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Abstract

When multiple strategies can be used to solve a type of problem, the observed response time distributions are often
mixtures of multiple underlying base distributions each representing one of these strategies. For the case of two possible
strategies, the observed response time distributions obey the fixed-point property. That is, there exists one reaction time
that has the same probability of being observed irrespective of the actual mixture proportion of each strategy. In this paper
we discuss how to compute this fixed-point, and how to statistically assess the probability that indeed the observed
response times are generated by two competing strategies. Accompanying this paper is a free R package that can be used
to compute and test the presence or absence of the fixed-point property in response time data, allowing for easy to use
tests of strategic behavior.
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Introduction

Almost all intentional behavior is the result of applying

strategies to problems. Theorizing in cognitive psychology thus

often involves the assertion that humans have access to a number

of alternative strategies to solve a particular task, and that the

observed behavior on a particular trial is the result of the execution

of one particular strategy. On other trials an alternative strategy

might have been selected, which may result in differences in the

observed behavior. For example, idiomatic or fixed-phrase

language processing is thought to be a dual-route process [1].

That is, idiomatic expressions (like kick the bucket, or half past
twelve) are thought to be either retrieved in full from memory, or

composed out of the constituent words when required. Whether

the retrieval strategy or the production strategy is more likely for

any given utterance depends on the frequency of the expression.

However, it is difficult to find experimental support for a dual-

route theory of idiomatic language processing, because the

observed responses over a series of trials are a mixture of the

two strategies. Thus, as it is unknown which strategy was used on

which trial, the observed distribution of response times might as

well be generated by a single strategy.

Many theoretical paradigms assume that behavior is the result

of similar mixtures of processes (e.g., visual word recognition and

reading aloud [2], task switching [3], visual working memory [4],

exploration versus exploitation [5], speed-accuracy trade-off [6],

the PRP effect [7,8]). An important but often implicit property

shared by these theoretical accounts is the assumption that the

observed response time (RT) distribution is a mixture of two or

more processing time distributions, representing the processing

times of the possible strategies. This mixture assumption is often

based on theoretical arguments as it is not straightforward to

demonstrate the existence of multiple processing time distribu-

tions: That is, multimodality is difficult to assess. However, under

certain constraints, most notably the constraint that the mixture is

based on two distributions, this mixture assumption provides

testable predictions, and this paper presents a simple method (and

an R package) for testing those predictions. Given the constraints

associated with the fixed-point property, the application of our

method is limited to theories that assume two competing processes.

Nevertheless, because of the proliferation of theories that assume

two competing strategies, the work presented here provides

important behavioral predictions and methods to test these

predictions which can be used to falsify or support claims of

competing strategies.

The fixed-point property
An important property of a set of mixture distributions that are

all based on the combination of two identical base distributions is

the so-called fixed-point property [9]. The fixed-point property

entails that the probability density functions of distributions with

different mixture proportions share a common coordinate

(Figure 1). Although the fixed-point property is present in all

types of data, here we will focus on the case of response time

distributions, and assume that the mixture consists of response

times generated by one of two strategies (e.g., Strategy 1 or

Strategy 2). The common coordinate means that independent of

the relative proportion of Strategy 1 or Strategy 2 usage, there

exists an RT that has the same probability of occurring

irrespective of the actual relative proportion.
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Despite its wide applicability, there are only a few studies that

discuss the fixed-point property (e.g, [10–14]), let alone formally

test its presence (or absence) in the data (the exception being

[10,14], who tested for the absence of the fixed-point property). We

can see two reasons that have precluded studying the fixed-point

property in the past. The first reason is that computing the

probability density of the observed response time distribution is

not trivial. This can be seen by considering histograms, arguably

the simplest method to summarize frequency distribution data.

Despite its apparent simplicity, the exact shape of the histogram

depends on the number of bins, or alternatively the bin size. That

is, the frequency observed for each bin is a function of the number

of bins, and obviously if the number of bins is 1, all observations

are categorized to belong to this bin. As the fixed-point property

entails that there exists a bin that has the same frequency for each

mixture proportion, if just one bin is used, the fixed-point property

holds for all mixture proportions with equal number of observa-

tions. While true, this case would be uninformative, as the location

of the fixed point remains unknown. By contrast, if there would be

a bin with equal number of observations across mixture

proportions in a histogram with many bins, it would be very

informative. Unfortunately, the probability that this happens

decreases with the number of bins. Consequently, the probability

of finding the fixed-point property depends on the choice of bin

size.

The second reason that might have withheld researchers to use

the fixed-point property is that performing a statistical test to

support the presence of the fixed-point property requires

supporting the null hypothesis (i.e., the frequency does not depend

on mixture proportion for one bin) in a classical null hypothesis

significance test framework, which is atypical. It is a well-known

problem that even if classical test statistics do not reach

significance, there may be reasons other than the similarity

between the compared conditions, such as the power of the test

(see e.g., [15]). A non-significant result can thus be never

attributed to the null hypothesis. In the next section, we will

reiterate the important properties of the fixed-point property,

introduce our method for computing and testing it, and discuss

both the issues raised above.

Computing and testing the fixed-point property
The fixed-point property is a mathematical property of binary

mixture distributions: The density function of a binary mixture

distribution (g(t)) is a combination of two base distributions f1(t)
and f2(t), weighted by the mixture proportion p:

g(t)~p:f1(t)z(1{p):f2(t)

If p is 0 or 1, the mixture distribution is equal to one of the base

distributions, i.e., gp = 0(t) = f2(t) or gp = 1(t) = f1(t). If the two

base distributions overlap, there is a time point to such that

f1(t0)~f2(t0),

meaning that both densities are equal for to. Combined these

equations provide the fixed point property:

g(t0)~p:f2(t0)z(1{p):f2(t0),

g(t0)~(pz1{p):f2(t0),

g(t0)~f2(t0):

Thus, the density of the mixture at t0, g(t0), does not depend on

the mixture proportion p but is equal to the density of either base

distribution at t0 [9,12]. This implies that RT distributions that

consist of a mixture of two base distributions have a common RT

with identical probability density, independent of the mixture

proportion.

Figure 1. Illustration of the fixed-point property. Panel A shows density plots for two base distributions. The blue line reflects an RT
distribution for Strategy 1 (d1), with a mean of 500 ms and a standard deviation of 100, the red line an RT distribution (d2) for Strategy 2 (mean = 600,
SD = 150). Panel B shows three mixtures of the two base distributions with mixture proportions as indicated in the legend. The vertical line shown in
both panels is drawn at the common coordinate or fixed-point at ,590 ms.
doi:10.1371/journal.pone.0106113.g001
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Computing the fixed-point property
To infer the fixed-point property in experimental data, for

example if one wants to assess whether two conditions just differ in

terms of the relative proportions of Strategy 1 and Strategy 2

usage, the first step is to estimate the continuous density functions

of the data. That is, for each condition – reflecting a mixture

proportion – the empirical probability density has to be computed.

Computing the density instead of a histogram solves in part the

issue of the bin size discussed previously. A straightforward

method for computing the continuous density function is kernel

density estimation (e.g., [16–18]), which estimates the density of a

set of data points (in our case, response times) by summing kernels

that are centered on the data points. This method can be thought

of as smoothing a histogram. Typically (but not necessarily), the

kernels are normal distributions with a standard deviation h that

depends on the number of data points [17]. The standard

deviation of the kernel determines the degree of smoothness of the

estimated density function (i.e., h can be seen as the smoothing

factor). Selecting an appropriate h parameter is a procedure of

some delicacy. If h is too small, than the estimated density may

include local noise. If h is too large, potentially important

properties of the distribution will also be smoothed out, such as

multimodality [17]. However, there are a number of methods by

which h can be set (e.g., [17,19–21]). In the Simulations section

below we will explore the extend to which the choice of h
influences whether the fixed-point property is recovered from the

data.

Density estimation can be used to compute the fixed-point

property. Figure 2A shows the density functions of three binary

mixture distributions with normally distributed base functions.

The means and standard deviations of the base functions are

m1 = 1 and m2 = 3, and s = 1 for both base functions. The mixture

proportions are .1, .3, and .9. As said, the fixed-point property

manifests itself as the point where the three density functions

intersect (Figure 2A, at x = 2). Put differently, this is the x-

coordinate where the pairwise differences between the density

functions are zero (Figure 2B, at x = 2). Each line in Figure 2B

represents the difference of two lines in Figure 2A. Thus, three

mixture-proportion conditions (1, 2, and 3) result in three pairwise

differences (1 vs 2, 2 vs 3, and 1 vs 3). If the fixed-point property

holds, then the x-coordinates where the pairwise differences are

zero should be equal. We will refer to the points where the

difference crosses the x-axis as the crossing points. Obviously, to

assess whether multiple density functions cross each other at the

same x-coordinate, at least three mixture distributions are required

resulting in three crossing points.

Figure 2C and 2D illustrate that in the absence of the fixed-

point property the crossing points differ. The distributions in

Figure 2C are normally distributed with means m1 = 1.2,

m2 = 1.6, and m3 = 2.8, with the same standard deviation s = 1.

These distributions are thus shifted relative to each other and

cannot be considered mixtures from two competing strategies that

differ in mixture proportion (cf. [22]). The pairwise density

differences show that the crossing points are not aligned at the

same x-coordinate (that is, the same RT), an observation that is

clear in Figure 2D. Hence, there is no fixed-point property in this

data set.

Testing the fixed-point property
While a graphical demonstration of the fixed-point property

may be convincing, inferences from data should ideally be based

on the results of sound statistical tests. In our approach, such tests

are concerned with assessing the degree to which the binary-

mixture hypothesis is supported by the distribution of estimated

between-conditions crossing points. In the case of the fixed-point

property in RT data, we want to find support for either the

hypothesis that the data comes from binary mixture distributions

with different mixture proportions (that is, the fixed-point should

be observed), or not. Thus, for the fixed-point property to hold,

there should be evidence against a difference in the crossing points

(i.e., no difference should be found between conditions, see

Figure 2B). That is to say, there should be evidence in favor of a

null hypothesis that there is no difference between crossing-point

conditions. Standard null-hypothesis significance tests typically

only quantify support against the null hypothesis [23]. Thus, in the

absence of a significant effect indicating a difference between the

crossing-point conditions, nothing may be said about the

equivalence of the conditions, and hence nothing may be said

about the presence of the fixed-point property in the data. To

solve this problem, we advocate Bayesian hypothesis testing to

allow quantification of support for the hypothesis that there is no

effect [15]. This way, it can be assessed what the probability is that

the fixed-point property holds in the data.

Typically in an experiment, we want to infer whether a certain

property exists for the population, based on the sample of

participants that were tested. In the current discussion, this means

that we want to test whether the fixed-point property holds for the

sample of participants in a study. This is the case if we find support

for the hypothesis that the crossing points for the various pairs of

mixture proportions do not differ. Once the distributions of

crossing points per pair of mixture proportion conditions for each

of the participants are known, Bayes factors for a regular analysis

of variance can be computed [24] to assess the evidence for or

against the fixed-point property. A Bayes factor quantifies how

much more likely it is that the observed data is generated under

one model relative to another model. In this case, it quantifies the

probability that the observed distribution of crossing points per

condition are generated from one true distribution (H0: the fixed-

point property holds) or from multiple distributions (H1: the fixed-

point property does not hold as the intersections are not associated

with the same RT). Because of the minimum of three conditions

and thus three crossing points to assess the fixed-point property in

data, it is appropriate to perform a Bayesian ANOVA. Here, we

use the standard Bayesian ANOVA implemented in the

BayesFactor package in R (http://http://cran.r-project.org/

web/packages/BayesFactor), including its standard assumptions

with respect to priors. (For a full discussion of this method and its

assumptions, see [24]) Obviously, in particular when the null

hypothesis is rejected, standard null hypothesis tests may be

relevant. In addition to the Bayes factors for the factors in an

ANOVA design, the R package associated with this paper – called

fp for fixed-point – provides conventional F statistics and p-values,

if desired.

Simulation studies

To validate the method for computing and testing the fixed-

point property, we ran a series of Monte Carlo simulations.

Simulation 1 illustrates that our approach produces reasonable

results for non-Gaussian distribution functions, as are typically

observed in RT data (e.g., [25–27]) and is robust against mild

random effects in the data. In Simulation 2 we extend this result to

illustrate how the method depends on the mean and standard

deviation of the base distributions. In particular, we show that the

fp method is capable of distinguishing between the case of true

mixture distributions and plausible alternative hypotheses, even

when the base distributions exhibit considerable overlap. Simula-

tions 3 and 4 study the effects of sample size and the number of

Fixed-Point Property for Competing Strategies
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observations, as these influence the power of the test on the one

hand, but the precision of the estimate - potentially increasing the

chance of finding a difference - on the other hand. In addition, as

discussed in the introduction, we assess the influence of the

smoothing parameter in the Gaussian kernel density estimation.

Simulation 1: Robustness against random fluctuations
In Simulation 1, we assume observations are sampled from one

of two inverse Gaussian base distributions, with scale l = 5 and

mean m1 = 0.8 and m2 = 1.0 respectively. The inverse Gaussian

distribution is an often-used approximation of response time

distributions, in particular in situations where only one response

alternative is likely or possible (e.g., simple RT tasks [28] or go/no-

go tasks [27,29]). In this simulation, the mixture proportions are

arbitrarily set at .1, .4, and .8, indicating that it is more likely to

sample from the first (p = .8, Strategy 1 is more likely than Strategy

2) or the second (p = .1, Strategy 2 is more likely than Strategy 1)

distribution, or that both distributions are about equally likely,

with a slight tendency towards Strategy 2 (p = .4). For each

simulated participant, we sampled 200 observations per mixture

condition by randomly drawing from the base distributions

according to the mixture probabilities. This procedure entails that

although the mixture proportions are equal for each participant,

the number of observations from each base distributions is not

necessarily equal. We simulated 50 participants, adding a normally

distributed random effect with a standard deviation of s = 0.1.

Figure 3A and B summarize these data by showing the estimated

densities and density difference curves across all observations,

ignoring the random effects structure in the data. The figures

suggest the presence of a fixed point. Using the fp package in R,

we computed density difference curves and crossing points for

each simulated participant. The distribution of crossing points for

the three mixture conditions is presented in Figure 3C. A Bayesian

ANOVA gives a Bayes factor in favor of the alternative hypothesis

that these three conditions differ of BF01 = 0.098, which means it is

10.2 times more likely that there is a fixed point in the data than

that there is no fixed point (Not surprisingly, standard frequentist

statistics show no support for the alternative hypothesis, F(2,49)

= 0.40, p = .67). This means that there is reason to accept the null

hypothesis that there is a fixed point.

Simulation 2: Effect size
A crucial question is to what extend the method to detect

mixture distributions described here depends on the nature of the

Figure 2. Probability density and density difference for data with and without a fixed-point. Probability density (A, C) and density
difference (B, D) for data with (A, B) and without (C, D) a fixed-point. The densities in A correspond to binary mixture distributions with mixture
proportions of .1 (black line), .3 (red line), and .9 (green line), respectively. The densities in C correspond to shifted distributions with mean m1 = 1.2
(black line), m2 = 1.6 (red line), and m3 = 2.8 (green line). The solid lines in B and D indicate the difference between the black and red lines in A and C;
the dashed lines indicate the difference between the black and green lines; the dotted lines indicate the difference between the red and green lines.
The vertical lines in B and D indicate the location of the crossing points.
doi:10.1371/journal.pone.0106113.g002
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base distributions. Clearly, if the base distributions have a large

difference in means relative to their standard deviations, the

mixtures will show signs of bimodality. In contrast, when the

means of the base distributions are very similar, it might not be

possible to distinguish binary mixture distributions from non-

mixture distributions. In Simulation 2, we generated data from

two inverse Gaussian distributions with different means and scale

parameters. One base distribution was always fixed with with

m1 = 200 and scale l1 = 100. The mean of the other base

distribution was set at a value in the range m2 = {225;1175}, with

a scale set at l2 = l1+m2- m1. This way, the standard deviation of

the second base distribution increases approximately linearly with

the mean, similar to what is often observed in response time data

[30]. In this simulation, the mixture proportions are 0.0, .5, and

1.0, indicating that either one of the base distributions contributes

to the crossing points, or a 50/50 mixture. We simulated data for

50 participants, with 200 observations per condition as before.

This number seems a reasonable representation of a real-life data

set. In Simulations 3 and 4 we explore the extend to which our

method is susceptible to variations of sample size and the number

of observations.

In addition to the mixture data, we also simulated data in which

the three observed distributions were shifted relative to each other

(cf. [22]). A shifted distribution yields the same mean response

times, but differences in the shape of the distribution relative to

mixture data. In this simulation, the means of the three observed

distributions were set at m1, (m1+m2)/2, and m2, identical to the

mixture data. Similarly, the scales were set at l1, (l1+l2)/2, and

l2. Finally, the SD of the smoothing kernel was set at 100, a value

that balances oversmoothing and overestimation of the density

function.

Figure 4 displays the results of 4,500 simulated data sets.

Figures 4A and B display the Bayes factors and F values for each

data set, as a function of the difference between the base

distributions, expressed as d9. Even for moderately small d9 values

the method correctly distinguishes between mixed distributions

and shifted distributions. That is, for this simulation, after about

d9 = 0.4 the BFs of the two types of distributions diverge. The

difference between these hypotheses (mixed and shift) can be

quantified by computing a likelihood ratio [22]. The likelihood

ratio will provide an indication of the likelihood of the fixed-point

property relative to another hypothesis, such as the shift-

hypothesis. In the absence of a suitable alternative hypothesis,

the Bayes factor of the tested data gives a reasonable estimate of

the likelihood that the fixed-point property is present.

As an illustration of the size of the effects that the fp method

detects, consider the example base distributions in Figure 4D. The

dashed lines represent the smallest and largest d9 value in the

simulation (d9 = 0.1 and d9 = 1.2, respectively), as well as the

smallest d9 for which the method indicates that the shifted data set

has a Bayes factor smaller than 1. A Bayes factor between zero and

1 indicates support for the null hypothesis, which in the current

discussion means support for a fixed-point property. It is clear that

a mixture of these distributions would not lead to obvious

bimodality in the data (Figure 4E), which calls for a test like the

one discussed here. Figure 4F shows the density differences for the

smallest d9 for which the method indicates that the shifted data set

has a BF ,1. The density differences between the pairs of mixture

distributions are indicated by the black solid and black dashed

lines. There is only one black dashed line visible because in this

simulation two of the three density differences completely overlap.

This reflects the choice of a mixture proportion of .5, which results

in a mixture distribution that differs equally from both base

distributions. The red dashed lines indicate the density differences

for the shifted data set. Figure 4F clearly shows that the crossing

points of the shifted data sets differ (i.e., the simulated RT at which

the density differences are 0 differs). For the mixed data set, the

crossing points are identical (the simulated RT at which the

density differences are 0 is the same).

Simulation 3: Sample size
Because both the power of a study as well as the type I error rate

depend on the sample size, we explored the impact of sample size

on the probability of finding the fixed-point property. To achieve

this, we simulated data from varying numbers of participants

(Simulation 3), as well as from varying numbers of observations

(Simulation 4). This way, both the sample size (the number of

participants) and the precision of the fixed point estimate (based on

the number of observations) can be considered. In the next

sections, we varied the width of the smoothing kernel used for

density estimation to study how this impacts the test statistics.

We simulated data for either 10, 50, or 100 participants, with

200 observations per condition. In this simulation we assumed two

normally distributed base distributions, with m1 = 0 and m2 = 1.5,

and an equal standard deviation of s = 1. The mixture

proportions were .1, .5, and .9. We performed Bayesian ANOVAs

Figure 3. Averaged density, density differences, and crossing points for Simulation 1. Averaged density (A), density difference curves (B),
and boxplots for the distributions of crossing points (C) for the data from Simulation 1.
doi:10.1371/journal.pone.0106113.g003
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to assess the evidence for the fixed-point property and compute

standard repeated measures ANOVAs. This was repeated 10,000

times to obtain a stable estimate of the Bayes factor and the F

statistic. Figure 5 presents the results of Simulation 3. Figure 5A

presents the mode of the Bayes factor in favor of the null

hypothesis; Figure 5B presents the mode of the F value from the

frequentist analysis; Figure 5C presents the root mean squared

deviation (RMSD) of the crossing points, indicating how precise

these are estimated. Clearly, both Bayes factors and F values are

not affected by the width of the smoothing kernel above a

reasonable lower bound of roughly h = 1 SD. However, as the

sample size increases, the Bayes factors become more extreme.

This can be seen by the different lines, indicating different

numbers of simulated participants. Thus, a larger sample size

means more confidence in the inference that a fixed-point is

present. Still, even for as few as 10 participants, the method can

still reliably infer the fixed-point property, with an averaged Bayes

factor in favor of the null hypothesis of 4.5.

Figure 5C shows that the sample size does not affect this

average precision of the crossing-point estimates, as the lines for

different sample sizes overlap. This is because the precision of the

crossing-point estimates is crucially determined by the number of

observations per participant, as the number of observations is what

determines how reliable the density function is estimated.

Simulation 4: Number of observations
Simulation 4 was set up in a similar way as Simulation 3. That

is, again 10,000 simulations were performed, while generating

data from distributions with the same properties. The difference

lies in the ratio between the number of samples and the number of

observations. The number of samples in Simulation 4 was kept

constant at 50, while the number of observations per condition

varied from 100, to 200, to 500. Figure 6 presents the results of

Simulation 4, in which the number of observations per condition is

varied. Similar to Simulation 3, the standard deviation of the

Gaussian kernel does not influence the results above a lower

bound of approximately h = 1 SD. A limited set of observations

leads to a larger error in estimating the crossing points (Figure 6C),

which in turn results in Bayes factors and F statistics that represent

greater uncertainty (Figure 6A–B), although these differences are

minor.

Application: The fixed-point property in task
switching

As an illustration of how the fp package can easily be applied to

test the prediction that a binary mixture distribution underlies the

data, we studied the ‘‘failure-to-engage’’ hypothesis of task

switching (FTE, [3]). Task switching typically involves two or

Figure 4. The range of base distributions for which the fixed-point property can be computed (Simulation 2). (A) Bayes factors for
mixture data (solid black line) and shifted data (dashed red line). (B) F-values for mixture data (solid black line) and shifted data (dashed red line). (C)
The average differences between the crossing points for mixture data (solid black lines) and shifted data (dashed red lines). (D) Base distributions of
Simulation 2. Solid line represents Process 1, dashed lines represent alternatives of Process 2. In particular, the dashed lines represent the smallest d’,
the largest d’, and the smallest d’ for which the BF of the shifted distribution is larger than 1. (E) .5 mixture distribution (solid black line) and the
middle shifted distribution (dashed red line) for the smallest d’ for which the BF of the shifted distribution is larger than 1. For reference, the base
distributions are also displayed (dotted lines). (F) Density differences of the three observed mixture distributions (black lines) and the three observed
shift distributions for the smallest d’ for which the BF of the shifted distribution is larger than 1. The solid black line represents the density difference
between the base distributions, which is equal for the mixture and shift data. Because the mixture proportion is .5, the density differences of the base
distributions with the third distribution are equal and the dashed black line represents both.
doi:10.1371/journal.pone.0106113.g004
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more tasks that alternate in a sequence of trials, such that

participants either have to perform the same task on consecutive

trials (the second trial is referred to as a non-switch trial) or

perform different tasks on consecutive trials (i.e., switch trials).

Numerous studies have shown that switching between tasks

involves a cost in terms of increased response times for switch

trials relative to non-switch trials (e.g., [3,31,32]). To some extent,

this effect remains even if the upcoming task is known in advance

and there is ample time to prepare. This effect is referred to as the

‘‘residual switch cost’’ [32].

The FTE hypothesis explains residual switch costs by proposing

that task preparation only occurs on a subset of trials. That is, on

some trials participants fail to prepare for the new task, leading to

additional time costs when executing the task. Formally, the FTE

hypothesis thus proposes that the RT distribution of switch trials is

gswitch(t)~p : fengaged(t)z(1{p) : fnot engaged(t):

Here, p refers to the proportion of trials on which participants

fail to prepare and fengaged and fnot engaged refer to the RT

distributions of prepared and not prepared trials, respectively.

Methods
De Jong ([3], Experiment 2) asked 20 participants to perform

two tasks sequentially. The sequence was such that there was

always a task repetition followed by a task switch (i.e., an

RRSSRRSS sequence). Thus, participants knew in advance

whether a task switch would occur. There were two manipulations

in the experiment that are important for our current purposes: (1)

There was a variable response to stimulus interval (RSI) that could

be either short (150 ms), medium (600 ms), or long (1500 ms). The

rationale was that this manipulation allowed less or more task

preparation on switch trials. In terms of the FTE hypothesis, this

should influence the mixture proportion p. Here, following De

Jong [3], we compared the non-switch trials with the long RSI, the

switch trials with the long RSI, and the switch trials with the short

RSI. (2) Half of the subjects received short blocks (100 blocks of 12

trials), whereas the other half of the participants received long

Figure 5. Bayes factors, F statistics and precision as a function of sample size and kernel width. Bayes factors (A) and F statistics (B) differ
with sample size (lines) and the standard deviation of the Gaussian kernel. (C) The precision of the estimated crossing points does not vary with
sample size. samp: sample size (i.e., the number of participants).
doi:10.1371/journal.pone.0106113.g005

Figure 6. Bayes factors, F statistics and precision as a function of the number of observations and kernel width. Bayes factors (A) and F
statistics (B) differ with the number of observations (lines) and the standard deviation of the Gaussian kernel. (C) The precision of the estimated
crossing points varies with the number of observations. obs: the number of observations (i.e., repeated measures).
doi:10.1371/journal.pone.0106113.g006
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blocks (12 blocks of 96 trials). De Jong [3] argued that the block

duration should affect the proportion of trials on which

participants fail to prepare, due to the mental effort associated

with maintaining the task sequence [33]. Again, this should

influence the mixture proportion p. We refer to De Jong [3] for a

detailed description of the task.

For each participant, we first estimated density functions for

each RSI condition, with a smoothing kernel SD of 0.1 s. Next,

the difference between these densities was computed as well as the

crossing points. (Bayesian) mixed-design ANOVAs are used to

infer the presence or absence of the fixed-point property. In

particular, a mixed-design ANOVA model was fit to the data with

block as a between-subject factor and RSI as a within-subject

factor. Next, the fit of this model against a model that omits each

factor separately results in a Bayes factor indicating the likelihood

that a particular factor is required to explain the data [24]. To

place these results into the perspective of Simulation 2, we also

computed the average d9 across participants, under the assumption

that the non-switch trials with the long RSI and the switch trials

with the short RSI constitute the base distributions comprising the

mixture [3].

Results
The FTE hypothesis predicts that there exists a fixed-point in

the data. In particular, the RT distributions of the three different

RSI conditions that we compared should have a common fixed

point, as well as the RSI conditions across the between-subject

block duration manipulation. Figure 7 visualizes that indeed the

fixed point property holds in this data set. A Bayesian mixed-

effects ANOVA shows that the Bayes factors of the main effect of

RSI were BFRSI = 0.29 (the data is 3.4 times more likely under the

null hypothesis than under a model that includes RSI as a factor)

and BFRSI 6 block = 0.27 (the data is is 3.7 times more likely under

a model without the interaction – but with main effects – than

under the full model with RSI, block and the interaction). A

classical mixed-effect ANOVA with block length as between-

subjects factor and RSI as within-subjects factor indeed does not

find support for the alternative hypothesis (FRSI(2,36) = 0.78,

p = 0.47, FRSI 6 block(2,36) = 0.28, p = 0.76). In addition, there was

no clear effect of the block duration (BFblock = 0.51), suggesting

that the data is only 2.0 times more likely to come from a model

without block duration than with block duration (A standard

frequentist test yields Fblock(1,18) = 2.8, p = 0.11).

The average d9 for the short blocks was 1.30 (SE = 0.093) and

the average d9 for the long blocks was 1.09 (SE = 0.16). For both

block durations, the average d9 is in the range for which a high BF

in favor of the fixed-point property is indeed an indicator of binary

mixture data, rather than alternative hypotheses such as shifted

data.

Figure 7. Averaged density, density differences, and crossing points for De Jong (2000), Experiment 2. Averaged density (A, D) density
difference curves (B, E), and boxplots for the distributions of crossing points (C, F) for the data from De Jong (2000), Experiment 2. The top row (A, B,
C) shows the short blocks, the bottom row (D, E, F) shows the long blocks.
doi:10.1371/journal.pone.0106113.g007
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Discussion
The results of the fixed-point analysis on the data of Experiment

2 of De Jong [3] generally support the FTE hypothesis. That is, the

prediction that the different RSI and block durations have

different mixture proportions of the RT distribution of switch

trials is supported because we confirmed that the fixed-point

property holds in the data. The finding that the crossing points

differed between the block duration groups could be due to

randomization failures, or general processing differences in the

two groups that are unrelated to the mixture proportion. However,

if the fixed-point property would have been confirmed in one

group but not the other, then the RSI 6 Block duration

interaction would have been significant, and the Bayes factor of

the full model against the model that omitted the interaction

would have been larger then 1. Therefore, for both block duration

conditions there is considerable support in favor of the fixed-point

property. As the FTE hypothesis predicts this specific and

nontrivial property, these results support the FTE hypothesis.

General Discussion

The fixed-point property in binary mixture data is an interesting

prediction for many theories in cognitive psychology that assume

mixtures of processes. If the mixture proportions are experimen-

tally manipulated, then it can be easily verified whether the fixed-

point property holds in the data. This paper has outlined how this

can be achieved. Accompanying this paper is an R package called

fp that implements the computation and test of the fixed-point

property. The package can be retrieved from http://www.

leendertvanmaanen.com/fp, and is available as supporting infor-

mation with this article.

In a series of simulations, we tested the method proposed here as

well as the R package, and found that it can successfully

distinguish between data sets from binary mixture distributions

and data sets with other but comparable differences in RT. In

particular, we tested the method on a data set in which three

distributions were shifted relative to each other (instead of mixed),

and found that for large enough d9 values, the fp method found

evidence against the fixed-point property. If a shift in the data is a

reasonable hypothesis, then the fp method can be used to compute

a likelihood ratio. In this case, other methods to distinghuish

between mixture data and shifted data become available as well

[22,34]. However, in the absence of a specific alternative

hypothesis, the fp test provides the likelihood of a fixed-point

property in the data, which can be indicative of binary mixture

distributions.

Furthermore, the test is robust against variations in the

Gaussian kernel standard deviation, which determines the

smoothness of the estimates density functions. When the standard

deviation of the kernel was set at a suitably high value exceeding

one standard deviation, the results remained comparable. How-

ever, there is a practical limit on increasing the kernel SD. If the

SD is too large, the density estimate oversmoothes important

properties of the RT distribution related to bimodality. The test is

also reasonably robust against low number of observations and

small sample sizes such that it can be applied to relatively small

data sets.

Finally, to show the applicability of the fixed-point property test,

we analyzed data from De Jong [3]. The data was collected to

support the FTE hypothesis, which assumes that response time

distributions of task switch trials are a binary mixture of trials on

which participants prepare for the upcoming task, and trials on

which they fail to prepare. The two experimental manipulations in

the experiment were aimed at changing the mixture proportion,

making the data suitable for studying the fixed-point property. The

results of our fixed-point analyses align with De Jong’s [3] original

conclusions, and are in support of the FTE hypothesis.

These simulations and analysis of an existing data set

demonstrate that the fixed-point property, and the fp package,

can be a valuable tool in the statistical toolbox of cognitive (neuro-)

scientists.

Supporting Information

R code S1 Downloadable fp package.
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