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Abstract

Purpose: To introduce a constant-force technique for the analysis of corneal biomechanical changes induced after collagen
cross-linking (CXL) that is better adapted to the natural loading in the eye than previous methods.

Methods: For the biomechanical testing, a total of 50 freshly enucleated eyes were obtained and subdivided in groups of 5
eyes each. A Zwicki-Line Testing Machine was used to analyze the strain of 11 mm long and 5 mm wide porcine corneal
strips, with and without CXL. Before material testing, the corneal tissues were pre-stressed with 0.02 N until force
stabilization. Standard strip extensiometry was performed as control technique. For the constant-force technique, tissue
elongation (D strain, %) was analyzed for 180 seconds while different constant forces (0.25 N, 0.5 N, 1 N, 5 N) were applied.

Results: Using a constant force of 0.5 N, we observed a significant difference in Dstrain between 0.2660.01% in controls and
0.1260.03% in the CXL-treated group (p = 0.003) over baseline. Similarly, using a constant force of 1 N, Dstrain was
0.3160.03% in controls and 0.1960.02% after CXL treatment (p = 0.008). No significant differences were observed between
CXL-treated groups and controls with 0.25 N or 5 N constant forces. Standard stress-strain extensiometry failed to show
significant differences between CXL-treated groups and controls at all percentages of strains tested.

Conclusion: We propose a constant-force technique to measure corneal biomechanics in a more physiologic way. When
compared to standard stress-strain extensiometry, the constant-force technique provides less variability and thus reaches
significant results with a lower sample number.
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Introduction

Corneal biomechanics are of increasing importance in under-

standing the pathophysiology of corneal weakening, thinning, and

irregularity in diseases such as keratoconus and postoperative

ectasia. They also determine the outcome after refractive laser

surgery. Corneal stiffness can be modified by corneal collagen

cross-linking (CXL), a procedure that uses UV-A light and

riboflavin to increase the mechanical and biochemical stability of

corneal stroma [1–5]. CXL is effective in delaying or arresting the

progression of keratoconus [1,6–10] and postoperative corneal

ectasia [11–13] as demonstrated in vitro and in vivo when the

limitations of the technique are respected [14,15].

Only recently CXL was transformed from a laboratory

technique to a widely used clinical method [1,3,4,16]. As with

all new technologies, continuous modifications and improvements

of the original protocol are tested both experimentally [17–21] and

clinically [13,22,23]. Initially, CXL has relied on in vitro
biomechanical studies with stress-strain measurements that were

adapted from standard material testing, using values in a non-

physiological range that do not accurately measure biomechanical

changes that are relevant in the physiological and pathological

biological tissue like the cornea [1,4,24].

The standard biomechanical measurement method (stress-strain

extensiometry) analyzes the force necessary to induce a progressive

strain in the corneal tissue [3,4] and serves to characterize the

elastic material properties. It was adapted from methods for the

mechanical analysis of metals and polymers with rather homoge-

neous chemical or molecular bonds. In contrast, the mechanical

properties of a biological tissue depend on chemical bonds and

molecular interactions that may be distributed inhomogeneously

and lead to time-dependent, i.e. viscoelastic material properties.

Also, the process of cross-linking introduces a variety of new

chemical bonds [25], having an effect on the microstructural

interactions. These modifications are difficult to measure accu-

rately using conventional stress-strain methods.

Another limitation of standard biomechanical testing is that it is

not tension-constant. In the natural environment corneas are

hardly subjected to a steady increasing force (such as it is applied

in stress-strain tests), it rather has to withstand the normal and

constant intraocular pressure (IOP). In this study we introduce a

method using a constant-force, which will allow us to analyze the
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temporal and hence viscoelastic biomechanical properties of the

cornea and their changes with CXL.

Methods

Corneal collagen cross-linking (CXL)
50 fresh enucleated porcine eyes were obtained from a local

abattoir (Abattoirs d’Orbe SA), stored at 5uC and prepared for the

experiments within less than 6 hours after harvest. Only corneas

with an intact epithelium, lack of focal stromal edema and a

pachymetric thickness of 8006100 mm, as measured by ultra-

sound pachymetry (SP-2000, Tomey Corporation, Nagoya,

Japan), were used. Debridement of the corneal epithelium was

performed with a hockey blade. A solution containing 0.9% NaCl

(no preservative agent) and 0.1% riboflavin (vitamin B2) was

instilled onto the cornea every 2 minutes for 25 minutes. Corneas

were then exposed to UV-A irradiation (CXL-365, Peschke

Meditrade, Cham, Switzerland) with a large diameter aperture

(11 mm), at 9 mW/cm2 for 10 minutes at a working distance of

5 cm. After 5 minutes of irradiation, riboflavin drops were instilled

once to minimize changes in corneal hydration. Controls were

deepithelialized and received riboflavin instillation, but were not

exposed to UV-A irradiation.

Biomechanical measurements
After CXL or control preparation, one corneo-scleral strip

(5 mm width, full thickness) was obtained centrally in the

horizontal axis from each eye. 4 mm of the end of each strip

were dedicated to fixation, leaving no more than 11 mm of central

corneal strip length, so that the entire central strip had been

irradiated and cross-linked. For tensile strength measurement, we

used a Zwicki-Line Testing Machine (Zwick, Ulm, Germany),

calibrated with a distance accuracy of 2 mm and a tensile sensor

with no more than 0.21% of measurement uncertainty between

0.25 N and 50 N. The Zwick Z 0.5 is a classical extensiometer

composed of a linear holder extension arm whose speed can be

controlled and a Newton meter, which measure the real time

Force in Newton exerted by the arm on the held specimen. The

conversion from force to stress is calculated from the thickness and

width of the specimen. Corneal strips were fixed using pneumatics

grips with 164 N. Data analysis was performed using the Xpert II-

Testing Software for Static Testing Systems (Zwick, Ulm,

Germany).

Before starting either conventional strip-extensiometry tests or

constant-force measurements, the corneal tissue was pre-stressed

with 0.02 N until force stabilization was achieved. This pre-

stressing is equivalent to an IOP of about 6 mmHg.

For the new constant-force measurements (n control = 20 eyes,

n CXL = 20 eyes), force was measured every 39 milliseconds.

Strain was applied at a speed of 1 mm/min up to a constant force

of 0.25 N, 0.5 N, 1 N, and 5 N (n = 5 eyes per force and group).

These forces are equivalent to 58, 115, 231 and 1154 mmHg,

respectively. Time started (T0) when the pre-set force was reached.

Then the amount of absolute strain was measured at 120 s and

300 s, corresponding to X120 and X300, respectively (Figure 1) and

Dstrain was determined within this time period (being 0% at

120 s).

Conventional strip-extensiometry (n(control) = 5 eyes, n(cxl) = 5

eyes) was then performed at a speed of 1 mm/min where force

was recorded as a function of strain. The testXpert II software was

used to calculate the Young’s moduli (elasticity moduli) at 2, 4, 6,

8, and 10% of strain and to analyze the variance.

For both methods, the total testing time was less than 6 minutes

per strip. During and after each test, all junctions between the

pneumatic grips and the corneal strips were checked and if any

movement or rupture between the strips and grips was suspected,

the test was not used for the subsequent analyses.

Statistical Analysis
Statistical analysis was performed using testXpert II software

(Zwick Roell Group, Ulm, Germany). Values were expressed as

average 6 standard deviation (SD). Differences between the

experimental groups were evaluated by the students t-test and

considered statistically significant (*) or highly significant (**), when

the probability value (P) was ,0.05 or ,0.01, respectively.

Results

Figure 2 depicts the elongation of cross-linked and control

corneal strips over time under various applied forces (0.25 N, 0.5

N, 1 N, 5 N) using the constant-force technique. The corneal strip

elongated (slope of the curve) until the point of stabilization

(horizontal portion of the curve). After the pre-determined force

was reached, elongation stabilized within less than 150 seconds.

The time to reach stabilization as well as the amount of strain

correlated positively with the applied force: stabilization

(R2 = 0.79) occurred more rapidly and strains (R2 = 0.87) were

lower in tests using a lesser force.

Using the constant-force technique, significant differences

between CXL and control groups were observed (Figure 3), when

a constant force of 0.5 N or 1 N was applied. Under a constant

force of 0.5 N, untreated corneas elongated by 0.2660.01% while

CXL-treated corneas increased in length by 0.1260.03%

(p = 0.003). When 1 N of constant force was applied, CXL-treated

corneas elongated by 0.1960.02% and non-irradiated controls by

0.3160.03% (p = 0.008). No significant differences were observed

between CXL-treated groups and controls with 0.25 N or 5 N of

applied force.

Figure 4, shows the different elasticity modulus of corneal strips

with and without CXL treatment using the conventional stress-

strain method. The absolute values for all elasticity moduli in the

CXL-treated group were higher than in non-irradiated controls,

but did not reach significance: The elasticity modulus at 6% strain

Figure 1. Schematic illustration of the constant-force method.
T0 was determined when the preset force was reached. At t = 120 s and
t = 300 s, respectively, the distances X120 and X300 were measured.
Comparisons were made between the induced strain during the time
period from 120 s to 300 s.
doi:10.1371/journal.pone.0105095.g001
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was 1.560.21 MPa in the CXL group and 1.0160.06 MPa in

non-irradiated controls (p = 0.06). At 2% of strain, the elasticity

modulus was nearly indistinguishable between the two groups,

with 0.2960.09 MPa for the CXL group and 0.2660.05 MPa for

the non-irradiated controls (p = 0.78).

The measurement repeatability was similar in both techniques

20.0017 in the constant-force technique and 0.103 MPa in

standard stress-strain extensiometry – which corresponds to a

relative standard deviation of about 10%.

Discussion

CXL is currently widely used to strengthen the cornea in

keratoconus, pellucid marginal degeneration and ectasia after

refractive laser surgery. Systems (Ocular Response Analyzer,

Corvis ST) based on analyzing corneal deformation following an

air-puff have been used to evaluate the effect of CXL in vivo

[10,26–28]. A major disadvantage of these techniques is that the

recorded geometrical deformation parameters are strongly depen-

dent on the IOP and corneal thickness and do not represent a real

mechanical tissue properties. Further factors that impede an

Figure 2. Absolute corneal strain as a function of time under different constant forces. Dashed lines represent control corneas,
continuous lines cross-linked corneas. The higher the applied force, the later it was reached (T0) and the larger strains were observed.
doi:10.1371/journal.pone.0105095.g002

Figure 3. Biomechanical properties of corneal strips and significance from constant-force technique. T0 was fixed at the beginning of
the elongation, corresponding to X120 (t = 120). DStrain under constant forces of 0.25, 0.5, 1 and 5 N (n = 5 eyes per force) was determined after
180 seconds, corresponding to X300 (t = 300). *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0105095.g003
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accurate measurement of in vivo corneal biomechanics is the

relatively high inter-individual variability due to age [29], smoking

habits [30–32], and the hormonal status of estrogens [15,33,34]

and thyroid hormones [35,36]. Ex vivo techniques are therefore

still preferred when corneal stiffness needs to be quantified.

Since the surface/volume ratio of a corneal strip is high, rapid

dehydration prior to testing was a concern [37]. We therefore

performed all biomechanical tests in less than 6 minutes,

minimizing tissue dehydration due to evaporation. To transfer

the current constant-force technique to human cadaver eyes,

forces will have to be reduced by approximately a third in order to

account for the difference in thickness between the average

porcine (800 mm) and human cornea (550 mm) [20,38].

The corneal stroma is mainly composed of collagen fibers and

proteoglycans [39]. Recent studies suggest that the corneal

stiffening after CXL seems to be due to the creation of additional

covalent bonds between collagen fibers and proteoglycans [40,41].

Stress-strain extensiometry in corneas has been derived from

elastic material testing, where increasing loads are applied,

typically until material break. In the clinical setting however,

corneal biomechanics are especially interesting under constant

loading conditions. Here, we propose a method that uses constant

forces (0.25 N to 5 N) to test biomechanical properties, which

might better reflect the physiological loading condition due to the

IOP. The applied forces were chosen in a similar range than in

previous stress-strain extensiometry, covering IOPs from 58 to

1154 mmHg. Using the constant force method significant changes

after cross-linking were found in two of four forces, while standard

stress-strain extensiometry could not find any difference. There-

fore our results suggest that the constant force approach is

probably more accurate and reliable in detecting differences after

CXL than standard stress-strain testing as it addresses the

viscoelastic material properties instead of purely elastic properties.

Thereby the sensitivity of the constant force technique is force

dependent: At low forces, creep behavior is small and depends

mainly on the extracellular matrix. With increasing force, the load

is more and more carried by the collagen fibers. As significant

differences were only found for intermediate forces, we may

conclude that cross-linking affects the interaction between collagen

fibers and the extracellular matrix and not one of them alone.
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