
Overcoming Catastrophic Interference in Connectionist
Networks Using Gram-Schmidt Orthogonalization
Vipin Srivastava1,2*, Suchitra Sampath2, David J. Parker3

1 School of Physics, University of Hyderabad, Hyderabad, India, 2 Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India, 3 Department of

Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom

Abstract

Connectionist models of memory storage have been studied for many years, and aim to provide insight into potential
mechanisms of memory storage by the brain. A problem faced by these systems is that as the number of items to be stored
increases across a finite set of neurons/synapses, the cumulative changes in synaptic weight eventually lead to a sudden
and dramatic loss of the stored information (catastrophic interference, CI) as the previous changes in synaptic weight are
effectively lost. This effect does not occur in the brain, where information loss is gradual. Various attempts have been made
to overcome the effects of CI, but these generally use schemes that impose restrictions on the system or its inputs rather
than allowing the system to intrinsically cope with increasing storage demands. We show here that catastrophic
interference occurs as a result of interference among patterns that lead to catastrophic effects when the number of patterns
stored exceeds a critical limit. However, when Gram-Schmidt orthogonalization is combined with the Hebb-Hopfield model,
the model attains the ability to eliminate CI. This approach differs from previous orthogonalisation schemes used in
connectionist networks which essentially reflect sparse coding of the input. Here CI is avoided in a network of a fixed size
without setting limits on the rate or number of patterns encoded, and without separating encoding and retrieval, thus
offering the advantage of allowing associations between incoming and stored patterns. PACS Nos.: 87.10.+e, 87.18.Bb,
87.18.Sn, 87.19.La
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Introduction

Nervous systems have two basic requirements: they must be

stable and thus able to generate reliable specific outputs, while at

the same time they must be flexible to allow the output to change

during development or as a result of experience. This is the

‘‘stability-plasticity dilemma’’ [1], and it is a concern to both

neurobiologists who want to understand how nervous systems cope

with constantly changing internal and external conditions, and

those working on artificial neural networks. While not exclusively

related to it, this problem is often considered in relation to

memory. The analysis of memory systems has been a major focus

of neuroscience research, but there are still many unanswered

questions that need to be addressed at both the experimental and

theoretical levels. In terms of the stability-plasticity problem, the

question is how a system can store new input patterns across

shared components without disturbing previously stored informa-

tion in those components.

One of the first considerations of this problem was highlighted

by Bienenstock, Cooper and Munro [2], who suggested that long-

term potentiation (LTP), a proposed mechanism for learning and

memory [3], could suffer from an inherent instability (the BCM

model). They suggested that in systems with a set threshold for

plasticity the potentiation of a synapse by a particular input that

exceeded the threshold could leave that synapse open to further

potentiation when another, non-salient, input was presented (this

has also been referred to as the ‘‘ongoing plasticity’’ problem; see

[4]). Due to the initial potentiation of the synapse, non-salient or

random inputs caused by a non-stationary environment could

exceed the threshold for plasticity, resulting in the potential for

run-away cycles of potentiation which would alter the synaptic

changes associated with the original memory. This would

effectively overwrite the original memory, and in biological

systems if left unchecked, excessive activation could also lead to

epileptogenic or excitotoxic damage and cell death [5]. The

opposite effect could occur with long-term depression, where a

synapse is weakened when the input falls below a depression

threshold: in this case there could be a positive feedback loop that

results in the successive depression of the synapse.

While the exact relationship is not clear, a similar effect may

occur in artificial neural networks. When the number of

sequentially recorded/stored patterns exceeds a critical value

there is a sudden and complete loss of previously stored inputs [6].

This example of retroactive interference is called catastrophic

interference (CI) and is caused by the sharing of connections

whose weights are changed by the presentation of specific inputs.

As more patterns are stored the weights are changed and beyond a

critical point new inputs erase the memory of previous inputs. If

the memories happen to be overlapping, or correlated, which

essentially means that several of their elements are similar (the

mathematical meaning is explained in [7], [8]), then a particular

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e105619

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0105619&domain=pdf


synapse may get increasingly more potentiated (or depressed), thus

resembling the stability issues addressed in the BCM model. In

human memory, although recently stored or retrieved memories

are labile (e.g. [9], [10]), it is rare to find a complete disruption or

loss of previously acquired information: a relatively small and

gradual reduction (‘‘graceful degradation’’) rather than a large

catastrophic loss usually occurs (e.g. [11]; but see [12], [13], [14]).

That a catastrophic interference like effect can be shown under

some conditions is of interest, as it suggests a basic limitation of

storage systems that use a finite (although large) number of

components, and further that the brain has presumably evolved a

way of avoiding this phenomenon, allowing new information to be

stored without disrupting previously stored information (but see

[15]). Understanding this capability of the brain and how it can be

applied in artificial networks could be of interest to both the

psychological/neurobiological and technological communities.

Various strategies have been suggested to overcome the effects

of CI. These include the separation of new inputs from those

previously stored by using a cascade of synaptic states [16];

separate encoding and storage systems (e.g. hippocampal and

neocortical networks; [17]); setting limits on the magnitude or rate

of learning [18]); the creation of new storage components through

neurogenesis [19]; anti-Hebbian plasticity [20]; reducing the

overlap between different patterns by sparse coding or by limiting

or ‘‘sharpening’’ the number of units used to encode an input,

orthogonal recoding of inputs, or interleaving, refreshing previ-

ously stored inputs with the new patterns to be learnt (see [12] for

review by French and also Guyon et al. for an orthogonalization

like approach that involves pseudoinverse of state matrix).

Connectionist architectures use interleaving algorithms that

require the network to repeatedly cycle through the patterns to

be learned; after the entire set of patterns has been presented many

times, the network is expected to converge on an appropriate set of

weights for the complete set. The problem of CI has also been

addressed by curbing the growth of synaptic efficacy by putting

bounds on plasticity (see [4]). This is biologically realistic, as it

reflects ‘‘soft-bound’’ plasticity, the difficulty of potentiating

synapses that are initially strong [21]. While these approaches

can overcome effects in theoretical analyses, they all have

limitations in terms of their implementation or their biological

relevance [22], [23].

The potential parallels between the stability issues in biological

and artificial systems inspire us to study the run-away cycle of

potentiation using strategies employed to overcome CI. The BCM

model suggested a form of self-organising or homeostatic plasticity

that could preserve function within set limits while still offering the

possibility of directed plastic changes through a sliding plasticity

threshold [24], [25]. This threshold would be increased after LTP

(or decreased after long-term depression, LTD) to ensure that the

potentiation (or depression) needed to encode relevant changes

could occur, but further potentiation would not occur with non-

salient or random ongoing inputs, only when the new input

exceeded the new plasticity threshold [26], [24]. In this case the

plasticity of the synapse would be dependent on the previous

activity of the synapse, an example of metaplasticity [27].

The BCM model is an attractive and biologically plausible

proposition for introducing bounds on synaptic plasticity that

could help to overcome the stability-plasticity dilemma. However,

as with most attempts to relate cellular and synaptic effects to

network function (e.g. memory), while there is evidence for a

shifting plasticity threshold the extent to which a BCM-like effect is

involved in human memory has not been established, and the

model has not been considered in artificial systems in the context

of catastrophic interference. We show that when Gram-Schmidt

orthogonalization is combined with the Hebb-Hopfield model, the

model automatically checks the possibility of a run-away

potentiation cycle from being set up, and thus attains the ability

to eliminate CI.

The model we use is extremely simplified and uses the bare

minimum core features of the neural system we wish to study, and

its underlying conditions. Consequently it may appear to be far

removed from biology. However, it is analytically tractable and is

very widely used in theoretical analyses, and it has an inherent

property of encoding synapse-like elements that should give the

essential science behind the phenomena we are interested in. Also

it should generalize to more realistic models, assuming that certain

assumptions are met (see Discussion). We believe that the insight

we obtain from it may represent real phenomena. Because of the

mathematical nature of the model, it is open in that it can, in

principle, be generalized indefinitely to include realistic features.

At every stage of its generalization (or expansion) to include a new

realistic feature, its mathematical tractability has to be ascertained,

and in principle the numbers that come out of solving the

improved model should be comparable to experimental measure-

ments.

Inherent Bounds on Post-Synaptic Response in
Hopfield Model

Outline of the model
For mathematical convenience and in line with most connec-

tionist modeling we will consider a fully connected network in

which each neuron is connected to all other neurons, and an

information is spread over the entire network and stored as

changes in synaptic efficacy that depend on the activities of the

pre- and the post-synaptic neurons. The same set of neurons and

synapses are involved in storage as well as retrieval of information.

A neuron is treated as a binary entity, which assumes values +1

and 21 depending on whether it ‘fires’ or ‘does not fire’. An

information that comes to be recorded in the network is assumed

to trigger ‘firing’ and ‘not firing’ activities among the neurons in an

asynchronous manner: the neurons exchange signals (i.e. action

potentials) which raise or lower the potentials on post-synaptic

neurons, and if the net potential on a neuron exceeds its threshold

then it fires (+1), otherwise it remains quiescent (21). Thus, an

information ‘m’ is represented by a vector,

~jj(m)~f1,{1,{1,1,:::g, ð1Þ

whose components are a collection of +1 and 21 (appearing to be

distributed randomly) [28]. The information, represented by a

pattern of 61’s spread over the network, is stored in the synapses

according to the following learning rule, originally postulated by

Cooper [29] to mimic Hebbian synaptic plasticity:

Jij~
1

N

Xp

m~1

(j(m)
i j(m)

j {di jj
(m)
i j(m)

i ): ð2Þ

Jij is the synaptic efficacy between a pair of neurons i and j, j
(m)
i

is the ith component of vector~jj(m), dij is Kronecker delta function

( = 0 unless i = j, when it is 1), N represents the number of neurons

in the network, and p is the number of patterns recorded in the

network. The right hand side is divided by N to normalise the

results so that they become independent of the size of the system,

i.e. the number of neurons in the network (note that the length of

Overcoming Catastrophic Interference

PLOS ONE | www.plosone.org 2 September 2014 | Volume 9 | Issue 9 | e105619



~jj(m) = (~jj(m):~jj(m))1=2 = N1/2, so by dividing ~jj(m), or equivalently

each of its components, by N1/2 the length of the vector is

normalised to one regardless of the size of the system). For

simplicity we consider Jij = Jji, though the model does not impose

this restriction, but Jii = 0 is required for mathematical reasons

[30]. The dij is introduced in the second term on the right hand

side to ensure that Jii = 0. It is assumed that synaptic efficacy

between two neurons depends on the activities of the post- and the

pre-synaptic neurons, and following Hebb [31], since the efficacy

is expected to be high if both neurons fire and low when one of

them is not firing, the Jij is taken as multiplication of ji and jj .

This means that if, for example, the postsynaptic neuron fires

independently of the presynaptic neuron the synaptic efficacy will

be weakened, which has a correlate in spike timing-dependent

plasticity in biological systems (e.g. [32]). However, biologically

there is no correlate as to how the efficacy of Jij can be increased if

both the neurons do not fire, as rule (2) would indicate. This rule is

referred to as Hebbian learning in spite of the above discrepancy.

In practice, the potentiation predicted when neither neuron fires is

often ignored by placing a bound on the synapse [33].

Note that the i2j synapse changes every time a pattern comes to

be recorded and the change is added to the changes produced by

the previous patterns. Having stored a number of patterns, say p,

we should test if they are actually stored in the synapses following

the Hebbian prescription in (2). We can present one of the p learnt

patterns to the network and check if it can associate with its

original version supposedly embedded in the memory store. The

presented pattern, say nth, will create local fields on different sites

(or neurons) via the synaptic efficacies (or weights) modified in the

course of learning p patterns as follows,

h
(n)
i ~

XN

j~1

0
Ji jj

(n)
j : ð3Þ

Here i is the post-synaptic neuron, and j are the pre-synaptic

neurons with respect to i. The ‘prime’ on the summation indicates

that the sum is over all j’s except i so that the inputs from all j sites

add up on i and self-connections Jii’s are excluded. The activity or

its absence on pre-synaptic neurons j represented by jj~z1 and

21 respectively individually influence the neuron i with weights

Jij’s, and these influences (which can be positive or negative since

the weights as well as jj can be positive as well as negative) add up

on the post-synaptic neuron i to produce a net effect, the local

potential hi. This local field (or potential), which is a measure of

total post-synaptic potential (PSP) on neuron i can be positive or

negative. If its sign matches with the sign of j
(n)
i , and such

agreement happens on the majority of neurons (say, more than

97%, a generally accepted level; see [34] and references therein)

then the association is considered to be good and the pattern n is

considered as recalled, or retrieved.

To elaborate it we will substitute for Jij from eqn.(2). So,

h
(n)
i ~

XN

j~1

1

N

Xp

m~1

j
(m)
i j

(m)
j {dijj

(m)
i j

(m)
i

� �" #
j

(n)
j ,

~
1

N

Xp

m~1

j
(m)
i

~jj(m):~jj(n)
� �

{j
(m)
i j

(n)
i

h i
,

ð4Þ

since
PN

j~1 j(m)
j j(n)

j ~~jj(m):~jj(n), the dot-product of two vectors, and

dij picks out j
(n)
i from

PN
j~1 j

(n)
j and makes the remaining terms

zero; dij also serves the purpose of ‘the prime’ on
PN

j~1, so ‘the

prime’ is dropped in eqn.(4). Isolating the m~n component fromPp
m~1 in the first term on the right hand side, we will get N from

~jj(n):~jj(n) and will be left with j
(n)
i . Further, 1

N

Pp
m~1 j

(m)
i j

(m)
i will give

p/N in either case of j
(m)
i being +1 or 21. Thus, we find that,

h
(n)
i ~ 1{

p

N

� �
j

(n)
i z

1

N

Xp

m~1
(m=n)

j
(m)
i

~jj(m):~jj(n)
� �

: ð5Þ

This rearrangement has enabled us to isolate j
(n)
i , whose sign is

to be compared with that of h
(n)
i , from a jumble of cross terms

involving the test pattern ‘n’ and all the other patterns in the

memory store represented by ‘m’. This is like separating a signal

from a jumbled mixture of cross-talks this signal has with a number

of other signals. If ~jj(m)’s happen to be mutually orthogonal, the

cross-talks will vanish and the memories would work perfectly

[30].

Analysis of post-synaptic potential

The sign of h
(n)
i (or PSP) can become unfavourable (i.e. opposite

of j
(n)
i ) due to the second term in eqn.(5) (let us call it A). Since the

vectors ~jj(m) consist of randomly generated +1’s and 21’s, each of

the p terms in the second term in the right hand side of eqn (5) will

take a fractional value, less than 1, with a random sign (+ or 2).

Thus, for j
(n)
i ~z1, A can take any positive or negative value

limited by the values of p and N, but as long as it is greater than 2

(12p/N), h
(n)
i will match in sign with j(n)

i . Similarly, for j(n)
i ~{1,

h
(n)
i will match in sign with j

(n)
i if A remains less than (12p/N).

Figure 1 shows the favourable ranges of values of A in the form of

shaded areas. Note that in general~jj(m)’s are not orthogonal to~jj(n).

So, the dot products ~jj(m):~jj(n) are non-zero. In spite of the signs

being randomly + or 2 the chances of A growing arbitrarily large,

+ve or -ve, become increasingly large with increasing p. This

increases the possibility of CI as explained below.

In eqn.(5) the first term on the right hand side is like signal while

A represents noise – note that the first term is obtained by isolating

in eqn (4) the relevant component, i.e. ith, of the pattern being

retrieved, i.e. the nt h vector, while the overlaps of~jj(n) with all the

remaining vectors in the memory store are clubbed together in the

second term; it is these non-zero overlaps that obfuscate the signal

and hence act as noise. From the above we see that as long as the

noise A can be bounded by (p/N21) from below and by (12p/N)

from above, h
(n)
i will be confined between (p/N21) and (12p/N),

and CI will be contained. However, as new patterns come to be

recorded, there is no intrinsic mechanism in the Hopfield model to

control their overlaps with the patterns already in the store and

thereby restrict the noise A to within the above limits, and thus

restrict h
(n)
i to within the above favourable limits. Thus, as the

number of patterns in the store increases the noise builds up and

the likelihood of h
(n)
i remaining within favourable limits reduces on

more of the neurons (i’s) in the system and CI becomes

inescapable. These bounds on PSP can slide with the variations

in p and N, to make CI more susceptible or less susceptible. If p
increases (for a given N) then the bounds shrink and the system

becomes more susceptible to CI, which is understandable since the

interference among patterns will increase as their number

increases. On the other hand the increasing system size (such that

Overcoming Catastrophic Interference
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p=N?0) would widen the gap between the bounds and reduce the

chances of CI.

Note that outside the above bounds A can, in principle, grow to

very large positive or negative values, akin to runaway affects in

the BCM model (see above). Although indefinitely large positive

and negative values of A will keep h
(n)
i j(n)

i w0 for j(n)
i ~z1 and

j
(n)
i ~{1 respectively, the fact is that A takes positive or negative

values in a seemingly uncontrolled and random manner.

Therefore, its growth to large values is, in general, detrimental

to retrieval (or recall) and leads to CI [34]. This will cause the run-

away effect, which will eventually give false (or deceptive)

associations with the feature designated by site i.

The uncontrolled growth of h
(n)
i on a large number of sites

inevitably leads to catastrophic forgetting in the Hopfield model if

the ratio p/N exceeds 0.14 (see e.g. [30]). In figure 2 we present

the result of a simulation showing how degradation sets in in the

quality of retrieval as p/N exceeds 0.14 (details are given in the

following section).

A Way Out of Catastrophic Interference

It is our hypothesis that when a stimulus (or vector) ~jj is

presented to the system, the system orthogonalizes it with respect

to all the vectors in the memory store and then stores the

orthogonalized vector ~gg rather than the raw vector ~jj [7]. In real

terms this amounts to storing the similarities and differences of the

new vector with the old vectors.

Suppose ~gg(1), ~gg(2), …, ~gg(p) are the orthogonalized versions of
~jj(1), ~jj(2), …, ~jj(p), and they are stored in the Hebbian manner as,

Jij(p)~
Xp

m~1

ĝg(m)
i ĝg(m)

j {dij ĝg
(m)
i ĝg(m)

i

� �
, ð6Þ

where fĝg(m)
i g are the components of ~̂gg~gg(m) obtained by normalising

~gg(m) as~gg(m)=D~gg(m)D. It is not immediately obvious as to how the brain

would perform the normalization. While there is physiological and

behavioural (e.g. psychophysical) evidence for normalization as a

canonical neural computation, its role and underlying mechanisms

are still an area of intense research [35].

Now a new vector,~jj(pz1) comes to be recorded. Some neurons

fire and some don’t, accordingly they get values +1 and 21, and

through the above Jij’s, local fields, or PSP’s, develop on each

neuronal site as,

h
(pz1)
i ~

XN

j~1

Jijj
(pz1)
j ; for i~1,2,:::,N: ð7Þ

As explained above the h
(pz1)
i ’s may or may not match with

j(pz1)
i ’s for all values of i, but, in any case, the system would know

the difference (j
(pz1)
i {h

(pz1)
i ) on each neural site. Note that the

computation of this difference on each site already amounts to

orthogonalization [7], i.e.

~gg(pz1)~~jj(pz1){~hh(pz1), ð8Þ

where,

~hh(pz1):fh(pz1)
i g~

Xp

m~1

~̂gg~gg(m) ~̂gg~gg(m):~jj(pz1)
� �

{O p

N

� �
~jj(pz1), ð9Þ

since (ĝg
(m)
i )2 is of the order of 1/N.

The interesting new thing we point out here is that if it so

happens that ~jj(pz1) is already in the memory store, say as the nth

vector (1ƒnvp), then~jj(n) will not project on to~gg(nz1),…,~gg(p) [36],

and the first (n{1) terms in eqn.(9) will give (~jj(n){~gg(n)). Then,

~hh(n)~~jj(n){~gg(n)z~̂gg~gg(n) ~̂gg~gg(n):~jj(n)
� �

{O p

N

� �
~jj(n)~(1{O p

N

� �
)~jj(n),ð10Þ

since ~gg(n):~jj(n)~~gg(n):~gg(n). So the presented ~jj(pz1) will be identified

as ~jj(n), with ~gg(pz1) on the order of zero. This would imply that
~jj(pz1) will not be orthogonalized and stored again, no matter how

often it is presented. However, if it turns out that~jj(pz1) is indeed a

new vector, which is not there in the memory store, then ~gg(pz1)

will be computed according to eqn.(8) and will be stored in the

synapses following the modified Hebb’s learning rule (6). Some

clarification is needed here in order to understand how Hebb-

Hopfield model with Gram-Schmidt orthogonalization (H-H-G-S)

scores over the conventional Hebb-Hopfield (H-H) model.

Let p normalized vectors be stored (for p/N very small, say 0.05)

in each of the above two cases, and let a test vector that is similar

to (but not exactly the same as) one of the p stored vectors be

presented to check if it associates with any of the p stored vectors.

In both the cases the test vector will indeed associate with one of

those p vectors to which it resembles. This means that in H-H-G-S

scheme the p imprinted vectors are stable in the same way as in the

H-H scheme, i.e. they have non-zero basins of attraction [30,37],

and that the test vector, which falls within the basin of attraction of

one of the imprinted vectors, converges to the imprinted vector.

Thus the attractor neural network (ANN) character typically

attributed to H-H is preserved in H-H-G-S.

To elaborate further we note that two processes are involved in

this: (i) ‘storage’ of information (or vectors) in the synapses through

Figure 1. Schematic representation of h
(n)
i , the post-synaptic

potential on an arbitrary site i when one of the learnt patterns,
n is presented to check for retrieval, versus A, the noise term in

eqn.4. The shaded areas represent the domains where h
(n)
i j

(n)
i will be

positive definite. The bounds on h
(n)
i slide up and down with variations

in p and N enabling, at least in principle, plasticity to control CI to some
extent.
doi:10.1371/journal.pone.0105619.g001
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eqns. (2) and (6) respectively in the two cases; and (ii) ‘association’

of a presented test vector with one of the memorised vectors

through prescriptions (3) and (7) respectively. The two processes

are invoked independently in H-H in that when a new vector is

presented we have to specify whether the process of ‘storage’ needs

to be invoked or whether the vector is meant to be ‘associated’

with a vector in the memory. If it is instructed to be stored then it

will be stored regardless of the extent of its similarity or difference

with any of the vectors already in the memory. But in H-H-G-S

the two processes are linked.

When a new vector is presented to the H-H-G-S scheme for

storage, it has to be first orthogonalized, and as part of

orthogonalization it is first subjected to a check, through eqn.(7),

whether it ‘associates’ with any of the stored vectors, and if so, with

which one. If it falls within the basin of attraction of one of the

stored vectors [30] then it will be associated with that particular

vector in the memory store and signs of fh(pz1)
i g will coincide with

those of the components of that vector. In case the new vector is

not similar to any of the stored vectors then ~hh(pz1) will be an

independent vector that holds the information of the overlaps of

the new presented vector with all the stored vectors in a

convoluted manner.

The above amounts to half of the orthogonalization process.

The process is completed with the comparison (through eqn.(8)) of

the new presented vector with ~hh(pz1), which may correspond

either to one of the stored vectors or to a vector very different from

any one of them. The difference calculated by eqn.(8) will be small

or large depending on the two situations, but in either case this will

tantamount to orthogonalization and the orthogonalized version

of the new vector will be ‘stored’ according to eqn.(6). In case the

presented new vector happens to be identical (not just similar) to a

vector already in the memory store then, as shown in eqn.(10),

~gg(pz1) will be identically zero.

The H-H-G-S scheme thus appears to be close to reality in

which when the brain encounters a new information, before

storing it, it knows, in the background of the information already

in its memory, that the new information is completely familiar, or

completely unfamiliar, or partially familiar. This is accomplished

by the first part of orthogonalization represented by eqn.(7),

namely ‘association’.

The crucial implication in the present context of CI is that

orthogonalization diminishes the overlap of any pattern that

comes to be recorded with everyone of those that are already in

the store and thus suppresses the noise A. The PSPs, h
(pz1)
i ’s on all

the sites i, are pinned at (1{O p
N

� �
)j

(n)
i . Since j

(n)
i ~+1, the PSP’s

are strictly confined within the range ((O p
N

� �
{1), (1{O p

N

� �
)).

Thus, already familiar stimuli are blocked from stimulating the

system again and again to cause overloading and a possible run-

away potentiation.

In Figure 2 we present results of our simulations showing (a)

how the retrieval quality drops rapidly around p/N = 0.14

signifying CI, and (b) how Gram-Schmidt orthogonalization

overcomes catastrophic interference. We use a system comprising

1000 neurons. Patterns are generated using pseudo-random

number generators to assign values +1 and 21 to the neurons.

The patterns are learnt sequentially and stored by changing the

synaptic efficacy Jij and accumulating the changes as in eqn.(2).

Soon after a pattern is stored, it is presented back to the network to

check if it can be retrieved using the prescription elaborated in

eqns.(3–5). Figure 2(A) shows the fraction of retrieval, i.e. the ratio,

(no. of retrieved patterns)/(no. of learnt patterns), versus load

parameter, which is the ratio of (no. of learnt patterns)/(total

number of neurons), i.e. p/N. Around p/N = 0.14 the fraction of

retrieved patterns dips below 90% quite rapidly and reduces to

almost zero around p/N = 0.17. The results are shown for three

sets of input patters. The inset shows the same plot after averaging

over 18 sets of patterns. Figure 2(B) shows the same calculation

after invoking Gram-Schmidt orthogonalization on the incoming

patterns – an incoming pattern is first orthogonalized with respect

to all the stored patterns (using eqn.(8)) and then stored, but the

original, or the raw pattern (before orthogonalization) is tested for

retrieval. In a system of 1000 neurons all presented patterns are

retrieved perfectly until p = 998. For p = 999 the fraction of

retrieved patterns dips abruptly to almost zero, and to exactly zero

when p = 1000 as amplified in the inset.

Even though by storing orthogonalized patterns the memory

capacity appears to rise from 0.14N to almost N it is important

that we check the stability of the stored memories. As stated above

we should do it by computing the basins of attraction for the

memories. Using the standard definitions [30,37] we did the

simulations for a smaller network of 100 neurons to get an idea as

Figure 2. Simulation results for a system of 1000 neurons. (A) Hopfield network showing memory breakdown due to catastrophic
interference amongst the stored patterns – the fraction of input patterns that is retrieved drops rapidly around the load parameter, p/N = 0.14. The
results are shown for three sets of patterns and the inset shows the results averaged over 50 sets of patterns. (B) Hopfield network with Gram-
Schmidt orthogonalization of the incoming patterns. All the learnt patterns are retrieved perfectly until p = N, when the retrieval fraction drops to
zero abruptly. The inset shows magnification very close to the load parameter = 1 to highlight the abruptness of the drop. Note that the system does
not learn the raw patterns as they are presented but their orthogonalized versions, whereas the retrieval is checked for the raw patterns.
doi:10.1371/journal.pone.0105619.g002
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to how the size of basin of attraction changes when we introduce

orthogonalization.

To get the right perspective we first did the calculations for the

conventional Hopfield model. The network was made to learn 12

randomly generated 100-dimensional patterns (of +1 and 21)

according to eqn.(2). The patterns were then picked up one by one

and states of certain neurons were switched (from 21 to +1 or vice

versa) – starting with switching of state of one neuron chosen

randomly – and it was checked if the chosen imprinted pattern, say

nth, could be retrieved following the prescription of eqn.(5). If the

signs of fhig did not match with those of the imprinted fj(n)
i g then

fhig were fed to the right hand side of eqn.(5) as fjig and new

fhig were calculated and their signs were compared with those of

the imprinted fj(n)
i g. A maximum of 10 such iterations were tried

to check if they led to convergence to the imprinted ~jj(n). This

exercise was repeated for 10 samples generated by picking the

‘flipped’ neuron from 10 different locations chosen randomly in

the array of 100 neurons.

The above procedure was repeated by switching signs of more

and more neurons successively until the overlap of the retrieved

pattern with the corresponding imprinted pattern fell below 100%.

This marked the size of basin of attraction for a particular

imprinted pattern.

For the conventional Hopfield model the basin of attraction for

12 imprinted patterns were distributed in a broad range from 26 to

44, with maximum probability for basins of sizes 34 to 37. As the

number of imprinted patterns increased beyond 10 certain

patterns began to show absence of basin of attraction (i.e. basin

of size zero). Beyond 14 memorised patterns the number of

patterns with zero basin of attraction increased rapidly.

Orthogonalization improves the situation considerably. We

considered the same 12 patterns but stored their orthogonalized

versions. The original patterns (before orthogonalization) were

considered for retrieval and basins of attraction were computed for

them. The sizes of basins ranged between 6 and 45 but were

concentrated around 31. From p = 14 certain patterns begin to

lose basin of attraction (i.e. basin of attraction of size zero) though

with very small probability, about 0.0093. The probability

increases quite rapidly with p, becoming 0.49 at p = 24 and 1.0

when p touches 100. Thus orthogonalization presents an

interesting scenario in which in a system of N neurons up to

(N21) patterns are stored and retrieved efficiently, and therefore

compete for space for basin of attraction. There are several

interesting issues that need close investigation. We are in the

process of carrying them out.

Discussion

Many approaches have been used to try and overcome the

problems of the actual or predicted loss of stored information in

memory systems, both in connectionist networks (catastrophic

interference) and in biological systems (e.g. ongoing plasticity, [4];

the stability-plasticity problem, [1]). A system has to be flexible

enough to allow salient changes to be encoded continuously while

at the same time being stable enough to ensure that stored changes

persist. The approach that we show here uses a conventional

Hopfield network. It thus makes no claims to be biologically

realistic in the sense that it includes details of neuronal or synaptic

physiology, but we feel that this simple case allows us to address

fundamental issues of the stability-plasticity dilemma. The

approach that we use allows the same components to encode

and store information. In fact, rather than try and separate stored

and new inputs, the input is instead considered in the context of

previously stored inputs, which means that only the similarities

and differences of new inputs are encoded while still allowing the

full memory of the input to be recalled.

We are able to show the capability of encoding and storing a

significantly larger number of sequential inputs than is possible

using conventional approaches, and importantly, allowing new

inputs to be compared and generalized to those already in the

store. This contrasts with the non-overlapping approaches used in

connectionist networks in attempts to overcome catastrophic

interference (e.g. [38]; see [12]). While separation of input patterns

would remove catastrophic interference, it also removes the

possibility of generalising and linking together aspects of the stored

patterns. This could be a particular problem for learning

categories [17]. That a pattern to be stored is compared to those

already in the store, without having to impose limits on the rate or

extent of the synaptic changes, is a principal advantage of the

orthogonalization approach that we show here.

In human memory systems the subject learns on the

background of previously stored information rather than isolating

the new information from it, or overwriting the previously stored

information (see [39]). This feature is an intrinsic component that

arises from Gram-Schmidt orthogonalisation rather than having to

be imposed from outside. This could allow artificial, and in

principle biological systems, to make use of an intrinsic principle of

physical systems, ensuring that a system that includes this

automatically has this advantage built in. An orthogonalization

based neural system acts in a self-organized manner - it compares

the new with old, isolates the similarities and differences of the new

input with the old, deduces whether the new is unknown or

known, and if it is found to be known to it then it refuses to

entertain it a second time. In this way it acts as a form of ‘‘internal

supervisor’’ [4], determining which synapses have to change to

store the new memory while not destroying the changes at

synapses that have previously stored information. A stimulus may

be presented any number of times but if the input has already been

stored then the postsynaptic local field will not change and

therefore they will not build up incessantly in the same direction to

cause the possible run-away effect, akin to that suggested by the

BCM model.

Orthogonalisation has been used previously in attempts to

overcome the problems of catastrophic interference in connec-

tionist networks (see, for example, [40]). However, the use of the

term orthogonalisation in this context differs to the way that we

have used it, where information is represented by a vector and

orthogonalization makes the vector of a new information

perpendicular to the vectors representing the stored information.

Orthogonalized, or mutually perpendicular, vectors do not overlap

with each other. This orthogonalization scheme must be

distinguished from the ‘orthogonalization’ approach that is

typically used in the learning and memory literature (e.g. [41],

[22], [6] and references therein). The latter generally refers to

sparse coding of information in the network, i.e., two different

pieces of information are stored on two non-overlapping sets of

nodes in the network, thus removing the interference effect

associated with CI. However, in the scheme presented here the

same nodes are used. If patterns of bipolar elements are generated

randomly, at the first glance they could be considered orthogonal

(i.e., with zero inner product). This would be true in the

hypothetical situation of infinite systems (when vectors have an

infinite number of components). However, since we are always

dealing with finite vectors, inputs of this sort will be only

approximately orthogonal, and the inner products will be non-

zero. This is not orthogonalization by design, and the non-zero

overlaps mean that the signal gets submerged in the noise when p/

N.0.14 [42]. The typical/common notion of orthogonal patterns
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is, thus sparsely coded non-overlapping patterns (see also [43]),

and by whatever means it is achieved this can help reduce CI (see

[40]). The Gram-Schmidt orthogonalization that we use differs as

it forces the network to actively compute and convert a set of

vectors into a mutually orthogonal set. In this process the noise

arising due to the intrinsic overlap amongst patterns, even though

they are generated randomly, is eliminated and the memory

capacity increases to p/N = 1 from 0.14.

We have examined an artificial system, and the relevance of this

effect ideally needs to be shown in an experimental system. While

we, and others, believe that the approach can say something

relevant to actual systems, this needs to be tested as even in

theoretical systems effects differ as the degree of realism changes

(see [18]). That there are sliding thresholds for plasticity is known

from experimental analyses (see [27]), but that inputs can be

orthogonalised requires certain network arrangements and cellular

conditions for its implementation. These include parallel feedfor-

ward excitation and feedback inhibition [42], as well as the nature

of inputs to single and different dendrites of the same cell, and

multiplication in dendrites (see [43]). All of the constraints needed

are common network motifs or identified functional properties in

biological systems, offering the possibility of testing these

predictions experimentally.
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