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Abstract

In this work, we study the first passage statistics of amino acid primary sequences, that is the probability of observing an
amino acid for the first time at a certain number of residues away from a fixed amino acid. By using this rich mathematical
framework, we are able to capture the background distribution for an organism, and infer lengths at which the first passage
has a probability that differs from what is expected. While many features of an organism’s genome are due to natural
selection, others are related to amino acid chemistry and the environment in which an organism lives, constraining the
randomness of genomes upon which selection can further act. We therefore use this approach to infer amino acid
correlations, and then study how these correlations vary across a wide range of organisms under a wide range of optimal
growth temperatures. We find a nearly universal exponential background distribution, consistent with the idea that most
amino acids are globally uncorrelated from other amino acids in genomes. When we are able to extract significant
correlations, these correlations are reliably dependent on optimal growth temperature, across phylogenetic boundaries.
Some of the correlations we extract, such as the enhanced probability of finding, for the first time, a cysteine three residues
away from a cysteine or glutamic acid two residues away from an arginine, likely relate to thermal stability. However, other
correlations, likely appearing on alpha helical surfaces, have a less clear physiochemical interpretation and may relate to
thermal stability or unusual metabolic properties of organisms that live in a high temperature environment.
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Introduction

First passage statistics provide a natural mathematical frame-

work for analyzing the likelihood of the first occurrence of an event

after some initial event [1]. While many analytical results have

been derived using these distributions in several fields, here we

present a novel application of these distributions to a problem in

genome distributions. Namely, what is the best method, both in

terms of the underlying mathematics and empirical application to

sequence datasets, to infer the set of amino acid correlations in

proteins that are dependent on the environment in which they

function.

The genome sequencing of many extremophiles has created an

opportunity to probe basic, yet practical questions about how an

organism’s physiochemical environment affects its genome [2,3].

Extremophiles have been sequenced across vast evolutionary

distances, representing a broad range of environmental conditions.

Hence these organisms provide a deep-field lens for resolving how

variations in physiochemical environment alter genome charac-

teristics. Motivated by this, several authors have noted the effects

of optimal growth temperature (OGT) on various amino acid

features [4–9].

Globally, the frequencies of most amino acids are unrelated to

the context of the amino acid words in which they appear [10].

Moreover, one can show that the observed OGT dependence of

amino acid words can often be explained in terms of the OGT

dependence of individual amino acids or small subwords [11].

Consequently, we argue that first passage distributions are a

natural mathematical language for inferring environmentally

dependent correlations between discontiguous residues. In the

genomic context, these distributions are the probability of finding

an amino acid for the first time at a specific number of residues

away from a given amino acid.

We observe a universal exponential background distribution for

amino acid first passage distributions across a set of 76 organisms,

chosen to represent the range of well-characterized optimal growth

temperatures among organisms with fully sequenced proteomes.

The exponential background distribution implies that typically

there is little genome wide correlation between amino acids. We

use this observation to infer an empirical exponential background

distribution - essentially inferring the decay parameter. We can
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then discover non-random correlations when there are observed

first passage lengths that vary significantly from the background

distribution. With this method, we hypothesize that we can

reliably extract a set of environmentally dependent correlations,

and in fact of all of those correlations we deem significant are

OGT dependent. Some likely relate to known thermal adapta-

tions, such as disulfide bonding and salt-bridge formation. Yet our

approach also captures unexplained, OGT-dependent effects.

Hence careful exploration of these issues may yield unforeseen

phenomena from extremophile genomes.

Results

First Passage Distributions
We analyzed first passage distributions across the entire

proteomes of 76 organisms (Table S1) [12–13]. These organisms

were chosen so that a wide range of organisms with both fully

sequenced proteomes and experimentally well-characterized

OGTs were included. As a result, psychrophiles, mesophiles and

thermophiles are all well sampled across the known range of

organism growth temperatures. We wanted to examine correla-

tions directly dependent on OGT. First passage statistics were

chosen to take into account the OGT dependence of amino acids

in the background distribution, while possessing the statistical

power to resolve discontiguous correlations over large lengths.

These distributions are defined as the probability that the first

occurrence of amino acid Y occurs n residues away from amino

acid X without having occurred beforehand. This is denoted by

f
(n)

XY ~p(an~Y ; ak=Y , 0vkvnDa0~X ),

where ai denotes the residue a distance i from a0 [1].

For a given chain one can calculate the typical first passage

distribution in either the N-terminus or C-terminus direction,

which we respectively denote by f
(n{)

XY and f
(nz)

XY . If amino acids

were uncorrelated from their neighbors, this would reduce to a

geometric distribution, the discrete analog of an exponential

distribution [14]. In this case the probability would only depend

on the frequency of Y and should, therefore, reflect the OGT

dependent properties of individual amino acids, allowing the OGT

dependence of outliers to be clearly established. However, while

many genome wide amino acid probabilities are independent,

some probabilities are not [10]. Our approach addresses that

possibility. As shown in the Methods Section, the log of our

distribution often becomes linear after a few residues of separation,

with a slope dependent on Y and not X . We therefore assume

l+XY exp l+XY n
� �

as our theoretical background distribution for

f
(n+)

XY , where l+XY is derived from the best linear fit to the logarithm

of the first passage distribution versus n. Practically, we derive it

over values of n less than 50, due to noise induced by finite gene

size.

As an example Fig. 1 shows the number of first passages as a

function of n for CC and RE for two organisms, a mesophile,

humans, and the thermophile T. petrophila. In both cases, N
(3{)
CC

and N
(3{)
RE stand out from the background distribution. In the

human genome, which is both longer and has longer genes,

additional structures at larger n appear. However, the relative

height of the peak to the background distribution is higher for the

thermophile, a pattern we explore further.

Previous authors have explored different measures of pairwise

correlation between residues in proteomes [15–16]. Liang, et al.

calculated the frequency of chains of length n beginning with

amino acid X that terminate with amino acid Y , divided by the

frequency of Y in the proteome. They recover a small subset of the

correlations we find via first-passage statistics, with no measure of

OGT dependence for individual correlations. However, they also

declare many correlations significant which would not be

considered significant by our approach, suggesting a higher

false-positive rate in addition to less sensitivity. We believe this is

because many of the amino acid correlations they noted, that we

would deem insignificant, have individually OGT dependent

frequencies. As our approach takes such effects into account

explicitly by fitting the empirical background distribution rather

than using a model clearly related to individual amino acid

frequencies, these correlations would not be deemed significant.

Rosato, et al. calculated a similarly motivated odds ratio by

comparing the number of times amino acid Y occurs n residues

away from amino acid X and dividing this by the expected

number of times this would occur in a random proteome with the

same length, number of proteins, and amino acid frequencies [17].

The only non-nearest neighbor correlation they were able to

identify was that of a cysteine three residues away from another

cysteine, whereas our approach reveals many other sources of such

discontiguous correlation, all of which correlate to OGT.

Our method does not assume individual amino acid indepen-

dence, even though that is often a reasonable assumption, and

separates true discontiguous correlations from those due to many

small words by excluding events where Y previously occurred. We

believe this is a key advantage over previous approaches. It derives

significance from deviations to the long-range exponentiality of

these distributions, even when the geometric distribution built

from individual amino acid frequencies is inadequate. As shown in

the Methods Section, ln+
XY typically depends on Y and varies with

OGT when the frequency of Y depends on OGT, and does not

depend on X . If Y is more abundant at high OGT amino acids

will typically pass to Y faster, and if it is less abundant more slowly.

f
(n+)

CC is a strong exception. Though less frequent at high OGT,

cysteines average return length is faster - indicating that as

cysteines become rare having them nearby at high OGT is more

significant.

As a result of our improved background, all of our significant

deviations from the expected exponential distribution depend on

OGT. We extract these events from the logarithm of the ratio of

the empirical value of f
(n+)
XY to its expected value from the

underlying exponential background, termed w(n+)
XY . This quantity is

essentially the logarithm of the amplitude of the peaks, such as

those demonstrated in Figure 1, above the background distribution

– representing the logarithm of a signal to noise ratio. Table 1

looks at the most commonly over-represented pairs, while Table 2

looks at the same information for under-represented pairs. Those

listed have a logarithm of the amplitude height above background

that is at least three standard deviations from the from the

exponential background distribution within an individual organ-

ism’s proteome for a minimum of 25 of the organisms studied.

w
(3+)
CC is the most significant, by a substantial margin, both in

magnitude and number of organisms in which it is over-

represented. Several over-represented pairs fall into categories,

such as having a positively and negatively charged side chain (RE,

KE, ER, EK). Leucine, the amino acid whose frequency is higher

than expected from its mass, is frequently in over-represented pairs

(LE, LQ, LK, LR) [10].

We examine in detail a set of correlations along the N-Terminal

direction, all of which have C-Terminal analogs. We focus on four

cases from Table 1: w(3{)
CC , w(3{)

RE (which has similar behavior to

Using First Passage Statistics to Extract Amino Acid Correlations

PLOS ONE | www.plosone.org 2 July 2014 | Volume 9 | Issue 7 | e101665



w
(3{)
KE ), w

(2{)
LE (the most commonly over-represented leucine

containing pair), and w
(2{)
LK , a correlation previously unobserved

to our knowledge. These pairs have the highest peak values above

background and have distinct behavior from each other.

Dependence of Quantities on Habitat
To determine which signals vary with OGT, we plot, in

Figure 2, the OGT for all organisms as a function of the logarithm

of the peak amplitudes above background. We also calculate the

linear correlation (Pearson) and Spearman correlation for these

quantities, along with p-values, as described in the methods

section. Figure 2 shows the dependence between OGT and w
(3{)
CC

with a 0.7054 linear correlation (1.1267610212 p-value) and

0.6993 Spearman correlation (2.1146610212 p-value), with a

0.7724 linear correlation (1.1267610216 p-value) and 0.7841

Spearman (5.4453610217 p-value), and w
(2{)
LE with a 0.8013 linear

correlation (3.5598610218 p-value) and 0.8155 Spearman

(2.9905610219 p-value). For w(3{)
CC , OGT dependence holds for

all non-eukaryotes. Eukaryotes are in the far left cluster. Previous

results did not show a measure of strength of correlation between

OGT and a signal to noise parameter, which would be analogous

to the quantity we define below. The figures shown in references

[15–17] indicate that these approaches show a w
(3{)
RE noisier

dependence between the statistical quantities defined by those

authors and OGT.

The significance of w
(3{)
CC has clear interpretations. Increased

clustering of cysteines may lead to an increase in disulfide bonds

that can be used more frequently per residue for thermal stability

or correlated effects from metal-ion binding are more prevalent

[18–26]. As noted, cysteines become rarer at high OGT, yet seem

to retain their importance for disulfide bonding [10]. For instance,

many high-temperature environments tend to be more acidic.

Since low pH inhibits thiol-disulfide exchange, one may expect

that cysteine clustering would increase stability in the proteome of

an organism in an acidic environment. Hence, there is an

important tension between the rarity of cysteines at high OGT,

and their potential increase in importance as a stabilizier.

Less noted, is the OGT dependence of the w
(3{)
RE . The two are

oppositely charged, and may represent the stabilization of proteins

via salt-bridge formation [27–30]. Intriguingly, we find that a great

deal of information can be drawn from the unusual metabolism of

organisms farthest from the best-fit line between w
(3{)
RE and OGT.

Those furthest from that line in the upper half-plane are S. azorense

and I. aggregans, and in the lower half-plane are G. metallireducens

and G. sulfurreducens. This suggests a possible method by which

unusual metabolic properties could be uncovered by deviation

from a correlation line. Both the interpretation of why that

particular amino acid correlation is proportional to OGT, and

why sulfur respiration seems reflected in outliers, contain

biological insight. While the former likely relates to an organism’s

utilization of salt-bridge formation, the later suggests a statistical

measure for prediction of novel metabolism, which has practical

uses such as in microbial cleaning of contaminated soil [31–32].

w
(2{)
LE has the strongest linear correlation with OGT. Surpris-

ingly, the plot of w(2{)
LK versus OGT (Fig. 2d), which has a slightly

weaker, though highly significant, temperature dependence

(0.6278 linear with 1.276561029 p-value, 0.6042 Spearman with

7.508661029 p-value), clusters these organisms into two main

groups. One set, in red, contains most thermophiles while the

other, colored blue, contains lower OGT organisms. This suggests

a genome wide statistical property can classify thermophiles from

non-thermophiles. Moreover, the quantity w
(2{)
LK lacks an obvious

interpretation.

Figure 1. Number of first passages from cysteine to cysteine in (a) T. petrophila and (b) human proteomes, and from arginine to
glutamic acid in (c) T. petrophila and (d) human proteomes.
doi:10.1371/journal.pone.0101665.g001
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Disscusion

We have shown that first passage distributions identified

multiple OGT dependent statistical measures, indicating that they

are a natural language for the inference of environmentally

dependent amino acid correlations. We found a general exponen-

tial decay of first passage distributions. As indicated in Table S2,

the inferred exponential first passage distribution often is, though

not always, what one would expect if an amino acid is uncoupled

from its neighbors.

We believe this is analogous to the rapid mixing that can

generate exponential first passage distributions in a Markov Chain

[33–35]. When an amino acid is not independent, it could appear

in small, weak local groupings, enhancing the probability of

staying near a small set of states before undergoing a transition to a

forbidden state, making the decay time longer when independence

is violated [33]. Moreover, in microbes, noise due to small genome

size may mask richer behavior such as short-range deviations from

exponentiality, resulting in stretched exponential distributions.

Future studies should also compare the OGT dependent

discontiguous correlations found by this measure to other

approaches to inferring long-range correlations from primary

amino acid sequences [36–37].

Table 1. Over-represented First Passage Statistics.

N-Terminal Direction

Pairs Number of Genomes n w(n{)
XY

CC 75 3 1.545

KE 32 3 0.325

RE 41 3 0.3094

LE 57 2 0.2878

EK 26 4 0.222

LK 47 2 0.2207

ER 31 4 0.1884

LQ 48 2 0.1836

LR 35 2 0.1812

KM 31 2 0.1626

IQ 34 2 0.1583

C-Terminal Direction

Pairs Number of Genomes n w(n+)
XY

CC 75 3 1.545

EK 35 3 0.2849

ER 58 3 0.2756

LE 58 2 0.2546

PC 30 2 0.2229

EM 26 2 0.1542

LD 36 2 0.1416

LQ 35 2 0.1357

LN 26 2 0.1231

doi:10.1371/journal.pone.0101665.t001

Table 2. Under-represented First Passage Statistics.

N-Terminal Direction

Pairs Number of Genomes n w(n+)
XY

GD 29 2 20.1660

C-Terminal Direction

Pairs Number of Genomes n w
(n+)
XY

ED 29 2 20.1725

doi:10.1371/journal.pone.0101665.t002
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First passage distributions identified multiple OGT dependent

statistical measures, many of which were unknown or previously

less well characterized. Deviants from the general pattern of

exponential decay indicate significant correlations that appear to

be related to physical interactions such as disulfide bonding, from

an enhancement of cysteines three amino acids away from

cysteine, and salt-bridge formation, from sulfur metabolism.

Moreover they identified a set of OGT dependent measures

lacking a clear physical explanation, implying that this approach

may be used to identify temperature sensitive amino acid

correlations to uncover important properties of proteins in

extreme environments.

Other than the cysteine peak, likely related to disulfide bonding,

the first passage statistics singled out in Table 2a may also indicate

specific enhancements of alpha helices that appear on the surface

of a protein [38]. The significant values at a residue distance of

two, one of which was the stringest observed correlation, all

contain one hydrophobic and one hydrophilic residue, likely

indicating one residue facing the inside and one facing the outside

of a protein alpha helix. For those at length three and four, other

than the cysteine peak at three residues, all residues are polar

(REK), indicating alpha-helices facing the outside of a protein. In

both cases, there would be an interaction with the external

environment generating the observed OGT dependence, along

with predictions about which specific residue patterns are

enhanced. Further sequencing and characterization of extremo-

phile habitats, may uncover new, unexpected effects, while

furthering our understanding of what is a typical protein in a

given environment.

Methods

Correlations
In general correlation coefficients were calculated using the

‘‘corr’’ functions in Matlab for the Pearson and Spearman

correlation coefficients. P-values were calculated using Student’s

t-test for the Pearson correlation and a permutation test for the

Spearman correlation, also using the Matlab ‘‘corr’’ function.

Typically both coefficients are quite close in value. When no other

method is indicated in the text an ‘‘r’’ value indicates the Pearson

correlation.

Empirical Evidence for Exponential Distribution
To test the hypothesis that the appropriate background

distribution for the amino-acid first passage distributions defined

in the text is indeed exponential, we performed the following set of

tests. Each test was performed independently for each organism.

Organisms were never compared under the same statistical test for

these p-value calculations.

For each first passage distribution, f
(n+)

XY , we calculated the

linear correlation coefficient between the value of N and the

logarithm of the first passage probability. Again, this was done

separately for each organism. A p-value was assigned to each

correlation to determine the significance of that linear correlation

using Student’s t-distribution for a transformation for the

correlation. Both tasks performed using the function ‘‘corrcoef’’

in Matlab, using Pearson correlation.

In Table S2, for f
(n+)

XY , the above mentioned p-values are

explored for each of the 400 amino acid pairs that were tested

separately for each organism. Even if multiple hypothesis testing is

strictly taken into account, by treating each of the 76 cases of 400

Figure 2. OGT as a function of the logarithm of the real to expected first passage probability, essentially the non-random parts of
the amplitudes for peaks such as those in Figure 1. These are plotted for (a) CC at three residues, (b) RE at three residues, (c) LE at two residues,
and (d) LK at two residues, where blue circles indicate OGT ranging from 5uC to about 60uC, and red circles represent hyperthermophilic organisms
with OGT above 60uC.
doi:10.1371/journal.pone.0101665.g002
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hypothesis separately for a p-value cutoff of 0.05/30400 for a -

log(p-value) of 13.318, there are only a 11 cases where the linear

correlation is insignificant. All of them involve low frequency

amino acids, and therefore may be due to large fluctuations. The

minimum, maximum and medium values of -log(p-value) are

shown in Table S2 for the 400 possible values of XY . Of the

significant values, eight of them are between tryptophan and

cysteine, two are between cysteine and tryptophan, and one is

between methionine and cysteine. All occur in extremophiles

where cysteines are rare and have large fluctuations.

Also shown in this table are the estimates for the average first

passage, T+
XY ~1=l+XY as derived from the background distribu-

tion, the standard deviation, and minimum and maximum values.

Specifically we show the case T{
XY . In most cases the values are at

least tens of residues (than the typical length at which amino acid

word statistics are significant [10]), and depend on Y only. To

establish the hypothesis that dependence is typically on Y rather

than X , we compared the median value of T+
XY to the values of Y

using the Kruskal-Wallis test, and also compare them to the values

of X . When compared to Y there was a very significant p-value of

less than 10271. When compared to X there was no significance.

This would imply that an analogous process the ‘‘mixing’’

mechanism for exponentiality in Markov processes is responsible

for this effect [33–35]. In this case the distribution becomes

stationary well before all states are explored.

If all amino acids were independently distributed according to

their empirical frequencies, the first passage distribution would be

a geometric distribution determined by the frequency of amino

acid Y . In that case the X independent decay constant, lG
Y , would

be

lG
Y ~{log 1{p(Y )ð Þ:

Associated with this is a geometric decay length, TG
Y . If

T+
XY wTG

Y , the observed exponential distribution decays more

slowly than in the case when amino acids are independently

distributed and, likewise, it decays would decay faster if T+
XY vTG

Y .

In Table S2, we show the median value of the ratio T+
XY=TG

Y . In

many cases the ratio is quite close to 1, indicating that the amino

acids are basically independent of each other. However for those

quantities to be calculated correctly, occurrences due to significant

peaks would have to be removed, and a new background

frequency inserted into the above formula.

Temperature Dependence of Exponential Decay
The Spearman correlation between the average expected length

of first passage T{
XY and OGT is shown in the final column of

Table S2. All distributions where Y is equal to V, E or Y have a

negative correlation less than 20.5. These amino acids are more

abundant at high OGT, and therefore an amino acid will typically

arrive at them more quickly when this occurs, causing the mean

length of first passage to decrease. Likewise, H, T and Q, which

become rare at higher OGT, all have longer means. The strongest

exception to this rule is f
(n)

CC . Despite the fact that cysteines typically

become rare at higher OGT, its mean length of first passage to

another cysteine becomes shorter. The implication is that at high

OGT, while C becomes less frequent it is more and more

important that cysteines appear near each other. In addition to the

significant spike at n~3, cysteines likely have many weak

correlations with each other at higher OGT at different length

scales. Such an effect only reinforces taking into account the

background distribution in a manner that does not assume

complete independence of residues.

Supporting Information

Table S1 Organisms studied, along with optimal
growth temperature (OGT).
(XLSX)

Table S2 Range of first-passage statistics for four
hundred amino acid pairs. Maximum, minimum and median

values are listed for within organism p-values and typical first-

passage lengths across the organisms studied. The median values

for the ratio of the observed first-passage length to what one would

expect from a geometric distribution, and the Spearman

correlation are also listed.

(XLSX)
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