study 3 Study 4 Study 5 Study 6

MEGAN 0.986 0.968 0.852 0.839 0.973 0.917

MG-RAST 0.711 0.696 0.880 0.857 0.750 0.895

metaFunction 0.996 0.993 0.953 0.943 0.997 0.982

The correlation is calculated between the expected (i.e., true) and estimated abundance for the simulated functions.
doi:10.1371/journal.pone.0106588.t002
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the average read length 425 bp are BLASTXed to NCBI-NR

protein database for searching matched reference sequences (i.e.,

genes). Then reads are classified into functional role categories as

defined by the SEED structure using the proposed method. The

results of functionality profiling for all four samples at the

subsystem level 3 are shown in Figure 7.

In this plot the abundance of ‘‘Conjugative transposon Bacteroi-
dales’’ is much higher in the cavity samples than in the healthy

orals, which is also confirmed in other literature [29]; ‘‘Fatty Acid
Biosynthesis FASI’’ also shows a higher value in the diseased

samples than in the healthy samples, which is consistent with the

finding in [30]; That the ‘‘Flagellum’’ is abundant in the cavity

samples is also reported in Seshadri et al. [31]; high values of

‘‘Glutamine Glutamate, Aspartate and Asparagine Biosynthesis’’
and of ‘‘Methionine degradation’’ in the oral cavity samples are

also mentioned in other publications [32,33]; the abundance of

‘‘Universal GTPases’’ is higher in the cavity samples than in the

healthy orals, which is also found in other literature [34]. In

conclusion, the results from the new method provide us the

findings consistent with the previous literatures.

Figure 5. Plot of WRRMSE values for three methods and in six simulation studies. Weighted Root of Mean Square Relative Error (WRRMSE)
is calculated between the true function/subsystem and the estimated function/subsytem by each method (MEGAN, MG-RAST, and metaFunction).
doi:10.1371/journal.pone.0106588.g005

Functional Metagenomics

PLOS ONE | www.plosone.org 7 September 2014 | Volume 9 | Issue 9 | e106588



Table 3. Proportion of correctly assigned (CA), wrongly assigned (WA), and not assigned (NA) simulated reads by MEGAN and
metaFunction.

MEGAN metaFunction

CA (%) WA (%) NA (%) CA(%) WA (%) NA (%)

Function 77.45 0.22 22.55 91.06 0.39 8.94

Subsystem 3 77.22 0.22 22.78 91.05 0.38 8.95

Subsystem 2 76.66 0.21 23.34 91.11 0.37 8.89

Subsystem 1 76.66 0.21 23.34 91.11 0.37 8.89

This result is for different levels of the SEED tree in the first simulation study.
doi:10.1371/journal.pone.0106588.t003

Figure 6. Proportions of the detected subsystems (level 1) by MG-RAST and metaFunction for the lake data. The top 27 subsystems
with proportion .0.005 in at least one of samples are listed. The ‘‘error’’ bars represent the 95% confidence interval obtained by bootstrap method.
Note: only the proposed approach can provide confidence intervals for the estimations of the proportions.
doi:10.1371/journal.pone.0106588.g006
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Figure 7. Proportions of the detected subsystems (level 3) for the oral data. The top 78 subsystems with proportion .0.005 in at least one
of samples are listed. The ‘‘error’’ bars represent the 95% confidence intervals obtained by bootstrap method.
doi:10.1371/journal.pone.0106588.g007
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Discussion

One of the main challenges in metagenomic studies is how to

accurately identify all possible functional roles present in an

environmental sample and precisely estimate their abundance.

Due to the complexity of metagenomics and the huge volume of

sequencing reads of short lengths obtained from the next

generation sequencing technologies, the need of efficient statistical

tools to accomplish this challenge is increasing. We proposed a

two-step procedure to perform functional analysis on a metagen-

ome: mixture model coupled with the adjustment of multiple role

assignment, to accurately assign reads to related functional roles by

utilizing the SEED classification. Though this research is initiated

for the SEED classification, actually the proposed method can be

generalized to any type of function annotation system.

Compared to MEGAN and MG-RAST through comprehen-

sive simulation studies, our procedure metaFunction demonstrates

more effective in assigning reads to functional roles, thereafter, to

subsystems. In the simulation study 1 and 2, the results show that

MEGAN cannot assign any read to one of the true functional roles

(Figure 4) while in the simulation study 3 and 4, MG-RAST

cannot assign any read to one of the true functional roles (plot not

shown). This type of phenomenon has never happened to our

approach. In addition, the proposed method can correctly assign

higher percentage of reads to functional roles than MEGAN does.

MEGAN utilizes the best bit-score for assignment. If a read

returns with best scores for multiple functions in the BLAST

output, then only the first function (alphabetically) is chosen for the

assignment. In our method all of them with the same best score are

assigned to the read. Different from other existing methods, the

proposed method provides confidence intervals for the estimations

of the proportions by using bootstrap.

We also applied the proposed method to two real metagenomic

datasets and our results generally are consistent with the findings

in the previous reports but provide more detailed information. A

future work is to integrate the taxonomic analysis and functional

analysis, in other words, to consider these two types of issues

simultaneously, so that the power can be improved for both

taxonomic and functional profiling a metagenomic sample.
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