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Abstract

Long-running applications are often subject to failures. Once failures occur, it will lead to unacceptable system overheads.
The checkpoint technology is used to reduce the losses in the event of a failure. For the two-level checkpoint recovery
scheme used in the long-running tasks, it is unavoidable for the system to periodically transfer huge memory context to a
remote stable storage. Therefore, the overheads of setting checkpoints and the re-computing time become a critical issue
which directly impacts the system total overheads. Motivated by these concerns, this paper presents a new model by
introducing i-checkpoints into the existing two-level checkpoint recovery scheme to deal with the more probable failures
with the smaller cost and the faster speed. The proposed scheme is independent of the specific failure distribution type and
can be applied to different failure distribution types. We respectively make analyses between the two-level incremental and
two-level checkpoint recovery schemes with the Weibull distribution and exponential distribution, both of which fit with the
actual failure distribution best. The comparison results show that the total overheads of setting checkpoints, the total re-
computing time and the system total overheads in the two-level incremental checkpoint recovery scheme are all
significantly smaller than those in the two-level checkpoint recovery scheme. At last, limitations of our study are discussed,
and at the same time, open questions and possible future work are given.
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Introduction

For large scale and long-running applications, system failures

are inevitable. In the absence of any protective measures, the

applications must be restarted from the beginning whenever the

failures occur. This will lead to a large waste of system overheads

and system resources. Therefore, the system fault-tolerant schemes

are proposed to solve this problem [1], and one of them is the

checkpoint recovery technology [2], [3], [4] which is a widely used

and resultful fault-tolerant measure. During the running process of

the task, the system saves the task execution states to a reliable

storage device periodically. Therefore, it can recover itself from

the last stored state whenever a failure occurs. This avoids the task

restarting from the beginning, improves the system reliability

greatly, reduces the system overheads significantly and shortens

the task completion time.

In the checkpoint technology, the checkpoint placement

frequency is important. If the checkpoint interval is too small,

the overheads created by setting checkpoints will result in large

system overheads. Conversely, if the checkpoint interval is too

large, the re-computing time and recovery time will be too long in

the event of a failure. In this case, the checkpoint recovery scheme

cannot achieve the desired effects and reduce the system total

overheads as expected. So, there is a tradeoff between the

checkpoint placement frequency and the system total overheads.

The traditional one-level checkpoint recovery scheme [5], [6], [7]

involves only one type of checkpoint, where each checkpoint is

designed to tolerate the worst failure scenario. Therefore, the

overheads of one-level checkpoints are very large. In order to

reduce the overheads of setting checkpoints and the total system

overheads, Vaidya [8] presented the two-level recovery scheme. In

this scheme, two types of checkpoints, namely the N-checkpoint

and local checkpoint, are used to deal with the less probable

failures and the more probable failures, respectively. The

experimental analyses show that the two-level checkpoint recovery

scheme can achieve lower system overheads than the one-level

one.

When the two-level checkpoint recovery scheme is used to the

large scale and long-running tasks, the system needs to periodically

transfer huge data about its running state to a remote reliable

storage. So, the overheads of setting checkpoints and the re-

computing time have become a critical issue, which directly

impacts the total overheads. In order to further reduce the system

total overheads, we propose a two-level incremental checkpoint

recovery scheme based on the two-level checkpoint recovery

technology. The proposed scheme sets three types of checkpoints,

namely N-checkpoint, m-checkpoint and i-checkpoint. The N-

checkpoint is used to deal with the less probable or infrequent

failures, while the m-checkpoint and i-checkpoint are used to deal

with the more probable or frequent failures. The main contribu-

tions of this paper are listed as follows: (1) we introduce the third

type of lightweight checkpoint and propose a new two-level
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incremental checkpoint model; (2) For the two-level incremental

checkpoint model, we give the global optimal checkpoint

frequency function and the checkpoint placement algorithm,

which is independent of the specific failure distribution type; (3) we

give a method to determine the optimal two-level incremental

checkpoint placement strategy; (4) we give the placement strategies

and the related conclusions for the Weibull distribution and

exponential distribution respectively, and then illustrate the fact

that the placement algorithm is independent of the specific failure

distribution type. Experiment results show that compared to the

two-level checkpoint recovery scheme, the proposed scheme

significantly reduces the transfers of the storing contents, the

overheads of setting checkpoints and the re-computing time, and

thereby reduces the system total overheads.

The rest of this paper is organized as follows. In section 2, the

related work is discussed. In section 3, the proposed two-level

incremental checkpoint recovery scheme is described in details.

Section 4 takes the Weibull distribution and exponential distribu-

tion as examples to illustrate how to compute the checkpoint

placement time instants. In section 5, the experimental analyses

and performance analyses are presented. In section 6, limitations

of our study, open questions and possible future work are

discussed. Finally, Section 7 presents the conclusion.

Related Work

As the system scale grows larger and lager, the system reliability

problem becomes more and more important. Scientists have

predicted that in future high-performance and large-scale com-

puting tasks, the most three difficult and growing problems will be

avoiding, coping with, and recovering from failures [9]. Due to the

fact that the computing of the tasks become more and more

complex and the execution time become longer and longer, the

failure becomes more and more frequent. If there is no fault

tolerance mechanism, the applications must be re-started from the

beginning whenever failures occur, which will result in unaccept-

able performance overheads, especially for long-running applica-

tions.

The checkpoint recovery technology is used to tolerate the

system failures, guarantee the system reliability, and ensure the

successful completion of the long-running tasks [2], [3], [4]. The

basic idea of the checkpoint recovery technology can be described

as follows: during the running process of the task, the computation

state is saved into the storage medium as a checkpoint file every

once in a while; the file is read to restore to the last stored state

whenever a system failure occurs, which avoids the task restarting

from the beginning, reduces the system overheads and guarantees

the successful completion of the tasks. Checkpoint placement

strategy is a key issue in checkpoint technology, which determines

the system overheads. If the checkpoint interval is too small, the

overheads created by setting checkpoints will result in large system

overheads. Conversely, if the checkpoint interval is too large, the

re-computing time and recovery time will be too long in the event

of a failure, which also results that the checkpoint recovery scheme

cannot achieve the desired effects and reduce the system total

overheads as expected. Many researchers have worked on the

checkpoint placement problem and given a lot of excellent

solutions.

In the traditional one-level checkpoint model, Young [5]

presented an optimal checkpoint and rollback recovery model,

and obtained the first approximation of the optimal checkpoint

interval by which the total waste time was minimized. Based on

the Young’s work, Daly [6] has proposed a more accurate cost

function, which improved the first order approximation to a

higher order approximation and further reduced the system

overheads. The main contributions of Young [5] and Daly [6] lie

in that they took the cost function of the whole execution period

into account and established a novel derivation principle for the

optimal checkpoint interval. Unfortunately, in their models, both

of them assumed that random failures follow a Poisson process

with a constant failure which cannot adequately represent the

actual failure characteristics [10]. By deducing the checkpoint

frequency function which optimizes the expected overhead, Ling

et al. [7] presented an optimal one-level placement strategy. In this

way, Ling et al. make the one-level checkpoint recovery scheme

independent of the specific distribution and can be used for any

failure distribution.

Due to the high overheads of traditional one-level checkpoint

technology, Oliner et al. [11] presented a cooperative checkpoint-

ing technology that can reduce the system overheads and improve

the system robustness. The cooperative checkpointing schedules

the basic checkpoint placements following the traditional Young’s

one-level checkpoint model. The difference from Young’s model

lies in the technique that they use to further reduce the checkpoint

cost, that is to say, based on the risk estimation of system failures,

some scheduled checkpoints are adaptively skipped. Therefore, the

performance of their cooperative checkpointing depends on the

accurate failure prediction, which is challenging [12], [13].

Elnozahy et al. [14] and Naksinehaboon et al. [15] have proposed

the incremental checkpoint model, which sets a series of

incremental checkpoints between the traditional full checkpoints.

The incremental checkpoint only save the states that must be used

during the recovery process or the changed states instead of the

whole application states, so this model can reduce the overheads of

setting checkpoints, and then reduce the total system overheads. In

addition, Paun et al. [16] reduced the overheads of the

incremental checkpoint scheme by using the optimal checkpoint

frequency function, which also achieved good results. Although it

was considered that the scalability problem could be solved well by

the incremental checkpointing, the incremental checkpointing

methods are not always practical, because most of the implemen-

tations need some system-level support in hardware and the

underlying operating system. Therefore, to avoid the above

implementation concerns, Agarwal et al. [17] presented a purely

software-based incremental checkpoint technique by using the

secure hash function. Their scheme does not need system-level

support, because the computation of the hash function can be

executed in software.

The traditional one-level checkpoint recovery scheme can

reduce the system overheads, but it involves only one type of

checkpoint, and each checkpoint in the one-level checkpoint

recovery scheme is designed to tolerate the worst failure scenario.

Therefore, the overheads of one-level checkpoints are very large.

In order to reduce the overheads of setting checkpoints and the

system total overheads, Vaidya [8] presented the classic two-level

recovery scheme, which sets two types of checkpoints, namely N-

checkpoint and local checkpoint. The N-checkpoint and local

checkpoint are saved in stable storage and local disk respectively

for different failures, and the overhead of setting an N-checkpoint

is much larger than the local checkpoint. In Vaidya’s scheme, the

failure is divided into permanent failure and transient failure, and

the permanent failure must be recovered from the N-checkpoint.

Vaidya’s scheme uses N-checkpoint with high setting overheads to

deal with the less probable or infrequent failures and uses local

checkpoint with low setting overheads to deal with the more

probable or frequent failures. This makes the common failure be

processed faster, and then reduces the system total overheads

compared with the one-level checkpoint scheme. In order to
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obtain the optimal performance, Vaidya determined the two-level

checkpoint placement strategy for exponential failure distribution

by numerical search. However, in reality, the exponential

distribution fails to give a good overall fit to the failure data,

and sometimes other distribution types can give a better fit [10],

[17], such as the Weibull distribution. Hence, a general two-level

checkpoint placement strategy is needed, which not only can be

applied to the exponential failure distribution, but also can be

applied to other distribution types [18]. This problem is still an

unsolved open problem in this field. Later, multi-level checkpoint-

ing system was proposed [19], which can be considered as the

general model of the two-level checkpoint recovery scheme. Multi-

level checkpointing can potentially deal with the case, that

different components have different performances, by assigning

different costs to different types of checkpoints and allowing

adaptive resiliency between different levels. Generally, lightweight

checkpoints are used to deal with the more probable or frequent

failures, while more expensive checkpoints are used to deal with

the less probable or infrequent failures.

Since then, researchers paid more and more attentions to the

checkpoint recovery scheme, and lots of excellent works have been

done in these years [20]. Hilton et al. [21] studied the method how

to achieve minimal recovery to reduce the recovery overheads. By

using the similar idea, Refs. [1], [22], [23], [24] also provided

complementary techniques to reduce the error probability, thus

the probability of rollbacks was reduced. Li et al. [25] proposed a

fast restart mechanism for checkpoint/recovery protocols in

networked environments, which is a complementary technique

to the multi-level checkpointing system. Cores et al. [26] and

Akkary et al. [27] studied the scalability of the checkpoint recovery

scheme, and proposed techniques to reduce the recovery

overheads when the scalability of the application grows. To

further reduce the overheads of the checkpoint recovery process,

Cores et al. [28] carry out the study on how to reduce the size of

the checkpoint files. Also, for large-scale distributed systems, Wei

et al. [29] studied the use of process clones towards localizing

recovery, and they proved that their protocol can result in

localized recovery involving a single group when clones are

employed. Recently, diskless checkpoint has been introduced as a

solution to avoid the I/O bottleneck of disk-based checkpoint [30],

[31]. However, although this method works well, the encoding

time, the dedicated resources and the memory overhead imposed

by diskless checkpoint are significant obstacles against its adoption.

Checkpoint schemes implemented on practical application systems

have also been researched. Rusu et al. [32] proposed two different

failure recovery schemes, which are based on the coordinated

checkpointing and the uncoordinated checkpointing, respectively.

Then, the performance comparison of these two schemes is made

in effectiveness and overheads, and it shows that the first method is

better than the second one due to its lower failure rates and smaller

overheads. Khunteta et al. [33] presented the review of the

algorithms, which have been reported for checkpointing ap-

proaches in mobile ad hoc network. Also, Rodrı́guez et al. [34]

focused on the performance evaluation and studied the factors that

impact the checkpoint recovery scheme, and pointed out

meaningful conclusions about the state-of-the-art and future

research trends in the rollback-recovery field. Rehman et al.
[35] thought that for the system reliability, both software and

hardware abstraction layers of a system should be involved and

contribute its particular advantages towards highly-reliable hard-

ware/software system, and at the same time they proposed a novel

compilation technique for reliability-aware software transforma-

tions and instruction-level vulnerability estimation method. Henkel

et al. [36] introduces the most prominent reliability concerns from

today’s points of view and roughly recapitulates the progress in the

community so far, which is very instructional.

Method

In order to facilitate the description of the proposed scheme,

some notations used frequently in this paper are summarized in

Table 1.

1 Model of Two-level Checkpoint Incremental
Checkpoint Scheme

The two-level incremental checkpoint model is shown in Fig. 1.

The model contains three types of checkpoints, namely N-

checkpoint, m-checkpoint and i-checkpoint. We describe the

model in detail in the following.

In our model, the application sets i-checkpoints periodically, sets

an m-checkpoint after n i-checkpoints periodically, and sets an N-

checkpoint after m m-checkpoints periodically. The interval

between two neighboring N-checkpoints is called a segment.

The first checkpoint or the beginning checkpoint after a failure is

always an N-checkpoint, which saves the total states in the remote

stable storage. The remote stable storage is assumed to be always

failure-free, so we can recover from the N-checkpoint no matter

what type of failures occur. The m-checkpoint saves the

application total states in the local disk. The overhead for saving

application states in the local disk is much less than that in the

remote stable storage. And, the recovery overhead from the local

disk is also less than that from the remote stable storage. So when

the transient failure occurs, we can recover from the m-checkpoint

to reduce the system overheads. The i-checkpoint is also saved in

the local disk, but it only saves the application states that have

changed since the previous checkpoint. So the overheads of both

setting i-checkpoint and recovering from i-checkpoint are quite

low, which reduces the re-computing time significantly after the

failure. We assume the overhead of setting an N-checkpoint, m-

Table 1. Notation.

Notation Meaning

On Overhead of setting an N-checkpoint

Om Overhead of setting an m-checkpoint

Oi Overhead of setting an i-checkpoint

Rn Recovery cost of an N-checkpoint

Tre-compute1 Re-computing time when a permanent failure occurs

Tre-compute2 Re-computing time when a transient failure occurs

Rm Recovery cost of an m-checkpoint

Ri Recovery cost of an i-checkpoint

s() Checkpoint frequency function

pn The probability that a permanent failure occurs

m
Number of m-checkpoints between two neighboring N-
checkpoints

n
Number of i-checkpoints between two neighboring m-
checkpoints

I(i) The checkpoint interval between ti and ti+1

k The re-computing time coefficient

T The time that a failure occurs

f() Probability Density Function

doi:10.1371/journal.pone.0104591.t001
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checkpoint and i-checkpoint is On, Om, Oi, respectively, and they

meet On.Om..Oi.

We divide the failures into permanent failure that occurs

infrequently and transient failure that occurs frequently. The

permanent failure is the one with low probability, and the transient

failure is the one with high probability. When a permanent failure

occurs, the application must recover from the N-checkpoint.

Conversely, when a transient failure occurs, the application only

need recover from the last N-checkpoint or m-checkpoint. If there

are i-checkpoints after the last N-checkpoint or m-checkpoint, the

application needs to read the i-checkpoint no matter from which

checkpoint to recover. That is, when a failure occurs, the

application can recover by the last N-checkpoint and several

related i-checkpoints or the last m-checkpoint and several related i-
checkpoints. The i-checkpoint can only be used with the N-

checkpoint or the m-checkpoint in recovering the application and

the sole i-checkpoint cannot recover any application. Thus,

although there are three types of checkpoints, the two-level

incremental checkpoint recovery scheme is not a three-level one as

a particular case of [19]. In our paper, the overhead of recovering

from N-checkpoint, m-checkpoint and i-checkpoint is Rn, Rm, Ri,

respectively, and they meet Rn.Rm..Ri.

Similar to [15], [16], [18], the following assumptions are also

made in this paper.

1. The long-running application can be interrupted by a series of

unexpected failures, and the failure follows the probability

density function (PDF) f(t). And the failures are independent of

each other.

2. The failure can be detected by a monitoring mechanism once

the failure occurs.

3. The first checkpoint or the beginning checkpoint after a failure

is always an N-checkpoint.

4. Because the process state is changing with the time, the size of

the checkpoint file is constantly changing. In order to simplify

the calculation, the overheads of setting checkpoints On, Om, Oi

and the recovery cost of checkpoints are assumed to be constant.

In practice, we use the average value of each parameter.

5. The number of m-checkpoint between two neighboring N-

checkpoints is m, and the number of i-checkpoint between two

neighboring m-checkpoints is n, and the m and n are both

constant if no failures occur.

6. The failure never occurs during the re-computing and recovery

time.

What we should point out is that although we adopt the similar

assumptions used in [15], [16], [18], to simplify the problem, that

is to say, assume that m and n are constant, they vary uncertainly

and also affect the system performance. If m becomes larger, the

overheads of setting checkpoints will become larger. If m becomes

smaller, the overheads of re-computing time when a permanent

failure occurs will become smaller. The value of n has the similar

affect on system performance.

2 System Total overhead Function
The system total overhead Ttotal_overhead in the long-running

application is consists of three parts [6], [16], [18]: the overhead of

setting checkpoints Tset_checkpoint, the re-computing time in the

event of failures Tre-compute and the overhead of recovering from

the failures Trecovery. That is, Ttotal_overhead = Tset_checkpoint+
Tre-compute+Trecovery. Next, we deduce the system total overhead

function specifically in (0, T). We assume that the overheads

corresponding to those three parts are Tset_checkpoint(T), Tre-compute

(T) and Trecovery (T) respectively in (0,T).

2.1 Overhead of Setting Checkpoints. Due to the check-

point placement procedure is a renewal process [37], therefore, the

new cycle starts whenever a failure occurs. In order to obtain the

optimal placement strategy of the two-level incremental check-

point recovery scheme, we introduce the checkpoint frequency

function. Here we first give the definition of the checkpoint

frequency function, and then we deduce the overhead function of

setting checkpoints of the two-level incremental checkpoint

recovery scheme.

Definition 1. Let s(t) be checkpoint frequency function, then.

ðtiz1

ti

s(t)dt~1,i§0 ð1Þ

where ti(i = 1,2,…) is the ith checkpoint placement, and t0 = 0.

Figure 1. The two-level incremental checkpoint model.
doi:10.1371/journal.pone.0104591.g001
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We assume T is the time when a failure occurs. According to (1),

the number of N-checkpoints, m-checkpoints and i-checkpoints

in (0, T) are approximated by
1

(mz1)(nz1)

ðT

0

s(g)dg,

m

(mz1)(nz1)

ðT

0

s(g)dg and
(mz1)n

(mz1)(nz1)

ðT

0

s(g)dg, respective-

ly. So, in (0, T), the total overheads of setting checkpoints are.

Tset checkpoint(T)~
On

(mz1)(nz1)

ðT

0

s(g)dg

z
mOm

(mz1)(nz1)

ðT

0

s(g)dgz
(mz1)nOi

(mz1)(nz1)

ðT

0

s(g)dg

~
OnzmOmz(mz1)nOi

(mz1)(nz1)

ðT

0

s(g)dg

ð2Þ

2.2 The Re-computing time. The re-computing time is a

period between the last recovery checkpoint and the present

failure. For better dealing with the different scenarios, we divide

the failures into two types. One is the permanent failure that is less

probable and occurs infrequently, and the other is the transient

failure that is more probable and occurs frequently. When a

permanent failure occurs, the application must recover from the

N-checkpoint. Conversely, when a transient failure occurs, the

application can recover from the last N-checkpoint or m-

checkpoint. If there are i-checkpoints after the last N-checkpoint

or m-checkpoint, the application also needs to read the i-
checkpoints no matter from which checkpoint to recover. We

assume the probability of the permanent failure is pn. As shown in

Fig. 1, when a permanent failure occurs, the re-computing time is

Tre-compute1, while when a transient failure occurs, the re-

computing time is Tre-compute2.

When a transient failure occurs, the re-computing time

Tre-compute2 is the interval from last recovery checkpoint to the

failure time. The relationship between Tre-compute2 and the

checkpoint interval is shown in Fig. 2. Tre-compute2 can be

expressed as (3) [18], where k is a re-computing time coefficient

variable between (0, 1).

Tre�compute2&
k

s(T)
,k[(0,1) ð3Þ

When a permanent failure occurs, the re-computing time

Tre-compute1 is the interval from last N-checkpoint to the failure

time. Tre-compute1 can be expressed as (4)

Tre�compute1&
kz(mz1)(nz1){1

s(T)
ð4Þ

In summary, the total re-computing time can be expressed as.

Tre�compute(T)~pn
:Tre�compute1z(1{pn):Tre�compute2

&pn
kz(mz1)(nz1){1

s(T)
z(1{pn)

k

s(T)

ð5Þ

2.3 Overhead of Recovering From Failures. The overhead

of recovering from failures is the time consumed from reading the

information from checkpoint to returning to the state that the last

checkpoint saved after a failure occurs. According to assumption 4,

the recovery cost of N-checkpoint, m-checkpoint and i-checkpoint,

namely Rn, Rm, Ri, are assumed to be constant. We assume the

probability that a failure is permanent is pn, so the probability that

a failure is transient is (1-pn). Then, the overhead of recovering

from failures can be expressed as.

Trecovery(T)&pnRnz(1{pn)(R0znRi) ð6Þ

where R0~
Rm, m§1
Rn, m~0

�
.

3 Optimal Checkpoint Frequency Function
Here, we first give the definition of the system total checkpoint

overheads function, and then we deduce the global optimal

checkpoint frequency function through the total checkpoint

overheads function.

Definition 2. The total checkpoint overheads can be

expressed as a function about the failure time T, which can be

expressed as.

Ttotal overhead(T)~
OnzmOmz(mz1)nOi

(mz1)(nz1)

ðT

0

s(g)dg

zpn

kz(mz1)(nz1){1

s(T)
z(1{pn)

k

s(T)

zpnRnz(1{pn)(R0znRi)

ð7Þ

where R0~
Rm, m§1

Rn, m~0

�
:

The time when a failure occurs is random during the application

execution, so whenever a failure occurs, the application will recover

from the corresponding checkpoint and place the new checkpoints,

and the task will be also restarted after failures. Therefore, checkpoint

placement process is a renewal reward process. We define Wi as the

total overheads from the starting or restarting point to the ith failure.

The total overheads of the long-running application can be expressed

Figure 2. The relationship between Tre-compute2 and the
checkpoint interval.
doi:10.1371/journal.pone.0104591.g002
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as
Xj

i~1
Wi, where j is the number of failures. According to the

theorem of a renewal reward process [37], we obtain.

lim
t??

Xj

i~1
Wi

t
~

E(W1)

E(T1)
ð8Þ

T1 is the time when the first failure occurs. The left hand side of

the above equation represents the total average overheads, and it is

a function of the average overheads in the first circle, E(W1). The

Equation (8) suggests that minimizing the total average overheads

is equivalent to minimizing the overheads from the starting point

to the first failure. We define f(t) as the probability density function

of the failure, then the average checkpoint overhead in the first

circle is described as follows:

E(Ttotal overhead)~

ð?
0

½OnzmOmz(mz1)nOi

(mz1)(nz1)

ðT

0

s(g)dg

zpn
kz(mz1)(nz1){1

s(T)
z(1{pn)

k

s(T)

zpnRnz(1{pn)(R0znRi)�f (t)dt

ð9Þ

By solving the minimum of (9), we can get the optimal

checkpoint frequency function s(g)opt.

The conclusion of the optimal checkpoint frequency function is

shown as Theorem 1.

Theorem 1. The optimal checkpoint frequency function that
minimizes the global average checkpoint overhead can be expressed
as

s(t)opt

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mz1)(nz1)½pn(mnzmznzk)z(1{pn)k�

OnzmOmz(mz1)nOi

s
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f (t)

1{F (t)

s ð10Þ

Proof. Let y(t)~

ðT

0

s(g)dg. By substituting it into (9), we

obtain

E(Ttotal overhead)~

ð?
0

½OnzmOmz(mz1)nOi

(mz1)(nz1)
y(t)

zpn
kz(mz1)(nz1){1

y0(t)
z(1{pn)

k

y0(t)

zpnRnz(1{pn)(R0znRi)�f (t)dt

ð11Þ

We let

g(y,y0,t)~½OnzmOmz(mz1)nOi

(mz1)(nz1)
y(t)

zpn
kz(mz1)(nz1){1

y0(t)
z(1{pn)

k

y0(t)

zpnRnz(1{pn)(R0znRi)�f (t)

ð12Þ

Based on the theorem of calculus of variations [15], if the

integral in (12) has a minimum value, (12) must satisfy Euler-

Lagrange in (13)

Lg

Ly
{

d

dt
(
Lg

Ly0
)~0 ð13Þ

Taking the partial derivative of g with respect to y and y’

respectively, we have

Lg

Ly
~

OnzmOmz(mz1)nOi

(mz1)(nz1)
f (t) ð14Þ

Lg

Ly0
~{

kzpn½(mz1)(nz1){1�
y0(t)½ �2

f (t) ð15Þ

By substituting (14) and (15) into (13) and integrating on both

sides of (15) on the interval (0, t), we obtain

On zmOm z ( mz1) nOi

( mz 1) ( nz 1)
F( t)

z
kzpn ½( mz1) ( nz1){1�

y0( t)½ �2
f (t)~C

where C is a constant. Because the function y(t) satisfies the

conditions in the following.

y(0)~0

lim
t??

Lg

Ly0
~0

ð17Þ

Applying the second condition in (17) to (16), we obtain.

C~
OnzmOmz(mz1)nOi

(mz1)(nz1)
ð18Þ

By substituting (18) into (16) we can get.

y0(t)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mz1)(nz1)½pn(mnzmznzk)z(1{pn)k�

OnzmOmz(mz1)nOi

s
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f (t)

1{F(t)

s
ð19Þ

Because s(t) = y’(t), the optimal checkpoint frequency function

that minimizes global average checkpoint overhead can be

expressed as (10).

After obtaining the global optimal checkpoint frequency

function, the checkpoint number m, n and the average checkpoint

overhead E(Ttotal_overhead) of the two-level incremental checkpoint

placement strategy are determined. We can compute the optimal

checkpoint placement time through the optimal checkpoint

frequency function. If k and the minimum of m, n are obtained,

the checkpoint placement strategy is determined finally.

Before determining the checkpoint placement time we should

(16)
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give the method to estimate the expected re-computing time

coefficient k.

4 Estimation of Expected Re-computing Time
Coefficient�kk

As shown in Fig. 2, we can use the re-computing time

Tre-compute2 and the checkpoint interval to estimate the re-

computing time coefficient k. In addition, it is obvious that the

re-computing time Tre-compute2 is a random variable depending on

the time when the failure occurs. Therefore, if we know the

distribution of the time between failures, then Tre-compute2 can be

estimated, and then k also can be estimated.

Definition 3. The re-computing time coefficient k is the ratio

between the re-computing time Tre-compute2 and the checkpoint

interval in which a failure occurs. So, the re-computing time

coefficient k can be expressed as.

k~
Tre�compute2

tiz1{ti

~
T{ti

tiz1{ti

ð20Þ

where T is the time when the failure occurs. In order to estimate k,

we first need the following definition to estimate the expected re-

computing time Tre-compute2 for each checkpoint interval.

Definition 4. Excess life is a random variable, Z.0, which

denotes system survival until time t+Z given that it survives till time

t. We respectively denote the cumulative distribution function

(CDF), the probability density function (PDF) and the expected

value of the excess life Z as follows.

F (tzzjt)~P(TvtzzjTwt) ð21Þ

f (tzzjt)~ dF (tzzjt)
dz

ð22Þ

E(z)~

ð?
0

zf (tzzjt)dz ð23Þ

In our model, ti is the ith checkpoint placement. The re-

computing time Tre-compute2 during the interval is a random

variable such that its value is in the interval (0,ti+1-ti). According to

Definition 4, the expected value of re-computing time Tre-compute2

can be expressed as.

E(Ti
re�compute2)~

Ð tiz1{ti
0 zf (tizzjti)dzÐ tiz1{ti
0 f (tizzjti)dz

ð24Þ

Therefore, the expected k of the ith checkpoint interval, ki, is.

ki~
E(Ti

re�compute2)

tiz1{ti

ð25Þ

Hence, the expected re-computing time coefficient is.

k~

XN

i~1
PikiXN

i~1
Pi

ð26Þ

where Pi = P(ti,T,ti+1|T.ti) and N is the number of the

checkpoints. The method to estimate the re-computing time

coefficient k is given by (26), therefore the minimum of m and n is

obtained, and then the two-level incremental checkpoint placement

strategy is determined finally. Next, we give a method to determine

the two-level incremental checkpoint placement strategy.

5 Determine Two-level Incremental Checkpoint
Placement Strategy

From (10) we can see that the re-computing time coefficient k,

the number of m-checkpoint m and the number of i-checkpoint n
are closely related, and therefore, in practice, we have to find k, m
and n at the same time. In the following we give the method to

estimate k and the minimum of m and n.

Algorithm 1. Algorithm to estimate k and the minimum of m,

n:

Step 1: Initialize the parameter k, m and n. Let kini = 0.5,

mini = 1, nini = 1. (when m = 0 or n = 0 the two-level incremental

checkpoint recovery scheme degenerates to the two-level check-

point recovery scheme, so the value m = 0 or n = 0 has no

meanings.).

Step 2: Input kini, mini and nini. Calculate the optimal checkpoint

frequency function using (10). Output s(t)opt.

Step 3: Input s(t)opt. Calculate the minimum of m and n using

(9). Output mmin and nmin.

Step 4: Input kini, mmin and nmin. Calculate the checkpoint

placement time relating to kini, mmin and nmin using (1) and (10).

Output t1, t2,…, tN.

Step 5: Input t1, t2,…, tN. Calculate the expected re-computing

time coefficient using the (24), (25) and (26). Output k.

Step 6: If kini~k, set k~kini~k, the algorithm ends.

Otherwise, set kini~k, and return to step 2.

When k and the minimum of m and n are determined, the

checkpoint placement time can be calculated using (1), and then

the two-level incremental checkpoint placement strategy is

determined finally.

We can see that the above derivation processes about the

optimal frequency function s(t)opt, k and the minimum of m and n
are not specific for a certain kind of failure distribution, but only

involve the abstract form of distribution functions f(t). Therefore,

the checkpoint placement method does not depend on specific

failure distribution types, and the method can be applied to

different failure distribution types, such as the Weibull distribution,

exponential distribution and so on. When the method is applied to

specific failure distribution type, we only need to replace f(t) with

the specific failure distribution.

Examples

Because the two-level incremental checkpoint recovery scheme

proposed in this paper is independent of the failure distribution

type, it is applicable to different failure distribution types. And

thus, we can calculate the checkpoint placement time under any

failure distribution type. Although the failure distribution types are

various, the methods to calculate the checkpoint placement time

for different distribution are similar. The Weibull distribution and
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exponential distribution fit the actual failure features best, and

therefore, we take them as examples to illustrate how to calculate

the two-level incremental checkpoint placement time, and then to

determine the checkpoint placement strategy.

Whether the failure follows the Weibull distribution or

exponential distribution, when we want to determine the

checkpoint placement time using the algorithm mentioned in

Section 3.4, we first need to calculate the minimum of m and n,

namely mmin and nmin, respectively. About calculating t1, t2,…, tN
in step 4, we give the following conclusions.

In order to calculate the checkpoint placement time better, we

first give CDF and PDF of the Weibull and exponential

distribution. The CDF and PDF of the Weibull distribution are

Fweibull(t)~1{e{tb=ab

and fweibull(t)~(b=a)(t=a)b{1e{tb=ab

, re-

spectively, where a is the scale parameter and b is the shape

parameter. The CDF and PDF of the exponential distribution are

Fexp(t)~1{e{ltand fexp(t)~ae{lt, respectively, where l is the

rate parameter.

Theorem 2. Let ti(i = 1,2,…) be the checkpoint placement time,
such that t0 = 0. When the failure distribution follows the Weibull
distribution, ti can be expressed as

ti~(i
bz1

2Awbl
)

2
bz1 ð27Þ

where Awbl~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mz1)(nz1)½pn(mnzmznzk)z(1{pn)k�

OnzmOmz(mz1)nOi

s
:

ffiffiffiffiffi
b

ab

r
.

Proof. When the failure distribution follows the Weibull

distribution, by substituting the CDF and PDF of the Weibull

distribution into (10), we obtain the optimal checkpoint frequency

function for the Weibull distribution.

s(t)opt~Awbl
:t

b{1
2 ð28Þ

where Awbl~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mz1)(nz1)½pn(mnzmznzk)z(1{pn)k�

OnzmOmz(mz1)nOi

s
:

ffiffiffiffiffi
b

ab

r
.

According to Definition 1, we have.

ðtiz1

ti

s(t)optdt~

ðtiz1

ti

Awbl
:t

b{1
2 dt~

2Awbl

bz1
(t

bz1
2

i {t
bz1

2
i{1 )~1 ð29Þ

Therefore,

ti~(
bz1

2Awbl
zt

bz1
2

i{1 )
2

bz1 ð30Þ

By induction, we obtain.

ti~(i
bz1

2Awbl
)

2
bz1 ð31Þ

where i = 0,1,2,…, and t0 = 0.

Theorem 3. Let ti(i = 1,2,…) be the checkpoint placement time,
such that t0 = 0. When the failure distribution follows the
exponential distribution, ti can be expressed as

ti~
1

Aexp
i ð32Þ

where Aexp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mz1)(nz1)½pn(mnzmznzk)z(1{pn)k�

OnzmOmz(mz1)nOi

s
:
ffiffiffi
l
p

.

Proof. When the failure distribution follows the exponential

distribution, by substituting the CDF and PDF of the exponential

distribution into (10), we obtain the optimal checkpoint frequency

function for exponential distribution.

s(t)opt~Aexp ð33Þ

where Aexp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mz1)(nz1)½pn(mnzmznzk)z(1{pn)k�

OnzmOmz(mz1)nOi

s
:
ffiffiffi
l
p

.

According to Definition 1, we have

ðtiz1

ti

s(t)optdt~

ðtiz1

ti

Aexpdt~Aexp(ti{ti{1)~1 ð34Þ

Therefore,

ti~
1

Aexp
zti{1 ð35Þ

By induction, we obtain.

ti~
1

Aexp
i ð36Þ

where i = 0,1,2,…, and t0 = 0.

Using Theorem 2 and Theorem 3, we can calculate the

checkpoint placement time for the Weibull distribution and

exponential distribution. Next, we analyze the changes

between two neighboring checkpoint intervals when the failure

follows the Weibull distribution and exponential distribution

respectively.

Theorem 4. Let I(i) be the checkpoint interval between ti and
ti+1. When the failure follows the Weibull distribution, if the shape
parameter bw1, I(i) is decreasing, and if the shape parameter
bv1, I(i) is increasing.

Proof. According to (27), when the failure follows the Weibull

distribution, we have

I(i)~tiz1{ti~½(iz1)
bz1

2Awbl
�

2
bz1{½i bz1

2Awbl
�

2
bz1

~(
bz1

2Awbl

)
2

bz1: 2

bz1
:½(iz1)

( 2
bz1

{1)
{i

( 2
bz1

{1)�
ð37Þ

where Awbl~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mz1)(nz1)½pn(mnzmznzk)z(1{pn)k�

OnzmOmz(mz1)nOi

s
:

ffiffiffiffiffi
b

ab

r
w0.
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Solving the first derivation of I(i), we have

I 0(i)~
d

di
I(i)~

d

di
½(iz1)

2
bz1 { i

2
b z1 �( bz 1

2Awbl
)

2
b z 1

~ (
bz1

2Awbl

)
2

b z1 : 2

bz1
:½(iz1)

( 2
bz1

{1)
{ i

( 2
bz1

{1)�:
ð38Þ

From (38), we can see that if bw1, I’(i),0, that is to say, the

checkpoint interval I(i) is decreasing, and if bv1, the checkpoint

interval I(i) is increasing.

Note: If b~1, the Weibull distribution turns into exponential

distribution, the related conclusions are shown in the following.

Theorem 5. Let I(i) be the checkpoint interval between ti and
ti+1. When the failure follows the exponential distribution, I(i) is
constant unrelated with the i.

Proof. According to (27) when the failure follows the

exponential distribution, we have.

I(i)~tiz1{ti~
1

Aexp
(iz1){

1

Aexp
i~

1

Aexp
ð39Þ

where

Aexp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mz1)(nz1)½pn(mnzmznzk)z(1{pn)k�

OnzmOmz(mz1)nOi

s
:
ffiffiffi
l
p

.

From (38), we can see that I(i) is constant unrelated with the i.
Here, we only take the Weibull distribution and exponential

distribution as examples to illustrate how to calculate the two-level

incremental checkpoint placement time, and analyze the nature of

the checkpoint interval for the Weibull distribution and exponen-

tial distribution. When the failure follows other distribution types,

the checkpoint placement time also can be calculated by (1).

After the checkpoint placement time for the Weibull distribution

and exponential distribution are calculated by (27) and (32), the

expected re-computing time coefficient k can be calculated using

the step 5 of the algorithm in Section 3.4, and then through the

judgment of step 6, the k, mmin, nmin and the checkpoint placement

sequences t1, t2,…, tN can be determined. In this way the

checkpoint placement strategy for the Weibull and exponential

distribution is determined finally.

Performance Analyses

For the two-level checkpoint recovery scheme which is used to

the large scale and long-running tasks, huge memory context must

be transferred through the network and saved in a reliable storage.

So the overheads of setting checkpoints and the re-computing time

directly impact the system total overheads and the system

performance. In order to further reduce the overheads of setting

checkpoints, the re-computing time, the system total overheads,

and make the scheme be applied to any type of failure distribution,

we present a two-level incremental checkpoint recovery scheme

based on the ideal that using checkpoint with high setting

overheads to deal with the less probable or infrequent failures and

using checkpoint with low setting overheads to deal with the more

probable or frequent failures.

However, for the traditional one-level checkpoint recovery

scheme, the two-level checkpoint recovery scheme and our two-

level incremental checkpoint recovery scheme, they all have their

own merits or demerits. In the one-level checkpoint recovery

scheme, either full or incremental checkpoint, only one kind of

failure has been taken into account, and thus its placement strategy

is simple. When a failure occurs, what we should do is just to

recover the system for the latest checkpoint. However, this method

cannot deal with different failures in different way, which

forecloses the aim of the optimal performance. Compared with

the one-level checkpoint recovery scheme, the two-level scheme

can deal with the two different failures and achieve the more

optimal performance. But it makes the placement strategy more

difficult, because two kinds of checkpoints should be considered.

Besides, it cannot distinguish the failures with different frequency.

Our two-level incremental checkpoint recovery scheme adopted

three kinds of checkpoints to deal with the above failures to

achieve the optimal performance. But, the larger the number of

kinds of checkpoints, the more difficult the checkpoint placement

strategy becomes. In a word, compared to the two-level checkpoint

recovery scheme, the proposed scheme significantly reduces the

overheads of setting checkpoints and the re-computing time, and

thereby reduces the system total overheads. In addition, this paper

deduces the global optimal checkpoint overheads function and

Figure 3. The relationship between optimal number of i-
checkpoints and pn under different u = Oi/Om.
doi:10.1371/journal.pone.0104591.g003

Figure 4. The relationship between optimal number of
i-checkpoints and u under different pn.
doi:10.1371/journal.pone.0104591.g004
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solves the problem that how to determine the optimal checkpoint

placement strategy through.

To evaluate performance of our scheme, in this section, we first

discuss the factors affecting the number of i-checkpoints between

two neighboring N-checkpoints, and then analyze and show the

advantages of the two-level incremental checkpoint recovery

scheme compared with the two-level checkpoint recovery scheme.

1 Factors Affecting Optimal Number of Checkpoint in
One Segment

The number of i-checkpoints between two neighboring N-

checkpoints is the key factor that determines the checkpoint

placement and affects the re-computing time and the system total

overheads. If the number of i-checkpoints is obtained, with the

value of the parameter pn, we can obtain the related number of m-

checkpoints. In this case, the checkpoint placement strategy is

determinate. So, we will mainly give a mathematical analysis and

conclusions about the optimal number of i-checkpoints between

two neighboring N-checkpoints in our checkpoint placement

strategy.

According to Section 3.3, we can determine the optimal number

of i-checkpoints between two neighboring N-checkpoints with

specific parameters. The tendency of the optimal number of i-
checkpoints will be shown visually by several groups of examples in

Fig. 3. The parameter pn is the probability of recovering from an

N-checkpoint, and u = Oi/Om is the ratio of the overheads of

Figure 5. The comparison results between two-level incremental checkpoint recovery scheme and two-level checkpoint recovery
scheme for the Weibull distribution. (a) The relationship between the total overheads of setting checkpoints and the number of failures; (b) The
relationship between the total re-computing time and the number of failures; (c) The relationship between the total overheads of recovering from
the failures and the number of failures; (d) The relationship between the system total overheads and the number of failures; Note: Time Unit depends
on parameters in practical implementation, such as the practical value of Om, so it is not given here, which is similar to the case in Figs. 6–10.
doi:10.1371/journal.pone.0104591.g005

Table 2. The parameters of two-level incremental checkpoint recovery scheme.

Parameter pn kini On Om Oi Rn Rm Ri

Value 0.05 0.5 1.0 0.1 0.005 1.0 0.1 0.005

doi:10.1371/journal.pone.0104591.t002
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setting i-checkpoint and m-checkpoint. The range of u is (0,1).

Note that we do not care the occasions when u = 0 and u = 1.

When u = 0, it means the overhead of i-checkpoint is 0; when

u = 1, it means the overhead of i-checkpoint is equivalent to the

overhead of m-checkpoint. In both cases, the two-level incremental

checkpoint recovery scheme will degenerate to the two-level

checkpoint recovery scheme. The range of pn is (0, 1). The case,

pn = 0 or pn = 1, means only permanent failure or only transient

failure occurs in the system, which does not match the actual

situations, so we do not consider these two cases either. In fact,

during the practical running, the checkpoint recovery scheme

must be affected by other factors, such as network throughout and

I/O interaction [30], [31]. However, the existing schemes

[15,16,18] just considered the main factors that affect the system

performance basically and their experiments ignore the affection

of them. Now, there have been some other researches that study

their affection on the checkpoint recovery scheme, which has been

considered as another new and independent research topic. Also in

our experiment, to achieve the performance comparison between

the existing schemes and ours in the same circumstance, we also

ignore these factors like [15,16,18]. Studies of the affection of these

factors is not our contribution of this paper, and may be one of our

further works.

Fig. 3 shows that the optimal number of i-checkpoints between

two neighboring N-checkpoints varies with the parameter pn for a

given value u according to our placement strategy. As shown in

Fig. 3, for a given value u, the greater probability pn is, the smaller

the optimal number of i-checkpoints is. When pn is large enough,

no i-checkpoint is taken. For example when u = Oi/Om = 0.05 and

pn = 0.5, there is no i-checkpoint in the proposed scheme and there

only exist N-checkpoint and m-checkpoint, and now the two-level

incremental checkpoint recovery scheme degenerates to the two-

level checkpoint recovery scheme. This is because when the

probability pn of the permanent failure rises, which means that the

permanent failure occurs frequently. And in this case, the system

only can recover from the N-checkpoint, which results in that the

placement of i-checkpoint becomes less and less. In order to

reduce the system overheads, the i-checkpoint should be set less

and less until it disappears.

The following Fig. 4 shows that the optimal number of i-
checkpoints between two neighboring N-checkpoints varies with

the checkpoint ratio u for a given value pn according to our

placement strategy.

As shown in Fig. 4, the comparison results of several curves of

different value pn show that that the greater checkpoint ratio u is,

the smaller the optimal number of i-checkpoint for a given

Figure 6. The comparison results between two-level incremental checkpoint recovery scheme and two-level checkpoint recovery
scheme for exponential distribution. (a) The relationship between the total overheads of setting checkpoints and the number of failures; (b) The
relationship between the total re-computing time and the number of failures; (c) The relationship between the total overheads of recovering from
the failures and the number of failures; (d) The relationship between the system total overheads and the number of failures.
doi:10.1371/journal.pone.0104591.g006
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parameter pn is. Especially when the value u is large enough, no i-
checkpoint is scheduled. For example, when pn = 0.25 and u = Oi/
Om = 0.9, there will be no i-checkpoints and there only exist the N-

checkpoint and m-checkpoint, and now the two-level incremental

checkpoint recovery scheme degenerates to the two-level check-

point recovery scheme. This is because when the value u becomes

larger and larger, which results that the overheads of setting i-
checkpoints become larger and larger and gradually approach the

overheads of setting m-checkpoint. The above situation results in

that the contents of i-checkpoint are approximately equal to those

of m-checkpoint, so the i-checkpoint gradually changes to m-

checkpoint until it disappears.

2 Performance Comparisons
In this section, we use three groups of experiments to analyze

the advantages of two-level incremental checkpoint recovery

scheme compared to the two-level checkpoint recovery scheme.

All these three groups of experiments are carried out under the

Weibull distribution and exponential distribution. The first group

of experiments compares the total overheads of setting check-

points, the total re-computing time, the total overheads of

recovering from failures, the system total overheads with the

numbers of the failure between the two-level increment checkpoint

recovery scheme and the classical two-level checkpoint recovery

scheme [8]. The second group of experiments compares the total

overheads of setting checkpoints, the total re-computing time, the

total overheads of recovering from failures, the system total

overheads with the task completion time between these two

schemes. The third group of experiments compares the total

overheads of setting checkpoints, the total re-computing time, the

total overheads of recovering from failures, the system total

overheads with the numbers of the failure under the different

checkpoint ratio u between these two schemes. The system total

overheads refer to the sum of total overheads of setting

checkpoints, total re-computing time and total overheads of

recovering from failures.

Our simulations are based on the 22 high-performance

computing systems in LANL (Los Alamos National Labs) from

February 23, 1997 to September 2, 2004, which is a period of

round 3,958,008 minutes and has 514 failures. When the failure

follows the exponential distribution, like [8], we also assume the

rate parameter of permanent failure lp = 1025 and the rate

parameter of transient failure ll = 1026. When the failure follows

the Weibull distribution, we make the best fitted Weibull

distribution to the Node1’s failure datum of System2 in LANL

from February 23, 1997 to December 10, 2004, and obtain the

Figure 7. The comparison results between two-level incremental checkpoint recovery scheme and two-level checkpoint recovery
scheme for the Weibull distribution. (a) The relationship between the total overheads of setting checkpoints and the completion time; (b) The
relationship between the total re-computing time and the completion time; (c) The relationship between the total overheads of recovering from the
failures and the completion time; (d) The relationship between the system total overheads and the completion time.
doi:10.1371/journal.pone.0104591.g007
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fitted shape parameter b = 0.6857 and the scale parameter

a = 2.0815. And the other parameters are shown in Table 2.

2.1 Performance Comparisons under the Failure

Numbers. Firstly, we respectively compare the total overheads

of setting checkpoints, the total re-computing time, the total

overheads of recovering from failures and the system total

overheads with the numbers of the failure between the two-level

increment checkpoint recovery scheme and the classical two-level

checkpoint recovery scheme. The comparison results are shown in

Fig. 5 and Fig. 6.

From Fig. 5 and Fig. 6, we can see that for both the Weibull

distribution and exponential distribution, the total overheads of

setting checkpoints, the total re-computing time and the system

total overheads in our two-level incremental checkpoint recovery

scheme are all less than those in the two-level checkpoint recovery

scheme. Only the total overheads of recovering from failures in

our two-level incremental checkpoint recovery scheme is slightly

larger than the two-level checkpoint recovery scheme, this is

because when the transient failure occurs, the two-level checkpoint

recovery scheme needs to read the i-checkpoint after the last N-

checkpoint or m-checkpoint, which increases the recovery

overheads. However, the growth of total overheads of recovering

from failures is negligible compared to the reduction of the other

aspects.

2.2 Performance Comparisons under the task completion

time. Next, we respectively compare the total overheads of

setting checkpoints, the total re-computing time, the total

overheads of recovering from failures and the system total

overheads with the task completion time between the two-level

increment checkpoint recovery scheme and the classical two-level

checkpoint recovery scheme. The comparison results are shown in

Fig. 7 and Fig. 8.

From Fig. 7 and Fig. 8, we can see that for both the Weibull

distribution and exponential distribution, the total overheads of

setting checkpoints, the total re-computing time and the system

total overheads in our two-level incremental checkpoint recovery

scheme are all less than the two-level checkpoint recovery scheme.

Only the total overheads of recovering from failures in our two-

level incremental checkpoint recovery scheme is slightly larger

than the two-level checkpoint recovery scheme, this is also because

when the transient failure occurs, the two-level checkpoint

recovery scheme needs to read the i-checkpoint after the last N-

checkpoint or m-checkpoint, which increases the recovery

overheads. However, the growth of total overheads of recovering

Figure 8. The comparison results between two-level incremental checkpoint recovery scheme and two-level checkpoint recovery
scheme for exponential distribution. (a) The relationship between the total overheads of setting checkpoints and the completion time; (b) The
relationship between the total re-computing time and the completion time; (c) The relationship between the total overheads of recovering from the
failures and the completion time; (d) The relationship between the system total overheads and the completion time.
doi:10.1371/journal.pone.0104591.g008
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from failures is negligible compared to the reduction of the other

aspects. And the longer the task completion time is, the larger the

advantage of our proposed scheme in reducing the system total

overheads is, which shows that our proposed recovery scheme is

more suitable for long-running application task and can obtain the

lower system total overheads.

2.3 Performance Comparisons under different

checkpoint ratio. From the above analyses, we know that the

proposed scheme reduces the overhead of the system total

overheads, re-computing time and the overheads of the setting

checkpoints through introducing the i-checkpoint with low setting

overheads. Next, through comparing the system total overheads

with the task completion time between two-level checkpoint

recovery scheme and two-level checkpoint recovery scheme under

the Weibull distribution and exponential distribution, we show

how the checkpoint ratio influences the system total overheads,

and then show how the i-checkpoint influences the system total

overheads. The checkpoint ratio u = Oi/Om is the ratio of the

overheads of setting i-checkpoint and m-checkpoint.

From Fig. 9 and Fig. 10, we can see that when the value u is

small, the system total overheads of two-level incremental

checkpoint recovery scheme for both failure distribution types

are smaller than those of the two-level checkpoint recovery

scheme, for example, under the situation u,15% for the Weibull

distribution and u,30% for exponential distribution. When the

value u approaches some threshold, each checkpoint recovery

scheme has its own advantages respectively, for example, when u
approaches 15% for the Weibull distribution (the two curves

coincide approximately) and 33% for exponential respectively.

When the value u is larger than this threshold, the system total

overheads of two-level incremental checkpoint recovery scheme

for both failure distribution are larger than the two-level

checkpoint recovery scheme, for example, when u.15% for the

Weibull distribution and u.30% for exponential distribution.

These conclusions are consistent with the results of the Fig. 4. This

is because when the value u increases to a certain value, the

overheads of setting i-checkpoints approach the overheads of

setting m-checkpoint, which results in that the contents of i-
checkpoint are approximately equal to the contents of m-

checkpoint. So the i-checkpoint loses the advantage of low setting

overhead gradually, and therefore, the advantage of the two-level

incremental checkpoint becomes less and less.

In conclusion, when the value u is small, compared to the two-

level checkpoint recovery scheme, the longer the time of long-

running application is, the larger the advantage of our proposed

scheme is, the larger the reduction of the system total overheads is,

Figure 9. For the Weibull distribution, comparisons of the system total overheads between two-level incremental checkpoint
recovery scheme and two-level checkpoint recovery scheme. (a) u = Oi/Om = 10%; (b) u = Oi/Om = 12.5%; (c) u = Oi/Om = 15%; (d) u = Oi/
Om = 17.5%.
doi:10.1371/journal.pone.0104591.g009
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and the better the performance of the proposed scheme is. The

introduced i-checkpoint in our proposed scheme only save the

application states that have changed since the previous checkpoint,

while the m-checkpoint save the total states of the application. The

stored contents of the changed states are much lower than the total

states, so the overhead of setting an i-checkpoint is much lower

than the m-checkpoint. Therefore, the checkpoint ratio u can be

kept in a small value. So, our two-level incremental checkpoint

recovery scheme has the better performance than the two-level

checkpoint recovery scheme.

Limitations of the study, open questions, and
future work

The checkpoint recovery technology has been considered as a

promising technique to tolerate the system failures, guarantee the

system reliability, and ensure the successful completion of the long-

running tasks, and lots of checkpoint recovery schemes have been

proposed recently. In this paper, based on the two-level checkpoint

recovery idea, a two-level incremental checkpoint recovery scheme

is proposed to further reduce the system total overheads. Three

types of checkpoints, say N-checkpoint, m-checkpoint and i-
checkpoint, are used in our scheme. The N-checkpoint is used to

deal with the less probable or infrequent failures, while the m-

checkpoint and i-checkpoint are used to deal with the more

probable or frequent failures. Experiment results show that

compared to the two-level checkpoint recovery scheme, the

proposed scheme significantly reduces the transfers of the storing

contents, the overheads of setting checkpoints and the re-

computing time, and thereby reduces the system total overheads.

Unfortunately, there are still limitations in our study. Like

Vaidya’s study on the two-level checkpoint recovery scheme [8],

our contribution is also a theoretical idea. When Vaidya

introduces his/her work, he/she just considered the ideal case

and took the main performance factors into account without any

practical application implemented. This does simplify the problem

and pay attention to the main factors that affect the system

performance basically [15,16,18]. Therefore, in our paper, we also

adopt the same assumptions used in the works [8,15,16,18] and

the performance analyses focus on these main factors. This enables

us to compare our scheme with the existing ones in the same

circumstance, but we all know that the system performance heavily

depends on the characteristics of the applications being studied. In

fact, during the practical running, the checkpoint recovery scheme

must be affected by other factors, such as network throughout and

I/O interaction [30,31]. Although some studies [8,15,16,18] just

Figure 10. For exponential distribution, comparisons of the system total overheads between two-level incremental checkpoint
recovery scheme and two-level checkpoint recovery scheme. (a) u = Oi/Om = 10%; (b) u = Oi/Om = 30%; (c) u = Oi/Om = 33%; (d) u = Oi/
Om = 40%.
doi:10.1371/journal.pone.0104591.g010
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considered the main factors and their experiments ignored the

affection of those application-related factors, there have been some

other researches that study their affection on the checkpoint

recovery scheme [26,27], which can be considered as another new

and independent research topic. Our work focuses on the idea of

the two-level incremental checkpoint recovery, and studies of the

affection of these application-related factors are not our contribu-

tion of this paper.

Based on our study, four main research questions remain open

and unsolved. The first is to implement our scheme in some

practical application and explore how those application-related

factors, such as network throughout and I/O interaction, affect the

system performance. The second is to find an effective checkpoint

placement method because the placement in our scheme is clearly

more difficult than that in traditional one-level or two-level

scheme. The third is to consider how to improve our scheme in the

special case that the local storage is not error-free. The last but the

most enjoyable is to introduce our idea into the multi-level

checkpointing system [19] to show if a good result can be

obtained. Still, our future work shall firstly focus on the

implementation of our scheme in a practical system and show

how the application-related factors affect the system performance.

Conclusions

In this paper, a new two-level incremental checkpoint recovery

scheme which is independent of specific failure types is proposed.

By using the i-checkpoint with low setting overheads, compared to

the two-level checkpoint recovery scheme, the proposed scheme

significantly reduces the transfer of the huge memory context, the

total overheads of setting checkpoints and shortens the re-

computing time after the failure, and thereby reduces the system

total overheads. In addition, this paper also solves the problem

how to determine the optimal checkpoint placement strategy

through deducing the global optimal checkpoint overheads

function. The comparison results for the Weibull distribution

and exponential distribution show that compared to the two-level

checkpoint recovery scheme, the two-level incremental checkpoint

recovery scheme proposed in this paper has the better perfor-

mance, and reduces the system total overheads better. Limitations

of our study are discussed, and open questions and possible future

work are given.
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