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Abstract

To assess the functional capacities of microbial communities, including those inhabiting the human body, shotgun
metagenomic reads are often aligned to a database of known genes. Such homology-based annotation practices critically
rely on the assumption that short reads can map to orthologous genes of similar function. This assumption, however, and
the various factors that impact short read annotation, have not been systematically evaluated. To address this challenge, we
generated an extremely large database of simulated reads (totaling 15.9 Gb), spanning over 500,000 microbial genes and
170 curated genomes and including, for many genomes, every possible read of a given length. We annotated each read
using common metagenomic protocols, fully characterizing the effect of read length, sequencing error, phylogeny,
database coverage, and mapping parameters. We additionally rigorously quantified gene-, genome-, and protocol-specific
annotation biases. Overall, our findings provide a first comprehensive evaluation of the capabilities and limitations of
functional metagenomic annotation, providing crucial goal-specific best-practice guidelines to inform future metagenomic
research.

Citation: Carr R, Borenstein E (2014) Comparative Analysis of Functional Metagenomic Annotation and the Mappability of Short Reads. PLoS ONE 9(8): e105776.
doi:10.1371/journal.pone.0105776

Editor: Cynthia Gibas, University of North Carolina at Charlotte, United States of America

Received March 17, 2014; Accepted July 25, 2014; Published August 22, 2014

Copyright: � 2014 Carr, Borenstein. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by New Innovator Award DP2 AT007802-01 to EB and by NIH P30 DK089507. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: elbo@uw.edu

Introduction

Metagenomics, the study of uncultured microorganisms through

the analysis of genomic material obtained directly from environ-

mental samples, has been used to study the structure, function, and

dynamics of microbial communities. These studies allowed us to

gain a deeper understanding of the tremendous diversity of

microbes in various environments [1–3], the complex structure of

the communities they form [4], and the crucial impact they have

on the surrounding environment [5]. Amongst the numerous

communities explored by metagenomics-based methods, studies of

the human microbiome have been especially exciting, allowing us

to characterize the previously unmapped composition of this

complex ecosystem [4,6–8] and to link compositional shifts in the

microbiome to multiple diseases [6,9–11].

While earlier studies focused mainly on the composition of

species in the community, nowadays, many metagenomic studies

take a gene-centric approach and further aim to characterize the

overall functional profile of the community through shotgun

metagenomics. In such studies, shotgun sequencing reads are

mapped to a database of orthologous gene groups (e.g., KEGG

[12], COG [13], EggNOG [14], M5NR [15], Metacyc [16]) to

identify matches to genes or proteins with known and annotated

functions. Notably, it is the biological function of the identified

homologous gene rather than the taxonomic identity that is sought

in such an analysis. Accordingly, mapping is most often done with

a translated BLAST search to identify high-scoring (though

potentially evolutionarily distant) alignments indicative of orthol-

ogy [17]. By tracking the number of reads that map to each gene

family or orthology group, the functional profile of the

metagenome can be obtained, providing insight into the functional

capacity of the community as a whole [4,7,11,18–20]. This

annotation process and the estimation of the number of reads that

map to each function is a crucial step in comparative metagenomic

studies and in the discovery of functional shifts associated with

disease, as it is the foundation of all such analyses.

A critical assumption behind this annotation scheme and the

key to accurately recovering the functional profile of the

metagenome is that short sequencing reads contain enough

information to unambiguously map to the correct function. Put

differently, these annotation protocols assume that each read will

be mapped to either its gene of origin (if, for example, a genome

closely related to the one from which the read originated were to

be present in the database) or to an orthologous gene from a

potentially distant genome annotated with the same function.

These protocols further assume that reads originating from

intergenic regions or from orthology groups with unknown

function (e.g., functions not represented in our database) will not

be erroneously mapped to any of the functionally annotated genes

in our database. These assumptions are essential both for

estimating the relative abundance of each function (or gene) in

the community and for determining the presence or absence of

gene families or other functional modules of interest. To date,
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however, no comprehensive and systematic analysis has evaluated

these assumptions on a large scale, nor have protocols for this

annotation procedure been standardized. The lack of such a

systematic analysis makes the results presented in many metage-

nomic studies hard to assess and interpret and challenges any

attempt to compare functional analysis across different studies.

Notably, the assumptions above and the annotation of short

reads are still important even when some preprocessing (e.g.,

clustering [21,22] or assembly [4,6,23,24]) or post processing (e.g.,

pathway-level analysis or network reconstruction [20,25]) are

involved. Specifically, when short reads are clustered or assembled

into contigs and whole genes are called and annotated, direct

short-read annotation can still be used to annotate the potentially

sizeable number of unassembled reads (e.g. ,50% of reads from

human microbiome samples [6,26]). Moreover, even when reads

are assembled into contigs, direct functional annotation is often

still performed independently for all short reads to obtain an

unbiased functional abundance profile for the entire sample [4].

Similarly, when estimating pathway coverage and abundance,

even though the integration of annotation data from multiple

reads, gap filling methods, and subnetwork scoring schemes can

improve the accuracy of the obtained functional profile, the

accuracy of the annotation of individual reads will clearly impact

any downstream analysis. More generally, characterizing the

information content of short reads and their mappability to gene

families and functions goes beyond addressing questions concern-

ing the applicability of short read annotation practices and may

help elucidate profound and fundamental properties of microbial

genomes.

Here, we address this challenge and perform a large-scale and

systematic evaluation of homology-based functional annotation of

short reads. We aim to uncover the impact of various technological

and biological factors affecting the resulting annotation profiles, to

compare common annotation protocols, and, more generally, to

investigate the intrinsic mappability of such short reads. We focus

primarily on annotation protocols that use translated BLAST.

Direct translated BLAST searches of short reads for functional

homology is a common strategy in microbiome research

[4,7,11,17–20], and was one of the key methods used by the

Human Microbiome Project (HMP) for sample annotation [4,20].

Tools promoted by this project (e.g., [20]) further relied on such

BLAST alignments as input and are becoming the de facto
standard in human microbiome research. To date, however, there

has been no in-depth analysis of the systematic biases inherent to

these homology-based annotation protocols and their many

variations found in the literature. Our study, accordingly, seeks

to provide a benchmark, demonstrating what can be expected of

such annotation strategies, what their strengths and weaknesses

are, and what biases can be expected in the functional annotation

profiles obtained by such protocols.

To this end, we have constructed a large-scale database

containing more than 143 million simulated shotgun sequencing

reads spanning more than 500,000 microbial genes and 170

curated and annotated genomes. Each read was annotated using

common metagenomic protocols, and the obtained annotations

were carefully analyzed at various scales, from the single-read level

to the entire dataset level, to investigate the different factors that

affect the accuracy of the obtained annotations. We took

advantage of the fact that BLAST-based annotation maps each

read to the database independently to analyze the annotation

obtained for each read in the context of the genome from which it

originated, fixing in place any genomic and phylogenetic

characteristics that might bias the annotation process and allowing

us to accurately characterize the impact of such characteristics

across the bacterial and archaeal tree of life. This approach

additionally allowed us to test the importance of the phylogenetic

coverage of the database (i.e., the relation of the strain in question

to those present in the database) to the annotation process. We

further rigorously examined the impact of sequencing error, read

length, phylogeny, copy number, annotation protocol, and

BLAST parameters. Finally, we examined the effect of different

annotation protocols on the functional profile obtained for HMP

metagenomic samples, and assessed the performance of an

alternative alignment strategy. Overall, this extensive analysis

provides a first comprehensive assessment of functional metage-

nomic annotation, quantifying gene orthology group-specific,

genome-specific, and protocol-specific annotation biases and

suggesting goal-dependent best-practice guidelines.

Results

Reference genomes, simulated short reads, and
annotations

We collected curated reference genomes of 170 microbial

species spanning 23 phyla and 89 genera across the bacterial and

archaeal tree of life (Table S1). Curated annotations of these

genomes were obtained from the KEGG database [12] to identify

protein-coding genes and their associated KEGG Orthology (KO)

annotations. The total number of genes and the number of KO-

associated genes (‘KO genes’) vary significantly across genomes

(Table S1). For example, the genome of E. coli O157:H7, a well-

characterized strain, was annotated with 5477 protein-coding

genes, of which 2999 were KO genes (55%), while the genome of

B. thetaiotaomicron, a human commensal bacterium, had 4816

protein-coding genes, of which only 1365 were KO genes (28%).

The genome of S. pneumoniae ATCC 700669, which we analyze

in detail below, was also relatively well characterized, with 55% of

its protein-coding genes mapped to KOs. The phylogenetic
coverage of these genomes in the KEGG database also vary

significantly, with some having as many as 51 genomes from the

same species (E. coli) and as many as 79 in the same genus (S.
pneumoniae), while other genomes were the only representative of

their genus in the database.

From these genomes we generated an extremely large-scale

database of simulated short sequencing reads, including 179

unique short read datasets totaling more than 15.9 Gb (Table S2).

Specifically, we used a sliding window approach to generate short

reads of a given length from each of the genomes above. For some

genomes, every possible 101-bp read was generated (Figure 1a). As

described below, additional datasets were also generated to

examine the impact of read length and sequencing error on the

annotation process (Table S2). The origin of each read was

recorded to note whether it originated from a KO gene, a non-KO

gene, or an intergenic region. These reads were then mapped to

the KEGG database using the blastx protocol employed by the

Human Microbiome Project (HMP) [4,20] and annotated

according to the identified matches. To evaluate the accuracy of

the annotation process, obtained annotations were compared to

the annotation of the region in the curated genome from which

each read originated (Figure 1a). Complete details of the methods

used are provided in Methods.

A best-case scenario for functionally annotating short
reads

We first analyze an ideal case for annotating short shotgun

metagenomic sequencing reads, wherein reads originated from

strains that have been sequenced, are well-annotated, and are

present in the reference database. We used the set of every possible

Comparative Analysis of Short-Read Functional Metagenomic Annotation
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S. pneumoniae read, described above, and annotated each read

using a typical BLAST-based protocol (see below and Methods).
Overall, we found that the obtained annotation accurately

described the S. pneumoniae strain’s known functions with little

error (Figure 1b). Specifically, KO annotations had 96.9%

precision, suggesting that only a few reads from non-KO genes

or from intergenic regions were incorrectly assigned a KO and

that only a few reads from KO genes were assigned the wrong

KO. Moreover, the annotation of reads originating from a KO

gene had a 94.7% recall, indicating that, generally, reads

originating from such genes were correctly identified. Importantly

however, in the majority of cases, while the correct KO was

recovered, the annotation process could not accurately identify the

specific gene of origin, as reads often matched equally well to

homologous genes from multiple other strains (Figure 1b). The

prevalence of such tied matches is at least partly an outcome of

using a translated BLAST search which identifies matches at the

peptide level, allowing divergence in the nucleotide sequence. This

lack of specificity is a clear benefit of the translated BLAST

approach in functionally annotating short reads, but comes at the

cost of inaccurate taxonomic classification, for which marker gene

approaches are better suited [27–29].

The impact of sequencing errors and read length
Importantly, one of the key goals of this study is to characterize

the information contained in short DNA fragments in terms of the

function of the gene from which they originated. We therefore

focused on the potential mappability of short reads and largely

ignored artifacts introduced by specific sequencing technologies.

Yet, to confirm that such technology-derived factors do not

dramatically affect our findings, we examined the impact of typical

sequencing errors on the annotation process. To this end,

experimentally derived Illumina error profiles were added to the

set of 101-bp S. pneumoniae reads with error rates of 0.15%,

1.5%, and 3% to generate 3 new datasets (Methods). Reads were

then annotated and analyzed as before. Overall, we found a

minimal change in the accuracy of the obtained annotations, with

comparable recall and precision levels to those observed without

sequencing errors, regardless of the error rate or phylogenetic

coverage (Table S3).

Thus far, our analysis has been restricted to 101-bp reads – a

common length for Illumina sequencing reads and the length

generated by the HMP [26]. However, various sequencing

technologies (e.g. Roche 454 Genome Sequencer, Pacific Biosci-

ences, as well as newer Illumina protocols) can now generate

longer reads, and in general, it is likely that available high-

Figure 1. Overview of the analysis scheme. (a) Simulated sets of reads of length L are generated from curated and annotated reference
genomes using a sliding window approach. The origin of each read is recorded, and reads are labeled to note whether they originated from genes
associated with a KO (purple), from genes not associated with a KO (green), or from an intergenic region (gray). Each read is then annotated through
a translated BLAST search against the KEGG database and the obtained annotation is compared to the annotation of the genome region from which
the read was derived, to evaluate whether the correct gene and/or correct KO were recovered. (b) Evaluating the annotation of the S. pneumoniae
genome. The inner ring represents the proportion of the genome annotated with KO genes, non-KO genes, and intergenic regions. The outer ring
illustrates how reads originating from each such category were annotated, illustrating the accuracy of the annotations obtained by a BLAST-based
search.
doi:10.1371/journal.pone.0105776.g001

Comparative Analysis of Short-Read Functional Metagenomic Annotation

PLOS ONE | www.plosone.org 3 August 2014 | Volume 9 | Issue 8 | e105776



throughput reads will continue to increase in length as sequencing

technologies mature. To examine the effect of read length on the

performance of a typical translated BLAST-based annotation

protocol, we generated 5 additional simulated datasets from the S.
pneumoniae genome with read lengths of 75, 150, 200, 300, and

400 bp (Table S2). Annotating and analyzing these datasets using

the same protocols as before, we found, not surprisingly, that read

length significantly influences the annotation process. Specifically,

for reads originating from within KO genes, the recall increased

with read length, while the precision decreased (Table S3).

Including all reads overlapping KO genes, recall begins to

decrease with read length for reads longer than 150 bp (Figure

S1b). Furthermore, the choice of annotation protocol (see below)

significantly affects annotation performance for longer reads

(Table S3). Current protocols were developed mostly for 101-bp

or shorter reads and consequently commonly used alignment

cutoff values (e.g., E-value,1) may be too permissive for longer

reads, leading to spurious annotations and reduced precision (Text

S1 and Figure S1). Examining the E-value distributions obtained

for longer reads demonstrated that as expected, for a fixed E-value

cutoff, precision decreases with read length (Figure S1a, Figure

S2). Moreover, length-dependent cutoff values can be determined

to increase the annotation precision with a relatively small

decrease in recall (Text S1).

The impact of phylogenetic coverage of the reference
database

Clearly, in many — if not most — cases, the actual strains from

which the sampled microbial reads originate are not represented in

the reference database. In fact, in many environments, the

community may include strains from species, genera, or even

higher taxonomic levels that are not at all covered by reference

genomes [30]. It is therefore crucial to test the robustness of the

annotation process in such scenarios and to assess how well short

reads can be functionally mapped in the absence of closely related

references. To this end, we re-annotated the set of short reads

derived from S. pneumonia described above, but with the

corresponding (i) strain, (ii) species, or (iii) genus removed from

the database (Methods). We found that predicted annotations

decreased in accuracy with phylogenetic coverage as expected

(Figure 2a). However, as long as genomes from the genus

Streptococcus were present in the database, the impact on the

annotation process was relatively minimal. In contrast, when all

genomes from the genus Streptococcus were removed from the

database, the recall fell to 70.7%.

Notably, S. pneumoniae is well covered by our database, which

contains 18 genomes from this species and 79 genomes from the

genus Streptococcus. To determine whether the results described

above could be generalized to other bacterial and archaeal species,

we performed the same analysis for 4 additional species:

Bacteroides fragilis, Escherichia coli (both human commensal

bacteria), Synechococcus elongatus (a freshwater cyanobacterium),

and Methanococcus maripaludis (a marine archaeon). The impact

of phylogenetic coverage for these 4 species is generally consistent

with that seen in S. pneumonia, with overall high recall and

precision for mapping reads from KO genes when the strain is

present in the database and a decrease in performance with

decreasing phylogenetic coverage (Figure 2b). However, the exact

decrease and the coverage at which accuracy dropped significant-

ly, vary from species to species. For example, the recall for

annotating S. elongatus drops dramatically even after the removal

of all the species genomes from the database, although other

members of this genus are still present in the database. Additional

results for the impact of phylogenetic coverage across a large array

of microbial organisms are presented below (and in Figure 3).

Annotation accuracy across the tree of life
To fully explore the effect of phylogeny on translated BLAST-

based short read annotation of bacteria and archaea, we

performed the same analysis for an additional 165 organisms

across the bacterial and archaeal tree of life (Figure 3). For one

organism from each phylum, every possible 101-bp read was

simulated, and for the remaining organisms every 10th possible

read was simulated (i.e., using a sliding window with 10-bp jumps).

We found that the precision for identifying reads from KO genes

was generally consistent across the tree (average precision

0.9560.03), but the recall appears to be clade specific (Figure 3).

Furthermore, the effect of the phylogenetic coverage of the

database on recall also varied significantly from clade to clade.

Interestingly, while some of this variation could be attributed to

the availability of reference genomes closely related to the clade of

interest (e.g. Escherichia, Shewanella), some of the variation is

clearly attributed to natural divergence within the clade. For

example, as mentioned above, the annotation of reads from a

Synechococcus elongatus genome is relatively poor when elongatus
species are removed from the database even when other genomes

from the same genus are present. This is possibly because the

genus Synechococcus contains both freshwater and marine species,

and S. elongatus, a freshwater species, has diverged significantly

from the marine species included in this clade. Such clade-specific

variations should be taken into account when annotating short

reads from relatively less well studied clades.

Comparison of annotation protocols
In most studies, the translated BLAST search is only the first

step in the annotation process and one of a variety of protocols is

then used to analyze the obtained set of alignments (i.e., those that

satisfy a predefined threshold) and to determine the annotation

that will be assigned to each read. For our analysis in the previous

sections, we used the ‘top gene’ protocol, assigning each read with

the gene annotation of the top-scoring alignment(s). This is a

common protocol that has been used in many previous studies

(e.g., [7,18,31–33]). Other studies, however, apply different

protocols, such as assigning the annotation of potentially sub

optimal alignments to enrich for functional annotations [19], or

averaging over multiple high-scoring hits (e.g., [4,20]). In this

section, we therefore compared the top gene protocol with three

additional protocols: The ‘top KO’ protocol aims to maximize the

number of annotated reads, assigning the read with the annotation

of the top-scoring alignment to a KO gene, even if better

alignments have been found to other non-KO genes in the

database. This is analogous to performing a search only against

genes with known orthology groups (e.g., COG [13], EggNOG

[14]). The ‘top 20 genes’ protocol seeks to correct for annotation

errors and mismatches, using the annotation of the top 20

alignments weighted by their E-values. Finally, the ‘top 20 KOs’
protocol combines these two approaches, using the same top 20

alignments but considering only those that align to KO genes,

weighted by E-value [20]. A detailed description of these protocols

is provided in Methods.
To evaluate these annotation protocols, we examined the set of

annotations obtained by each protocol for each of the 170 strain-

derived datasets described above, calculating the precision and

recall in each case (Table S3). We found marked differences

between the performances of these four protocols, highlighting the

impact of annotation methodology on downstream results.

Specifically, when the strain from which the reads originated

Comparative Analysis of Short-Read Functional Metagenomic Annotation
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was removed from the BLAST database, the top gene protocol

reached higher precision than any of the three other protocols in

almost every dataset, with the top 20 genes protocol being a close

second (Figure 4a). Yet, this high precision comes with slightly

lower recall, and when higher recall is desired, the top KO or top
20 KOs are better choices (Figure 4b). These patterns hold

regardless of the phylogenetic coverage of the database (Table S3).

Generally, however, it appears that protocols that consider only

alignments to KO genes (e.g., top KO and top 20 KOs) suffer a lack

of precision in return for a slightly higher recall. This tradeoff

between precision and recall can have a significant impact on

downstream analysis and should be considered when designing a

metagenomic analysis pipeline with a specific goal.

Evaluating the annotation profile obtained for complete
sets of reads

As discussed above, a BLAST-based search independently maps

each read to the reference database, and in the previous sections,

we therefore focused on the ability of such a process to correctly

recover the annotation of any single read. In practice, however,

the various annotations obtained for the set of reads in a given

sample are commonly analyzed jointly, as the overall functional

profile of the metagenome is of more interest than the annotation

of individual reads. In this context, erroneous annotation of

individual reads may be acceptable as long as the combined

annotation profile is relatively accurate. The accuracy of this

combined profile may be especially important when downstream

integrative analyses or pathway-level reconstructions (e.g., [20])

are performed. In this section we accordingly examined the

annotation profile obtained for a complete set of reads by

aggregating the counts calculated for each KO across all reads

in each 101-bp dataset (Table S3; Methods). We then compared

these aggregated counts to the KO profile of the genome from

which each dataset was derived. Since copy numbers are a more

intuitive measure than relative abundances, we further translated

these aggregated KO counts into copy number estimates by

normalizing KO counts by the length of the gene and dividing by

the average normalized counts of 15 highly-conserved single-copy

genes (Methods; [34]). By examining the predicted copy number of

each KO in each dataset and comparing it to the actual copy

number of the KO in the corresponding genome, we found that

direct short read annotation successfully distinguished KOs with

different copy numbers (Figure 5a). Predicted copy numbers were

distributed normally around the expected value, with greater

deviation for higher copy numbers, as expected for a constant

error rate per read. This analysis, however, also illustrates the

relatively high rate of false predictions, wherein KOs that are in

fact absent from the sample are predicted to be present. To

determine how accurately the recovered KO abundance profiles

reflected the actual KO abundance in each dataset, we calculated

the Jensen-Shannon distance between the predicted and actual

distributions of KO copy numbers, comparing the performances

of the 4 protocols described above. We again found that the top
gene protocol had the most accurate representation of KO copy

numbers, regardless of phylogenetic coverage (Table S3; paired t-

test; Methods).
Having characterized the mappability of .143 million reads

originating from many different genomes and associated with

thousands of different orthology groups (KOs), we finally

examined the variability in the recall of reads originating from

Figure 2. The impact of phylogenetic coverage of the database on the performance of a translated BLAST-based annotation. (a) The
inner ring represents the proportion of the S. pneumonia genome annotated with KO genes, non-KO genes, and intergenic regions, as in Figure 1.
Outer Rings illustrate the annotations for reads from each such category obtained with varying levels of phylogenetic coverage, ranging from having
the strain from which the reads originated present in the database, to having only other genomes from the same species, genus, or higher taxonomic
levels present. (b) The impact of phylogenetic database coverage on the annotation of B. fragilis, E. coli, S. elongatus, and M. maripaludis genomes.
doi:10.1371/journal.pone.0105776.g002

Comparative Analysis of Short-Read Functional Metagenomic Annotation
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different KOs. Such variability makes some KOs easier to identify

than others through short read annotation schemes, potentially

biasing the obtained functional profile of a metagenomic sample.

As demonstrated in Figure 5b, recall values across KOs are

relatively consistent and high for most KOs, with .88% of the

KOs in our analysis having .0.85 average recall. Yet a small

number of KOs have consistently low recall. To determine

whether poorly mapped KOs tend to be associated with specific

functions, we examined the KOs in the bottom 5% of recall. We

found that the pathways for lysine-, polycyclic aromatic hydro-

carbon-, bisphenol-, limonene and pinene-, aminobenzoate-, and

ethylbenzene degradation were all enriched in these poorly

Figure 3. The performance of BLAST-based annotation of short reads across the bacterial and archaeal tree of life. The phylogenetic
tree was obtained from Ref. [50]. Colored rings represent the recall for identifying reads originating from a KO gene using the top gene protocol. The 4
rings correspond to varying levels of database coverage. Specifically, the innermost ring illustrates the recall obtained when the strain from which the
reads originated is included in the database, while the other 3 rings, respectively, correspond to cases where only genomes from the same species,
genus, or more remote taxonomic relationships are present in the database. Entries where no data were available (for example, when the strain from
which the reads originated was the only member of its species) are shaded gray. For one genome in each phylum, denoted by a black dot at the
branch tip, every possible 101-bp read was generated for this analysis. For the remaining genomes, every 10th possible read was used. Blue bars
represent the fraction of the genome’s peptide genes associated with a KO; for reference, the values are shown for E. coli, B. thetaiotaomicron, and S.
pneumoniae.
doi:10.1371/journal.pone.0105776.g003

Comparative Analysis of Short-Read Functional Metagenomic Annotation
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mapping KOs (hypergeometric test at 0.05 FDR; Table S4). We

additionally computed the correlation between the obtained recall

values and various gene properties derived from the KEGG

database to gain insight into potential determinants of mappability

(Methods). We found that recall decreases for KOs with higher

variability in length and copy number, suggesting as expected that

low sequence conservation can lead to lower mappability [35], and

for KOs containing genes with high sequence similarity to genes in

other KOs (Table S4). This gene-specific variability should be

considered when analyzing the functional composition of meta-

genomes and when performing comparative metagenomic anal-

ysis. A list of these poorly mappable KOs, with the average recall

and precision obtained, can be found in Table S5.

Evaluating the impact of annotation protocols on
functional profiles obtained for HMP samples

In the analyses above, we have characterized translated-

BLAST-based annotation of short metagenomic reads through

the use of carefully controlled simulations. Such simulations allow

for the precise quantification of the accuracy and error in the

Figure 4. Comparison of annotation protocols for analyzing BLAST results. The (a) precision and (b) recall are illustrated for several
protocols for identifying reads originating from KO genes when the strain from which the reads originated is absent from the database. Genomes are
ordered by their precision and recall, respectively, using the top gene protocol.
doi:10.1371/journal.pone.0105776.g004

Figure 5. Performance of BLAST-based annotation in recovering the functional profile of a complete set of reads. (a) The probability
function of predicting the copy number of a given KO in a given dataset across all simulated 101-bp datasets using the top gene protocol and when
the strain from which the reads originated is absent from the database. Only KOs with copy numbers 1 to 4 are illustrated. The curve corresponding
to copy number 0 represents false positive KO predictions. The smaller peaks showing in some curves (e.g., the two extra peaks in the blue ‘‘1 copy’’
curve) were found to be due to stretches of intergenic reads that mismapped to KO genes in the database and likely reflect genomic misannotations
or pseudogenes. (b) The average recall across all simulated 101-bp datasets for identifying reads originating from each KO, ranked from highest to
lowest average recall. 95% confidence intervals are shown in green. Recall is calculated for the case where the strain from which the read originated is
absent from the database.
doi:10.1371/journal.pone.0105776.g005
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annotation process as a function of various biological and

technological parameters. In this section, we further explored

the impact of the four translated-BLAST based annotation

protocols described above on the annotation of real biological

samples and examined their impact on the obtained functional

profiles. To this end, we used these protocols to re-annotate 15

stool samples from the Human Microbiome Project (HMP) [4,26]

and translated the obtained KO abundance profiles to pathway

abundance profiles to determine whether the different protocols

led to discrepancies in the perceived pathway-level functional

profile of each sample and whether such an effect could mask real

biological signals (see Methods).
We first set out to compare the variation in the functional profile

introduced by the selection of a protocol to the natural variation in

functional profiles between different samples. We accordingly

calculated the Jensen-Shannon distances between the profiles

obtained by the different protocols for any given sample and the

Jensen-Shannon distances obtained for the various samples by any

given protocol. Importantly, we found that the inter-protocol

distances are on the same order of magnitude as the inter-sample

distances for any one protocol (Table S6). A similar pattern was

also observed for the KO abundance profiles (Table S6).

Moreover, performing a principal component analysis of the

calculated pathway abundance profiles, we found that the first

principal component separates samples mostly by annotation

protocol and that inter-sample variation is mostly captured only by

the second component (Figure 6). This pattern, wherein variation

introduced by protocol selection masks true biological variation

between samples, is analogous to a batch effect often observed

when mixing samples derived by different experimental proce-

dures. Finally, to demonstrate that these apparent protocol-

dependent discrepancies introduced consistent biases in pathway

abundances and could therefore impact downstream comparative

analysis, we examined which pathways appear to be differentially

abundant between the profile obtained by one protocol (‘top gene’)

and those obtained by other protocols. We found that in fact the

vast majority of pathways were differentially abundant between

protocols (Wilcoxon-signed rank test at 0.05 FDR; Table S7).

Combined, these findings clearly demonstrate that the choice of

functional annotation protocol plays a significant role in analyzing

a metagenomic sample and greatly impacts the obtained

functional profiles. More importantly, our analysis indicates that

inter-protocol variation is comparable to inter-sample variation,

suggesting that protocol choice can dramatically impact biological

interpretation, potentially obscuring real biological signals and

impeding downstream comparative analysis.

Comparison of alignment strategies
Functional annotation of short metagenomic sequencing reads

is most often performed with a translated BLAST search, which

aligns a nucleotide sequence to amino acid sequences using all six

possible nucleotide reading frames. As discussed above, this

alignment strategy sacrifices accuracy in taxonomic labeling of

the sequencing read for improved detection of potential protein

homology at longer evolutionary distances. While BLAST-based

alignments are likely to remain a viable option in coming years,

the growth of microbial genome collections, especially in the

context of specific environments, has rendered high-quality

alignment of sequencing reads directly to genomes an increasingly

attractive option for annotating reads. To further explore the

tradeoff between identification of function and identification of

taxonomy made by these protocols, we compared the performance

of translated BLAST to a commonly-used high-quality aligner

(BWA [36]), examining the obtained precision and recall of

functional annotation using a set of reference genomes at an

increasing evolutionary distance. To this end, we re-annotated the

set of short reads derived from S. pneumonia described above, but

with groups of genomes removed from the reference database

using a 16S-based distance cutoff (Methods, and Figure S3). As

expected, we find that at short evolutionary distances, BWA has a

marginally higher precision and recall than BLAST for identifying

KOs (Figure S4). Importantly, however, recall for BWA

approaches zero at longer evolutionary distances and its precision

drops dramatically once the number of Bacterial and Archaeal

genomes in the reference database is small, while translated

BLAST maintains a relatively high recall and precision (Figures S3

and S4).

Discussion

We have presented a systematic and comprehensive study of

BLAST-based functional annotation of short sequencing reads and

rigorously characterized annotation protocols commonly used in

metagenomic studies. We found that in general such direct

annotation of short reads accurately identifies both individual

reads and the functional profile of entire samples, but that there is

significant variability in annotation accuracy, with many factors

impacting the annotation process. For example, the obtained

accuracy is affected both by the phylogenetic coverage of the

database, with related genomes from the same genus being

necessary to accurately annotate most species, and by the

phylogeny of the strain in question, with the recall being strongly

clade-dependent. Read length was also found to play an important

role, with the permissive E-value thresholds appropriate for

identifying correct short-read alignments (Text S1 and Figure

S2) leading to a decreasing accuracy for longer (.200-bp) reads.

Once such longer-read technologies become widely available, new

strategies for read-based annotation will be necessary, including

length-dependent E-value cutoffs and, ideally, incorporating

additional methods, such as contig assembly and gene calling

[37–39]. In contrast, our analysis demonstrated that typical next-

generation sequencing error had little effect on annotation

accuracy, probably owing to the nature of translated BLAST

searches.

Taken together, our findings highlight the need to design a

study-specific pipeline, taking into account the goals of the study

and the relative importance of each bias in the annotation process,

such as the tradeoff between recall and precision. For example, a

comparative metagenomic study that aims to identify differentially

abundant genes or pathways in some disease (e.g., Refs.

[6,9,10,18]) requires an accurate estimation of gene abundances

and may apply a different annotation protocol compared to a

study aiming to reconstruct a metagenome-level metabolic

network (e.g., [40]) that requires accurate prediction of gene

presence. These tradeoffs, and the importance of specific

annotation parameters and protocols, may also account for

previously reported poor performances of homology-based anno-

tation of short reads in terms of both recall [41] and precision [35].

Our findings suggest that these could be partly rescued by, for

example, using a more permissive E-value cutoff to gain a higher

recall and using a broader database to gain high precision.

Specifically, annotation procedures using a reference database

containing only genes associated with known orthology groups

(such as COG), rather than representatives of all genes, effectively

use a ‘top KO’ approach which decreases precision.

Importantly, while the analysis presented here relied specifically

on KEGG genome annotations, the conclusions are likely

applicable to any gene orthology-based database. More generally,
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the functional annotation protocols evaluated here are clearly

based on the conjecture that sequence homology is an indicator of

shared function. This orthology–function conjecture has been

shown to hold as a general trend, but is also known to be false in at

least some cases [42]. Nonetheless, as demonstrated above, the

functional profiles estimated by such homology-based annotation

protocols clearly successfully reconstruct the overall functional

profile of the sampled community.

Notably, successors to short-read sequencing technologies, such

as long-read sequencing and single-cell genomics, are on the

horizon. When such technologies become standard components of

microbiome experiments, translated BLAST-based functional

annotation may no longer be the best option for estimating the

functional profile of a community. Translated BLAST alignments

also require relatively long runtimes compared to approaches like

BWA [36] or Bowtie [43] (though many specialized, efficient

implementations of BLAST have been recently introduced

[44,45]). These newer technologies, however, are still in their

early stages and at least several years will be required before they

are widely adopted. Furthermore, strategies for mapping short

metagenomic reads to reference genomes from highly-related

strains (e.g., BWA [36], Bowtie [43]) require near-complete

genome coverage of a microbial community to provide a reliable

community-level functional description. While it is likely that the

human microbiome will be relatively well covered within the next

decade, highly diverse and open environments such as the ocean

may never have complete genome catalogs. Translated BLAST-

based approaches, and more generally, homology-based annota-

tion protocols, therefore still represent a viable option for

functional characterization of metagenomic samples for years to

come.

Overall, our findings offer an improved understanding of

homology-based annotation capabilities and delineate the bound-

aries of metagenomic functional annotation practices. The clade-

dependent accuracy of the obtained annotation we observed above

highlights the pressing need to extend the collection of reference

genomes available and to capture a wider diversity of gene

orthology groups through efforts such as the Genomic Encyclo-

paedia of Bacteria and Archaea (GEBA) Project [46] and

especially the Microbial Dark Matter (MDM) project [47]. The

results and methodologies of our study can be used to pinpoint

particular phylogenetic branches for additional sequencing, such

as branches with consistently poor functional annotation that

suggest sparse coverage of representative sequences. Our findings

indeed demonstrate that including a diverse representation of

genera should be a priority for sequencing programs. Clearly, this

Figure 6. A principal component analysis of the pathway abundance profiles obtained for the 15 analyzed HMP samples and by the
four different annotation protocols. HMP samples are numbered from 1 to 15 according to the list that appears in Methods. The different
protocols are represented by color and shape. Note that two outlier protocols for sample 14 are not shown but were included in the PCA calculation.
doi:10.1371/journal.pone.0105776.g006
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need for diversity should be balanced with efforts to reduce the

complexity of the database (e.g., using representative sequences as

in the Pfam database [48]) and with improved characterization of

the link between sequence homology and shared function [42].

Ultimately, however such combined efforts, aiming to both

improve annotation practices and expand reference microbial

databases, will allow us to move toward a more accurate annotation

of metagenomic data and a more complete understanding of the

functional capacities encoded by microbial communities.

Methods

Simulating sequencing reads
Simulated sequencing reads were generated by sliding a fixed-

size window across complete genomes obtained from the KEGG

database (KEGG v. 63; July 2nd, 2012 weekly release) [12]. The

genome of Streptococcus pneumoniae ATCC 700669 (KEGG code

sne), was used to test the effects of read length and sequencing

error. Specifically, to test the effect of read length, 6 datasets of

simulated reads were created, including every possible read of

lengths 75, 101, 150, 200, 300, and 400 bp. The 101-bp dataset

was then used as the basis for simulating reads with sequencing

error rates of 0.15%, 1.5%, and 3%. To simulate this next-

generation sequencing error, a position-dependent error profile

created with Ibis [49] from an Illumina sequencing run with a total

error rate of 0.15% was applied and uniformly magnified to

achieve the desired error rate. To study the effect of phylogeny,

simulated sequencing reads were further generated from 167

bacterial and archaeal genomes included in the tree of life

constructed by Ref. [50] and from two additional human-

commensal genomes of E. coli and B. fragilis. See Table S1 for

a complete list of genomes used in this analysis. Organisms from

the tree of life of Ref. [50] were mapped to KEGG organisms first

by NCBI TaxID, and then by matching the strain name if the

NCBI TaxID did not match. Species for which more than one

KEGG organism existed were mapped to an arbitrary strain from

that species. One species, Gemmata obscuriglobus, did not have a

representative strain in KEGG and was not included in the

analysis. Sets of simulated reads consisting of every possible 101-bp

read were generated for the two human-commensal genomes and

for one organism from each of the 23 Phyla present in the tree

(resulting in .100-fold coverage). Alpha-, beta-, gamma-, delta-,

and epsilonproteobacteria were considered separate phyla in the

analysis. For the remaining 144 genomes, simulated reads were

generated representing every 10th possible sequencing read by

moving a sliding window over the genome at 10 bp jumps

(resulting in a .10-fold coverage). A complete list of the 178

datasets of simulated reads generated for this analysis is provided

in Table S2.

Mapping and annotating reads
To annotate the simulated reads, each sequencing read from

each dataset was aligned to a custom peptide database containing

the peptide sequences from all annotated KEGG organisms

(KEGG v. 63; July 2nd, 2012 weekly release [12]). To this end,

Translated Query-Protein Subject BLAST (blastx) v. 2.2.25+, with

standard parameters and accepting all matches with an E-value,1

(as done by the HMP [4,20]) was used (average execution time

7.609860.76247 s/read). To test the effect of low-complexity

sequence filtering on the obtained alignments, identical searches

were performed with SEG filtering [51] disabled for all error-free

S. pneumoniae datasets (see Text S1). To examine the impact of

the phylogenetic coverage of the database, additional BLAST

results were simulated by removing alignments to the correct

strain, species, or genus from the original set of BLAST

alignments. This is mathematically equivalent to a scenario where

database sequences from the corresponding strain, species, or

genus are replaced with non-matching sequences of identical lengths,

thereby preserving all database size-based metrics (e.g. E-value).

Once reads were mapped to the KEGG database, each read

was annotated according to the KEGG Orthology groups (KOs)

associated with the identified alignments. As described in the main

text, four different protocols were applied to determine which of

the potentially many alignments found would be used to annotate

the read: (i) ‘Top gene’ – the read was annotated based on the top-

scoring alignment (i.e., the alignment(s) with the smallest E-value),

regardless of whether this alignment was associated with a KO or

not. If several alignments were tied for the top score, all were used.

If the top scoring alignment(s) was not associated with any KO, the

read was annotated has having no result. (ii) ‘Top KO’ – the read

was annotated based on the top scoring alignment(s) that was

associated with a KO. Potentially better scoring alignments that

were not associated with a KO were ignored. (iii) ‘Top 20 genes’ –

the read was annotated based on the top 20 scoring alignments

(i.e., the up-to 20 alignments with the smallest E-values), regardless

of whether these alignments were associated with a KO or not. (iv)

‘Top 20 KOs’ – the read was annotated based on all alignments

that were associated with a KO among the top 20 scoring

alignments. In case of top scoring ties or in protocols where

multiple alignments were considered (i.e., top 20 genes or top 20
KOs), the read was annotated based on all the selected alignments

weighted by their P-value using the following formula:

wi~
1{PiP

j

1{Pj

ð1Þ

or

wi~
e{Ei

P

j

e
{Ej

, ð2Þ

where wi is the weight, Ei the E-value for annotation i, and

Ri~1E1 is the corresponding P-value. As the E-value denotes the

expected number of matches for an alignment of a given score in

the given database, and the P-value denotes the probability of

finding at least one match with at least this score in the database,

considering the P-value in this manner thus weights the matches

by their relative probabilities of occurring by chance. While this

weighting scheme was employed by the HMP, it was found that

the functional form of the weighting scheme and the alignment

parameter used (E-value, bit-score) had little effect on the

annotations [20]. If the collection of alignments were associated

with more than one KO, the read would therefore be annotated

with multiple KOs, each given a fractional count that summed to

unity. Notably, cases in which alignments not associated with a

KO were considered (e.g., in the top 20 genes protocol), these

alignments clearly did not contribute to the set of KOs with which

the read was annotated but were still considered in the weighting

scheme, thereby lowering the fractional counts given to the other

KO alignments.

Evaluating obtained annotations
To evaluate the accuracy of the annotation process, the

annotations obtained for each read were compared to the

annotations associated with the genomic region from which the

read originated. Specifically, each read could have originated from
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a KO gene (a gene associated with a KO annotation), a non-KO
gene (a gene with no known KO annotation), or from an intergenic
region. Reads that originated from multiple genomic categories

(e.g., reads that span both a gene and an intergenic region) were

excluded from the analyses as the ‘correct’ annotation was not well

defined. Repeating the analysis with such multiple-category reads

included by weighing the categories with the relative coverage

within each read did not qualitatively change the results reported

in the main text (Table S3; and see also Text S1 and Figure S5 for

an analysis of the mappability of partially overlapping reads).

Considering these categories, the set of alignments and annota-

tions obtained for each read could then be classified (Figure 1a).

Specifically, each alignment obtained for a read originating from a

KO gene could be classified as (a) correct gene and correct KO, (b)

incorrect gene but correct KO, (c) incorrect gene and incorrect

KO, or (d) incorrect gene that is not associated with a KO.

Similarly, each alignment obtained for a read originating from a

non-KO gene could be classified as (a) correct gene that is, as

expected, not associated with a KO, (b) incorrect gene that is not

associated with a KO, or (c) incorrect gene and incorrect KO.

Finally, an alignment obtained for a read originating from an

intergenic region could be classified as (a) incorrect gene and

incorrect KO, or (b) incorrect gene that is not associated with a

KO. Reads for which no alignment was found by blastx were

classified as ‘no result’. For alignment ties or in protocols were

multiple alignments could be considered (e.g., top 20 genes), the

classifications of all alignments considered were weighted as

described above. To evaluate the performance of the annotation

process in each dataset, the overall recall and precision of the

obtained annotations were calculated. When comparing annota-

tion performance across read lengths, all reads were included in

the analysis, as multiple-category reads accounted for almost half

the reads for longer sequencing reads.

Evaluating the annotation profile for a complete sets of
reads

When evaluating the accuracy of the annotation profile

obtained for a complete set of reads (e.g., all reads simulated

from a specific genome), the total count for each KO was

calculated as the sum of all counts toward this KO obtained across

all the reads included in this dataset. KO counts were then

normalized by the length of the gene to correct for length-bias in

read counts. To simulate the case where the actual gene from

which the read originated was not known, gene lengths were

approximated by the length of the gene to which the read was

aligned. For comparison, KOs were alternatively normalized by

the average length of all the genes associated with the KO. This

scheme, however, resulted in reduced accuracy across all protocols

and at all levels of phylogenetic coverage (Table S3). Finally, to

estimate the copy number of each KO, these normalized counts

were divided by the mean count over a set of 15 ribosomal genes

found with 1 copy across all bacteria and archaea in the KEGG

database [34]. To estimate how well the predicted KO copy

numbers in each sample reflected the actual KO copy numbers,

the square root of the Jensen-Shannon divergence (JSD), the

Jensen-Shannon distance, between the calculated and actual KO

copy numbers was calculated. To gain insight into potential

determinants of mappability, we further computed the correlation

between the recall values obtained and the average, standard

deviation, and coefficient of deviation of the gene lengths for each

KO, the number of genes in each KO, the number of genomes

covered by each KO, and the mean and standard deviation of

genes per genome. Additionally, we computed the correlation

between the recall values and the fraction of matches to genes

from different KOs and the percent-identity of the highest match

to a gene from a different KO in the KEGG Orthology SSDB

using a gene chosen randomly for each KO from the genomes

used in this study [12].

Evaluating annotation profiles obtained for HMP stool
samples

Human sequence-filtered and quality-filtered, Illumina shotgun

sequences were downloaded from the Human Microbiome Project

Data Analysis Coordination Center (http://HMPDACC.org) for

15 stool samples from the original HMP cohort (SRS011084,

SRS024075, SRS024388, SRS011239, SRS020233, SRS011302,

SRS049900, SRS011271, SRS015190, SRS011529, SRS016989,

SRS011134, SRS058770, SRS023971, SRS021484). Sequencing

reads were aligned to the same custom peptide database as the

simulated reads using mBLAST (mblastx) [44], a multicore, shared

memory implementation of the Translated Query-Protein Subject

BLAST (blastx), with standard parameters and accepting all

matches with an E-value,1 (average execution time 0.660.8 ms/

read). KO abundances were computed using each of the four

protocols, as outlined above. Pathway abundances were calculated

by summing the abundances of all KOs associated with each

pathway, and the pathway abundances for each sample were

normalized by the total pathway count. Only pathways with

differences in $10 samples were tested for differential abundance.

Comparison of functional annotations derived with BWA
to translated BLAST alignments

Custom reference databases for BWA (nucleotide sequences)

and BLAST (peptide sequences) were constructed from gene

sequences from all annotated KEGG organisms (KEGG v. 63;

July 2nd, 2012 weekly release [12]) that were at an evolutionary

distance greater than some cutoff from Streptococcus pneumoniae
ATCC 700669 (KEGG code sne). To determine these evolution-

ary distances, we used the protocol employed in Refs. [52,53].

Briefly, 16S rRNA gene sequences were extracted from all

Archaea and Bacteria in KEGG. If an Archaeon or Bacterium

had no annotated 16S rRNA genes, then 16S rRNA sequences

were obtained from the same taxa in the Integrated Microbial

Genomes (IMG) database, v. 4.0 [54], using the corresponding

NCBI Taxon ID. 76 Bacteria and Archaea from KEGG had no

16S gene annotated in either KEGG or the IMG and were

excluded from the analysis. 16S rRNA genes were then aligned to

the Greengenes core set using PyNAST v. 0.1 [55]. Distances

between all pairs of aligned 16S rRNA sequences were computed

using Clearcut v. 1.0.9 [56]. The evolutionary distance from the S.
pneumoniae ‘sne’ genome was then calculated as the mean

distance between all sne 16S rRNA genes and all 16S rRNA genes

from a given genome. BWA databases were constructed at

evolutionary distances of 0.0, 0.05, 0.125, 0.2, 0.275, 0.35, 0.425,

0.5, and 0.575 (Figure S3). At short evolutionary distances (0.0,

0.05, 0.125), BLAST matches were found by removing alignments

to genomes at evolutionary distances below the cutoff (or to

genomes that had been excluded from the analysis) from the

alignment to all protein-coding genes from annotated organisms,

as described above. For evolutionary distances longer than 0.125,

new BLAST databases were constructed to avoid skewing the E-

value metrics by changing the database size. Similar to previous

simulations, all possible contiguous 101-bp reads from the S.
pneumoniae ‘sne’ genome were aligned to each database.

Translated Query-Protein Subject BLAST (blastx) alignments

were performed as done previously. BWA alignments were

performed using BWA-MEM version 0.7.8 [36], taking the top
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alignment. Functional annotation was performed as described above,

using the ‘top gene’ approach for the translated BLAST alignments.

Supporting Information

Figure S1 The precision (a, circles) and recall (b,
squares) for identifying KEGG orthology groups from
short sequencing reads using different E-value cutoffs as
a function of read length.
(TIF)

Figure S2 The distribution of E-values from translated
BLAST searches of simulated short sequencing reads
against all annotated peptides from the KEGG database.
The distributions obtained for the (a) 101-bp and (b) 400-bp

datasets derived from the S. pneumoniae genome are shown. The

different colors represent the various categories of reads and their

annotation as in Figure 1. The bimodal distribution seen in (b) is

due to the use of a low-complexity filter in the translated BLAST

search (See Text S1).

(TIF)

Figure S3 The number of available bacterial and
archaeal genomes as a function of 16S distance from
Streptococcus pneumoniae ATCC 700669 (KEGG code
sne), represented as a histogram. Vertical dashed lines

highlight the evolutionary distance cutoffs used to construct

reference genome databases for comparing BWA and BLAST

alignments (see Methods and also Figure S4).

(TIF)

Figure S4 The precision (a, circles) and recall (b,
squares) for BWA- (white) and translated BLAST- (blue)
based functional annotation of the Streptococcus pneu-
moniae ATCC 700669 (KEGG code sne) genome as a
function of the minimal evolutionary distance to ge-
nomes included in the reference database.
(TIF)

Figure S5 The mappability of reads that only partially
overlap a KO gene through a translated BLAST search.
The probability of such overlapping reads to correctly map to the

KO of origin, vs. the probability to erroneously map to a gene

from an incorrect KO, a non-KO gene, or to have no result is

shown as a function of the number of bases the read overlaps with

the gene. Probabilities are averaged across all 101-bp datasets,

with error bars representing 95% confidence intervals.

(TIF)

Table S1 Summary of all genomes used in this study.

(DOCX)

Table S2 Summary of all datasets generated for this
study.

(DOCX)

Table S3 Summary of all results obtained for each
simulated dataset.

(XLS)

Table S4 Correlation of various KO properties with KO
average recall values, and pathways enriched
(FDR,0.05) among the KOs in the bottom 5% of recall.

(XLS)

Table S5 The average recall and precision obtained per
KEGG Orthology Group (KO). Poorly mapping genes
(Recall,85%) are highlighted in red.

(XLSX)

Table S6 The Jensen-Shannon distance between KO or
pathway abundance profiles for different samples and
for the same sample annotated with different annotation
protocols.

(XLS)

Table S7 Pathways and KOs enriched between HMP
stool samples annotated with different functional anno-
tation protocols. A ‘1’ indicates enrichment (FDR,0.05) and

‘0’ indicates no enrichment.

(XLS)

Text S1 An analysis of E-value cutoff schemes and the
effect of low-complexity filtering on typical E-value
distributions, and an analysis of reads originating from
multiple genomic regions.

(DOCX)
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