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Abstract

The automatic detection and tracking of human eyes and, in particular, the precise localization of their centers (pupils), is a
widely debated topic in the international scientific community. In fact, the extracted information can be effectively used in a
large number of applications ranging from advanced interfaces to biometrics and including also the estimation of the gaze
direction, the control of human attention and the early screening of neurological pathologies. Independently of the
application domain, the detection and tracking of the eye centers are, currently, performed mainly using invasive devices.
Cheaper and more versatile systems have been only recently introduced: they make use of image processing techniques
working on periocular patches which can be specifically acquired or preliminarily cropped from facial images. In the latter
cases the involved algorithms must work even in cases of non-ideal acquiring conditions (e.g in presence of noise, low
spatial resolution, non-uniform lighting conditions, etc.) and without user’s awareness (thus with possible variations of the
eye in scale, rotation and/or translation). Getting satisfying results in pupils’ localization in such a challenging operating
conditions is still an open scientific topic in Computer Vision. Actually, the most performing solutions in the literature are,
unfortunately, based on supervised machine learning algorithms which require initial sessions to set the working
parameters and to train the embedded learning models of the eye: this way, experienced operators have to work on the
system each time it is moved from an operational context to another. It follows that the use of unsupervised approaches is
more and more desirable but, unfortunately, their performances are not still satisfactory and more investigations are
required. To this end, this paper proposes a new unsupervised approach to automatically detect the center of the eye: its
algorithmic core is a representation of the eye’s shape that is obtained through a differential analysis of image intensities
and the subsequent combination with the local variability of the appearance represented by self-similarity coefficients. The
experimental evidence of the effectiveness of the method was demonstrated on challenging databases containing facial
images. Moreover, its capabilities to accurately detect the centers of the eyes were also favourably compared with those of
the leading state-of-the-art methods.
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Introduction

As one of the most salient features of the human face, the eyes

and their movements play an important role in expressing a

person’s desires, needs, cognitive processes, emotional states, and

interpersonal relations. For this reason the definition of a robust

and non-intrusive system for the detection and tracking of the eyes

is crucial for a large number of applications (e.g. advanced

interfaces, control of the level of human attention, biometrics, gaze

estimation, early screening of neurological pathologies).

A detailed review of recent techniques devoted to this topic can

be found in [1] where it is clear that the most promising solutions

use invasive devices (Active Eye Localization Systems). In partic-

ular, some of them are already available on the market and require

the user to be equipped with a head mounted device [2] while

others obtain accurate eye location through corneal reflection

under active infrared (IR) illumination [3] [4]. These systems are

generally expensive and not very versatile (sice they often require a

preliminary calibration phase).

On the other hand, Passive Eye Localization Systems attempt to

obtain information about the eyes’ location just starting from

images supplied from a monocular video stream: they explore the

characteristics of the human eye to identify a set of distinctive

features and/or to characterize the eye and its surroundings by the

color distribution or filter responses. This way of proceeding

introduces several challenges that each solver must address:

1. the iris is often partially occluded by eyelids, eyelashes, and

shadows, especially for oriental users;

2. the iris can also be occluded by specular reflections when the

user wears glasses;

3. the pupillary and limbic boundaries are non-circular and

therefore can lead to inaccuracy if fitted with simple shape

assumptions;

4. images can be affected by defocusing, motion blur, poor

contrast, oversaturation, etc.

To address these challenges many advanced eye detection

algorithms have been proposed in the last two decades. The

method proposed by Asteriadis et al. [5] assigns a vector to every

pixel in the edge map of the eye area, which points to the closest
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edge pixel. The length and the slope information of these vectors

are consequently used to detect and localize the eyes by matching

them with a training set. Timm and al. [6] proposed an approach

for accurate and robust eye center localization by using image

gradients. They derived an objective function whose maximum

corresponds to the location where most gradient vectors intersect

and thus to the eye center. A post-processing step is introduced to

reduce wrong detection on structures such as hair, eyebrows or

glasses. In [7] the center of (semi)circular patterns is inferred by

using isophotes. In a more recent paper by the same authors,

additional enhancements are proposed (using mean shift for

density estimation and machine learning for classification) to

overcome problems that arise in certain lighting conditions and

occlusions from the eyelids [8]. A filter, inspired by the Fisher

Linear Discriminant classifier and requiring a sophisticated

training, is, instead, proposed in [9]. In [10] a cascaded AdaBoost

framework is proposed. Two cascade classifiers in two directions

are used: the first one is a cascade designed by bootstrapping the

positive samples, and the second one, as the component classifiers

of the first one, is cascaded by bootstrapping the negative samples.

A similar approach is proposed in [11] where the Adaboost-

cascade is coupled with a reflection removal method to exclude

specularities in the input images. A method for precise eye

localization that uses two Support Vector Machines trained on

properly selected Haar wavelet coefficients is presented in [12]. In

[13] an Active Appearance Model (or AAM) is used to model edge

and corner features in order to localize eye regions whereas in [14]

an ensemble of randomized regression trees is used. Also active

boundary detection strategies can be used for this purpose [15]

[16]: they can be used to evolve a contour that can fit also to a

non-circular iris boundary. However, strategies to improve pupil

and iris localization accuracy and to reduce their parameter

sensitivity, are still under investigation [17].

Unfortunately, all the above methods use either a supervised

training phase for modeling the appearance of the eye or ad-hoc

reasonings to filter missing or incorrect detections of the eyes. For

these reasons, although they achieved excellent performance in the

specific contexts in which were tested, their use in different

situations (especially in unconstrained environments) has to be

preceded by some adjustments of the previously learned models.

On the other hand, well known unsupervised approaches in this

field are those proposed in [18] and [19], which find circular

shapes by using the integro-differential operator and the Hough

Transform respectively. However, their ability to find the eye relies

on very simple and rigid model and, thus, they suffer the partial

occlusions or deformations of the iris and their performances

strongly degrade also in the case of noisy or low resolution images.

An early tentative to introduce a more efficient pupil detection

approach that does not require any training phase (or post filtering

strategy) has been recently proposed in [20]. In that paper the

classical Circular Hough Transform is biased by local appearance

descriptors. Although the detection performances are encouraging,

there is compelling evidence that the Hough transform limits the

operability of the system due to both its high computational load

and its inability to manage the discontinuities in the edges of the

circular regions (generated by the presence of the eyelids and

eyelash). This paper tries to overcome the aforementioned

limitations by introducing a more accurate and computationally

Figure 1. A schematic representation of the algorithmic procedures.
doi:10.1371/journal.pone.0102829.g001
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efficient strategy for the detection of the eyes’ centers: it relies on

the combination of the differential analysis of the image intensities

and the local appearance variability represented by self-similarity

coefficients. Experimental evidence of the effectiveness of the

proposed solution was proven on challenging databases containing

facial images of different subjects (also belonging to different ethnic

groups) acquired under different lighting conditions and with

different scales and poses. The rest of the paper is organized as

follows: next section gives an overview of the proposed solution

The Proposed Approach

Similarly to the related works in the previous section, the propo-

Figure 2. A reflection maps the location (r,w) to location (r,2q{p).
doi:10.1371/journal.pone.0102829.g002
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sed solution operates on periocular images which can be specifi-

cally acquired (this way a high resolution close-up view of the

eye is generally available) or (eventually automatically) cropped

of the involved algorithmic procedures is shown. For each input

intensity level is performed. The outcomes of these preliminary

steps are then normalized and integrated in a joint representation

circular and self-similar regions emerge. Finally the peak in

the achieved data structure is found and it is assumed to correspond

to the center of the eye. Next subsections will explain the implem- 

from a large facial image. In figure 1 a schematic representation

image, on the one side the self-similarity scores are computed in

each pixel and, on the other side, the differential analysis of theand then, in the related subsections, it details the three operating

steps aimed at localizing the pupil. Then experimental proofs are 

described and discussed in the subsequent section and, finally, 

conclsions   are   reported   in  the    last   section   of      the    paper.     where, after a smoothing with a Gaussian Kernel, the most



mentation details of each procedural step.

Self-Similarity Space Computation

The first computational step aims at searching for regions with

high self-similarity, i.e. regions that retain their peculiar charac-

teristics even under geometric transformations (such as rotations or

reflections), changes of scale, viewpoint or lighting conditions and

possibly also in the presence of noise. Self-similarity score can be

effectively computed as a normalized correlation coefficient

between the intensity values of a local region and the intensity

values of the same geometrically transformed local region [21]. A

local region is self-similar if a linear relationship exists, i.e.:

I(T(x))~azbI(x) Vx [ P ð1Þ

where P is a circular region of radius r and x is a point located in

P. I(x) denotes the intensity value of the image I at location x,

and T represents a geometric transformation defined on P. For

the purposes of the paper, T is limited to a reflection and a

rotation. Both reflection and rotation preserve distances, angles,

sizes, and shapes. To better clarify the notions of reflection and

rotation into the specific context under consideration, point

locations can be represented in polar coordinates, hence x~(r,w).
Every reflection is associated to a mirror line going through the

center of P and having orientation denoted by q [ ½0; 2p�. Having

said that, a reflection is defined as the geometric transformation

that maps the location (r,w) to location (r,2q{w) (see figure 2).

Similarly every rotation is defined by a centre and an angle. Let

the centre of the rotation be the centre of P and let the rotation

rotation maps the location (r,w) to location (r,wza).

Given these preliminary concepts, from the operational point of

view, the cornerstone of this first phase is the search of the points

that are closest to satisfy the condition in equation 1 considering

that, on real data, it can hardly be fulfilled for all points of P. This

way, highlighted points should correspond to the pixels of the eye

which has both (almost) radial and rotational symmetry. In

particular, the strength of the linear relationship in equation 1 can

be measured by the normalized correlation coefficient:

ncc(P,T)~

P
i (I(xi){�II)(I(T(xi)){�II)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(
P

i (I(xi){I))2(I(T(xi)){I)2
q ð2Þ

Here i counts all points of P and �II represents the average

intensity value of points of P.

At a given location, the normalized correlation coefficients in

equation 2 can be computed for different mirror line orientations

or different angles of rotation. All give information of region self-

similarity.

In this paper the average normalized correlation coefficient

computed over all orientations of the mirror line (radial similarity
map S) at a given location is used as a measure of region self-

similarity. The self-similarity coefficients computed when T is a

reflection are equal to those computed when T is a rotation. This

has been mathematically proven in [21].

Let the sampling intervals for h be Dh~
2p

N
, the similarity

measure is then computed as

Figure 3. The scheme of the pyramidal analysis of the image intensity variations.
doi:10.1371/journal.pone.0102829.g003
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angle a be one of the angles
2p

n
, where n is a nonzero integer. A



S(P)~
1

N

XN{1

i~0

ncc(P,Thi
) ð3Þ

In order to cope with the analysis at different scales, this formula

is computed for different radii r (i.e. the number of considered

scales). This brings to the formulation of the equation for the

computation of the multi-scale self-similarity:

S(P)~
1

M

XM{1

j~0

1

N

XN{1

i~0

ncc(P,Thi ,rj
) ð4Þ

where M defines the sampling interval for r, i.e. Dr~ R
M

.

To overcome the problems related to the processing near the

borders of the input periocular image, the calculation of the self-

similarity scores is performed only for those pixels belonging to a

smaller region (i.e. discarding the outmost 10 pixels in each

direction).

The self-similarity map S1 (of size m|n) computed by equation

4 is the outcome of this first phase.

Differential Analysis of Image Intensity

The second computational phase aims instead at the analysis of

the geometric properties of periocular patches: this analysis is

performed by introducing isophotes, i.e. curves connecting pixels

in the image with equal intensity. Due to their intrinsic properties,

isophotes are particularly suitable for objects detection and image

segmentation: they follow constant intensity and therefore follow

object shape both around edges as well as smooth surfaces. In

particular, it has been demonstrated that their shapes are

independent from rotation and varying lighting conditions, and,

in general, isophote features result in better detection performance

than intensities, gradients or Haar-like features [22]. Curvature k
of an isophote, which is the reciprocal of the subtended radius r,

can be computed as:

k~
1

r
~{

L2
yLxx{2LxLxyLyzL2

xLyy

(L2
xzL2

y)3=2
ð5Þ

where fLx,Lyg and fLxx,Lxy,Lyyg are the first- and second-order

derivatives of the luminance function L(x,y) in the x and y
dimensions respectively (for further details refer to [23]).

Since the curvature is the reciprocal of the radius, equation 5 is

reversed to obtain the radius of the circle. The orientation of the

radius can be estimated by multiplying the gradient with the

inverse of the isophote curvature. This way the displacement

vectors to the estimated position of the centers can be computed as

fDx,Dyg~{
fLx,Lyg(L2

xzL2
y)

L2
yLxx{2LxLxyLyzL2

xLyy

and then they can be mapped into an accumulator S2 that is the

outcome of this processing phase.

Figure 4. a) region containing a human eye; b) the corresponding accumulator space by Self-Similarity Analysis; c) the
corresponding accumulator space derived from differential analysis of image intensity; d) smoothed joint space; e) pupil location.
doi:10.1371/journal.pone.0102829.g004
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In order to face possible changing in scales a Difference of

Gaussian Pyramid is generated and the above procedure is applied

on each element of the pyramid. All the computed accumulation

spaces are then linearly summed up into a single space that is the

output of this computational step. This process is schematically

represented in figure 3 and it is implemented according to [24].

Pupil Localization

The final step of the proposed approach integrates the

corresponding self-similarity and differential accumulator spaces.

Both data structures are normalized in the range ½0,1� and then

pointwise summed. The resulting accumulation space is then

convolved with a Gaussian Kernel in order to allow the areas with

highest average score (on a neighborhood defined by the sigma of

the kernel) to excel over those having some occasional large value

mainly due to some noise. Finally the peak in the smoothed data

structure is selected as the center of the eye.

Figure 4 shows an example of how the proposed procedure

detects the pupil within a periocular image: subfigure 4(a) shows

the cropped region of the eye whereas the corresponding

numerical spaces built trough the self-similarity and 

respectively. Subfigure 4(d) shows instead the joint space obtained

by point-wise adding self-similarity and differential accumulator

spaces. Finally, subfigure 4(e) shows the estimated location of the

pupil (i.e the peak in the joint space). Note how, in this joint

representation, the area around the pupil is more emphasized than

the representations in the individual spaces obtained through the

analysis of the self-similarity and the differential analysis of the

levels of intensity. In particular largest values (represented by

the whitest pixels) are localized close to the pupil making its

localization more accurate and robust to noise and changing in the

imaging conditions. This will be extensively proven in the

following section reporting experimental results.

Experimental Results

Experimental evidence of the effectiveness of the method was

achieved on challenging benchmark datasets containing facial

images. We did not decide to use some of the datasets of periocular

images (e.g. [25]) since, as already mentioned in the introduction 

Figure 5. Results obtained on the BioID database and their comparison with those obtained using the strategy proposed in [20]
and in [7].
doi:10.1371/journal.pone.0102829.g005
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section, they have been collected for biometrics purposes and

then contain only close-up views of eyes acquired under well-cont-

rolled conditions of light, scale and pose (resulting from the active

collaboration of the involved persons). Under these favourable

operating conditions most of the methods are able to get very

accurate results in the detection of the eye center and therefore it

would not be possible to assess the real benefit of using the

proposed approach. In contrast, the datasets of facial images are

collected for a variety of purposes (surveillance, human-

machine interaction, interactive gaming, etc..) and therefore the

differential analyses are shown in subfigures 4(b) and 4(c)



conditions of acquisition but rather, as we will see below, intro-

duce some deliberately extreme operating conditions in order to

allow an exhaustive test of the algorithms. Working on facial 

images, during the experimental phases, was thus necessary to 

introduce a preliminary face detection step to allow a quick

extraction of the corresponding periocular patches. Any of the

face detectors in the huge literature could be used to accomlish this

additional task. For practical reasons (largely tested code is 

available on line), in the experimental phase the boosted

cascade face detector proposed by Viola and Jones [26] was  

used. In particular the code (with default parameters) avail- 

(R2012a version) was used and, once the face was detected, the 

periocular patches were then cropped using anthropometric 

relations. The cropped patches started from 20   30 percent

(left eye) and 60|30 percent (right eye) of the detected face 

region, with dimensions of 25|20 percent of the latter.

In the first experimental phase the BioID database [27] was

used for testing and, in particular, the accuracy of the approach in

the localization of the pupils was evaluated. The BioID database

consists of 1:521 gray-scale images of 23 different subjects taken in

different locations, at different times of the day and under

uncontrolled lighting conditions. Besides non-uniform changes in

illumination, the positions of the subjects change both in scale and

pose. Furthermore, in several examples of the database, the

subjects are wearing glasses. In some instances the eyes are

partially closed, turned away from the camera, or completely

hidden by strong highlights on the glasses. Due to these conditions,

the BioID database is considered one of the most difficult and

realistic database of facial images. The size of each image is

384|288 pixels and a ground truth of the left and right eye

centers is provided with the database. The normalized error,

indicating the error obtained by the worse eye estimation, is

adopted as an accuracy measure of the eye locations. This measure

is defined in [28] as

Figure 6. Comparison with state-of-the-art methods in the literature on the BioID database.
doi:10.1371/journal.pone.0102829.g006

Unsupervised Eye Pupil Localization

PLOS ONE | www.plosone.org 7 August 2014 | Volume 9 | Issue 8 | e102829

  | 

images   in  them   are  collected  without  specific  constraints  on   the    

able with the Computer Vision System Toolbox of the MATLAB 



e~
max(dleft,dright)

w
ð6Þ

where dleft and dright are the Euclidean distances between the

estimated left and right eye centers and the ones in the ground

truth and w is the Euclidean distance between the eyes in the

ground truth. In this measure, eƒ0:25 (a quarter of the

interocular distance) roughly corresponds to the distance between

the eye center and the eye corners, eƒ0:1 corresponds to the

range of the iris and eƒ0:05 corresponds to the range of the pupil.

In figure 5 the accuracy of the proposed approach on the BioID

database is reported (continuous blue line). In particular, the y-axis

reports the accuracy, i.e. the percentage of images in the database

on which the pupils were localized with an error less than the

normalized error (computed as indicated in equation 6) indicated

by the corresponding value on the x-axis. The same figure reports

also the pupil localization performances obtained on the same

database by using the approach recently proposed in [20] (dashed

red line) and in [7] (dotted green line).

As evident, the proposed approach significantly increased the

performances in accuracy of the localization of pupils: in

particular, considering the capability to remain into the actual

pupil range (eƒ0:05), the performances increased from 77:15%
and 77:78% to 80:67% and, considering the localization into the

iris range (eƒ0:1), the performances increased instead from

82:11% and 86:13% to 87:31%.

These results are very encouraging, especially in light of their

correlation with those obtained by other leading state-of-the-art

methods in the literature. To this end, in figure 6, the comparison

(for normalized errors eƒ0:05 and eƒ0:1) with the most accurate

techniques (both supervisioned and unsupervisioned) in the

literature is reported. Looking at the figure it can be seen that

the proposed approach provided outstanding results considering

that it outperformed most of the related methods, even some of

them which use supervised training or post processing adjust-

ments. In particular only the supervised methods proposed in [8],

[6] and [14] provided better results both for eƒ0:1 and eƒ0:05
measures. These top-rated methods, however, utilize some

learning procedures based on an accurate selection of training

examples and/or a specific post-processing arrangements for

filtering incorrect detections: this way the excellent performance

exhibited on the BioID database cannot be replicated in different

operating contexts without some adjustment of the working

parameters and/or of the elements in the training set. In particular

the method in [14] uses a machine learning algorithm (named

randomized regression tree) to discover eye features, [6] adds a

Figure 7. Some images of the BioID database in which the approach correctly detected the pupils. Reprinted from [27] under a CC BY
license, with permission from Ho B. Chang, original copyright 2001.
doi:10.1371/journal.pone.0102829.g007
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priori knowledge and selected thresholds to filter wrong detections

and finally [8] introduces a feature-space analysis (mean shift) and

machine learning techniques to validate the estimated eye centers.

From the figure it is also evident that classical unsupervised

approaches ([18] and [19]) failed to detect the center of the eye

due to the uncontrolled acquisition, occlusions of the iris/pupil

boundaries (due to eyelids and eyelashes) and reflections. The

aforementioned unsupervised approaches are indeed based only

on the difference in pixel intensity between internal and external

region of the iris and thus they can fail if this difference becomes

smoother as happens in the considered facial images.

In figure 7 some images of the BioID database in which the

proposed approach correctly located the pupil in both eyes are

shown even if they were acquired in challenging conditions: in

fact, in three of them, people wore glasses and in the remaining

Figure 8. Some images of the BioID database in which the approach failed in the detection of the pupils. Reprinted from [27] under a
CC BY license, with permission from Ho B. Chang, original copyright 2001.
doi:10.1371/journal.pone.0102829.g008

Table 1. Accuracy on a subset of the Extended Yale Face Database B.

normalize error eƒ0:05 eƒ0:1 eƒ0:05 eƒ0:1

illumination azimuth Aƒ D350 D Aƒ D350 D A§ D350 D A§ D350 D

and and or or

illumination elevation Eƒ D400 D Eƒ D400 D E§ D400 D E§ D400 D

B#39 77:43% 84:95% 68:88% 74:18%

B#27 78:97% 85:29% 67:00% 75:89%

B#22 76:58% 85:64% 69:23% 77:09%

Average Accuracy 77:66% 85:29% 68:37% 75:72%

doi:10.1371/journal.pone.0102829.t001
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ones the eyes were half-closed or gaze was turned away from the

camera.

Figure 8 reports, instead, some images of the database in which

the approach failed in the detection of the pupils of one or both

eyes. In most cases, the errors were due to very strong highlights

on the glasses. Sometimes, due to particular head poses, the system

localized the pupil on the eyebrows.

To systematically evaluate the robustness of the proposed pupil

locator to lighting and pose changes, one subset of the Extended

Yale Face Database B [29] was then used in the second

experimental phase. The full database contains 16128 images of

28 human subjects under 9 poses and 64 illumination conditions.

The size of each image is 640|480 pixels. In particular, the

proposed solution was tested on the 1755 images belonging to the

subsets B#39, B#22 and B#27. This choice was useful also to

verify the sensitivity of the system to different ethnic groups. The

performance in accuracy of the proposed approach on this second

challenging dataset are reported in table 1.

By analyzing the results, it is possible to note that the proposed

approach was able to deal with light source directions varying

from +35 azimuth and from +40 elevation with respect to the

camera axis. The average accuracy obtained under these

conditions was 77,66% (eƒ0:05) and 85,29% (eƒ0:1). For higher

angles, the method was often successful for the less illuminated eye

and sporadically for the most illuminated one: if the eye was

uniformly illuminated, the pupil was correctly located, even for

low-intensity images. In figure 9, some images of the Extended

YALE database B in which the approach correctly detected the

pupils even under different lighting conditions and pose changing

are shown. In figure 10, some images in which the detection of the

pupils was either less accurate or completely failed are instead

reported.

A final additional experiment was conducted on the color

FERET database [30]. The color FERET database contains a

total of 11,338 facial images collected by photographing 994

subjects at various angles over the course of 15 sessions between

1993 and 1996. The images in the color FERET Database are 512

by 768 pixels. In our case, we were only interested in the accuracy

of the eye location in frontal images; therefore only the frontal face

(fa) partition (994 images) of the database was considered. The

results obtained were 80,98% (eƒ0:05) and 90,74% (eƒ0:1) that

are again comparable (sometimes outperform) with those ap-

proaches proposed in literature (that make use of training phase

and machine learning strategies). This statement can be proven

reporting some data relating to the results obtained by some

methods in the literature on the same data-set. For example the

method proposed in [12] performs 78,37% (eƒ0:05) and 85,01%
(eƒ0:1), the method proposed in [3] performs 67,70% (eƒ0:05)

and 89,50% (eƒ0:1), the method proposed in [25] performs

instead 73,47% (eƒ0:05) and 94,44% (eƒ0:1). Figure 11 reports

some images of the color FERET database and the relative correct

pupil localization results (first row). The same figure (second row)

also shows some images where the proposed pupil detection failed

(due to partially closed eyes).

Figure 9. Some images of the Extended YALE database B in which the approach correctly detects the pupils. Reprinted from [29] under
a CC BY license, with permission from Athinodoros S. Georghiades, original copyright 2001.
doi:10.1371/journal.pone.0102829.g009

Figure 10. Some images of the Extended YALE database B in which the approach failed in the detection of the center of one or both
eyes. Reprinted from [29] under a CC BY license, with permission from Athinodoros S. Georghiades, original copyright 2001.
doi:10.1371/journal.pone.0102829.g010
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A final consideration should be made: during all the above

experimental phases, no adjustment was made to the proposed

method that, in light of its ‘‘unsupervised’’ nature, allows the users

to change the operating environment while maintaining the

detection capability of the centers of the eyes.

Conclusions and Future Works

A new method to automatically locate the eyes, and in

particular to precisely localize their centers (the pupils) in

periocular images (even in presence of noise, challenging

illumination conditions and low-resolution) has been proposed in

this paper. Input image can be specifically acquired (i.e. close-up

view of the eye for biometrics) or automatically cropped from

facial image by means of one of the large number of face detectors

in the literature. In the proposed solution, the pupil is localized by

a two steps procedure: at first self-similarity information are

extracted by considering the appearance variability of local regions

and, then, they are combined with a shape analysis based on a

differential analysis of image intensities. The proposed approach

does not require any training phase or decision rules embedding

some a priori knowledge about the operating environment.

Experimental evidence of the effectiveness of the method was

achieved on challenging benchmark datasets of facial images. The

results obtained are comparable (sometimes outperform) with

Figure 11. Some images of the FERET database and the relative correct (top) and wrong (bottom) pupil detection results obtained
by the proposed approach. Reprinted from [30] under a CC BY license, with permission from Jonathon P. Phillips, original copyright 1998.
doi:10.1371/journal.pone.0102829.g011
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those obtained by the approaches proposed in literature (that make

use of training phase and machine learning strategies).

With regard to the computational load, the calculation of the

similarity space has a complexity O(kM2), where k is the number

of pixels in the image and M represents the maximal considered

scale. The differential calculus is, in each considered scale, linear

with the size of the image and then O(Msk). However,

considering that the calculation of the two spaces is embarrassingly

parallel (no effort is required to separate the problem into a

number of parallel tasks) it is possible to approximate the

computational load to the maximum of the two terms above.

This therefore leads to a complexity comparable to that of the state

of the art methods, however, offering better performance of

detection and although not requiring training or other specific

post-processing steps that limit their ability to work under various

operating conditions.

To give a better idea of the real computational load of the

algorithm, the average CPU time taken to process (working in a

R2012a Matlab developing environment running, without parallel

computing constructs, on a Sony VAIO PCG-71213w) the 1,521

images of the BioID database (experiment #1 in section Exper-

0:07sec: to detect facial regions,

0:04sec: to compute the

3 frames per second.

Future works will address the implementation in a intermediate-

level language in order to speed-up the calculation. Where

appropriate, processor supplementary instructions will also be used

to achieve real-time processing. Moreover, a tracking algorithm

will be integrated in order to suppress the sporadic experienced

errors.
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