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Abstract

Objective: This study explored the effects of telomerase reverse transcriptase (TERT) promoter mutations on transcriptional
activity of the TERT gene under hypoxic and temozolomide (TMZ) treatment conditions, and investigated the status and
prognostic value of these mutations in gliomas.

Methods: The effect of TERT promoter mutations on the transcriptional activity of the TERT gene under hypoxic and TMZ
treatment conditions was investigated in glioma cells using the luciferase assay. TERT promoter mutations were detected in
101 glioma samples (grades I–IV) and 49 other brain tumors by sequencing. TERT mRNA expression in gliomas was
examined by real-time PCR. Hazard ratios from survival analysis of glioma patients were determined relative to the presence
of TERT promoter mutations.

Results: Mutations in the TERT promoter enhanced gene transcription even under hypoxic and TMZ treatment conditions,
inducing upregulation of TERT mRNA expression. Mutations were detected in gliomas, but not in meningiomas, pituitary
adenomas, cavernomas, intracranial metastases, normal brain tissues, or peripheral blood of glioma patients. Patients with
TERT promoter mutations had lower survival rates, even after adjusting for other known or potential risk factors, and the
incidence of mutation was correlated with patient age.

Conclusion: TERT promoter mutations were specific to gliomas. TERT promoter mutations maintained its ability of inducing
high transcriptional activity even under hypoxic and TMZ treatment conditions, and the presence of mutations was
associated with poor prognosis in glioma patients. These findings demonstrate that TERT promoter mutations are novel
prognostic markers for gliomas that can inform prospective therapeutic strategies.
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Introduction

The telomerase reverse transcriptase (TERT) gene encodes the

catalytic subunit of telomerase, which is normally not expressed

by postmitotic somatic cells. Telomere deficiency has been linked

to cellular aging and cancer, while upregulation of human TERT

gene expression has been associated with the acquisition of stem

cell-like properties, including immortalization [1]. Mutations in

the TERT promoter that create a novel binding site for T-cell

factor (TCF) transcription factors, thereby increasing TERT gene

transcription, have been identified in cutaneous melanoma.

Individuals with these mutations have increased cancer suscepti-

bility, as demonstrated in studies of familial melanoma [2,3]. TCF

transcription factors have important roles in developing and adult

brains [4,5,6,7] as the main effectors of the canonical Wnt/b-
catenin signaling pathway, which is dysregulated in various types

of cancers [8].

Glioblastoma is the most frequently occurring brain tumor

among adults. The standard treatments for glioblastoma are

surgery, radiation therapy, and temozolomide (TMZ) chemother-

apy; however, the high incidences of tumor recurrence and

mortality make it imperative to devise more effective strategies to

manage glioblastoma through improved diagnostic and treatment

measures [9,10,11]. For grade II astrocytoma, the prognosis of

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e100297

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0100297&domain=pdf


certain patients is markedly poor. We hypothesized that some

pathological molecular changes leading to constant abnormal

expression of mitosis related genes may contribute to the poor

prognosis. In this study, the effect of TERT promoter mutations

was examined in glioma cells, and the mutation status of the

promoter was analyzed in glioma patients with respect to glioma

progression and patient survival.

Materials and Methods

Patients and Tissue Samples
The 101 glioma and corresponding peripheral blood samples

analyzed in this study were obtained from the Chinese Glioma

Genome Atlas (CGGA) specimen bank at the First Hospital of

China Medical University. The samples consisted of 28 primary

glioblastomas (P; grade IV), 34 anaplastic astrocytomas (AA; grade

III), 34 astrocytomas (A; grade II), and five pilocytic astrocytomas

(PA; grade I). In addition, 22 meningiomas, 17 pituitary

adenomas, six intracranial metastases, four cavernomas, and two

normal brain tissue samples were included, the latter obtained

from patients that had undergone surgery for primary epilepsy. All

patients underwent surgical resection from January 2006 to

December 2007. The histological diagnoses were established and

verified by two neuropathologists according to the 2007 World

Health Organization classification guidelines. All high-grade

glioma (grades III and IV) patients received post-operative,

standard radiation therapy and chemotherapy according to the

Stupp protocol [10]. All astrocytoma (grade II) patients received

post-operative TMZ chemotherapy. This study was approved by

the institutional review boards of the First Hospital of China

Medical University. All tissue samples were immediately flash

frozen in liquid nitrogen after resection and written informed

consent for future research usage of the sample was obtained from

every patient. Before the experiment, the percentage of tumor cells

in each sample was assessed by staining a frozen section with

hematoxylin and eosin. Only samples with more than 80% tumor

cells were selected for analysis.

Genomic DNA Extraction
Frozen tissue samples were thawed on ice and lysed with 490 ml

lysis buffer containing 20 mM Tris-Cl (pH 8.0), 5 mM EDTA

(pH 8.0), 400 mM NaCl, and 1% (w/v) SDS, to which 10 ml
proteinase K (10 mg/ml) was added for digestion at 37uC for

12 h. Genomic DNA was purified from the lysate by phenol/

chloroform extraction, and resuspended in 50 ml TE buffer

(pH 8.0). Genomic DNA was extracted from peripheral blood

samples using a universal genomic DNA extraction kit (TaKaRa

Bio Inc., Shiga, Japan).

Mutational Screening of the TERT Promoter
The TERT core promoter was amplified by PCR using

previously published primers [2,3]. The PCR was carried out in

a 30 ml reaction volume containing approximately 60 ng genomic

DNA, 0.3 ml TaKaRa LA Taq (TaKaRa Bio Inc.), 15 ml 26GC

Buffer I, 4.8 ml dNTP mixture (2.5 mM each), and 1.5 ml each
primer (10 mM). The PCR conditions were as follows: initial

denaturation at 95uC for 5 min, followed by 35 cycles of 94uC for

30 s, 62uC for 30 s, 72uC for 30 s, and final elongation at 72uC for

7 min. The PCR products were gel purified and sequenced on an

ABI PRISM 3730XL Genetic Analyzer (Applied Biosystems,

Foster City, USA).

Analysis of TERT mRNA Expression
TERT expression levels were determined by quantitative reverse

transcriptase PCR (qRT-PCR). Total RNA was extracted from

glioma tissue samples using Trizol reagent (Invitrogen, Carlsbad,

USA) according to the manufacturer’s instructions. Reverse

transcription of 1 mg total RNA was performed to generate cDNA

using the PrimeScript RT reagent Kit with gDNA Eraser

(TaKaRa Bio Inc.) in a 20 ml reaction volume. The qRT-PCR

reaction volume of 20 ml contained 0.5 ml each of primers

hTERT-qRT-F (59-ACT GGC TGA TGA GTG TGT ACG

TCG T-39) and hTERT-qRT-R (59-ACC CTC TTC AAG TGC

TGT CTG ATT CC-39) (10mM), 10 ml SYBR Premix Ex Taq

(TaKaRa Bio, Inc.), and 4 ml cDNA, with four replicates per

sample. Reactions were performed on a Rotor-Gene 6000 real-

time rotary analyzer (Corbett Life Science, Sydney, Australia) at

95uC for 10 min, followed by 40 cycles of 95uC for 10 s, 60uC for

15 s, and 72uC for 20 s. TERT mRNA levels were normalized to a

glyceraldehyde-3-phosphate dehydrogenase fragment. Relative

expression level was determined using the comparative DDCT
method with a calibration curve generated from cDNA from

normal brain tissue. Experiments were repeated at least three

times.

Plasmid Construction
The 474 bp human TERT promoter (2391 to +83) was

amplified by PCR from normal germline DNA using primers

TERT-F (59-GGG GTA CCC TGG CGT CCC TGC ACC

CTG G-39) and TERT-R (59-CCC AAG CTT ACG AAC GTG

GCC AGC GGC AG-39. The amplified fragment was inserted

into the KpnI/HindIII sites of the pGL3-Basic Vector (Promega,

Madison, USA) to generate the pTERT-WT construct. Using the

same strategy, the two mutation constructs, including 2124 C.T

and 2146 C.T mutaion, were generated by amplifying genomic

DNA fragments from TERT mutated tumor tissues. All constructs

were verified by Sanger sequencing.

Cell Culture, Transfection, and Drug Treatment
U87 glioma cells were cultured in high glucose DMEM,

supplemented with 10% fetal bovine serum and 1% penicillin/

streptomycin, at 37uC in an atmosphere of 5% CO2. Constructs

(1 mg) were transfected, along with the pRL-TK Renilla luciferase

vector (10 ng) to normalize the transfection efficiency, into U87

glioma cells growing in a 24-well plate at 80–90% confluence,

using 2.0 ml Lipofectamine 2000 reagent (Invitrogen). Cells were

subjected to one of the following treatments 24 h after transfec-

tion. TMZ treatment. TMZ was dissolved in dimethyl sulfoxide

(DMSO; Sigma-Aldrich, Saint Louis, USA); cells were treated

with 50 mM TMZ for 24 h, at a final DMSO concentration of less

than 0.1% (v/v). Cells in the control group were treated with the

equivalent volume of DMSO. CoCl2 treatment. CoCl2?6H2O

(Sigma-Aldrich) solution (100 mM) was made using ddH2O, and

used to mimic hypoxic conditions. Cells were treated with 150 mM
CoCl2 for 24 h, with cells exposed to ddH2O serving as a control.

Hypoxia treatment. Cells were placed overnight in an incubator in an

atmosphere of 1% O2, 5% CO2, and 94% N2 at 37uC. Control
cells grown in normoxic conditions were maintained in an

incubator with 5% CO2, 20% O2, and 75% N2 at 37uC.

Luciferase Reporter Assay
Following the above-described treatments, cells were washed

with 16 PBS and assayed for luciferase activity according to the

Dual Luciferase Reporter assay protocol (Promega). Each

treatment, along with the corresponding control, was administered
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in parallel to cells in four wells. Relative luciferase activity was

calculated as the ratio of firefly to Renilla luciferase.

Statistical Analysis
Cox proportional hazards models were used to calculate hazard

ratios (HRs) of patient survival according to TERT promoter

mutation status, unadjusted or adjusted for age, sex, tumor

extension, tumor size, preoperative Karnofsky performance status

(KPS), resection, and tumor grade. To adjust for potential

confounds, age, tumor size, and preoperative KPS were used as

continuous variables, and all other covariates were used as

categorical variables. Four variables were dichotomized: tumor

extension (one lobe vs. more than one lobe), resection (gross total

vs. subtotal), tumor grade (III vs. IV), and TERT promoter status

(mutated vs. wild-type). There were three age categories (,45, 45–

60, and $60 years) and four categories for tumor location (frontal,

temporal, fronto-temporal, and parietal lobes). A Kaplan-Meier

analysis was performed to determine the distribution of overall

survival (OS) times, and a log-rank test was used to compare the

distributions. The x2 test was used to examine associations

between categorical variables. The t test was performed to

compare the means for age, tumor size, and preoperative KPS.

All analyses were performed using SPSS 13.0 (SPSS Inc., Chicago,

USA), and a two-tailed P value ,0.05 was considered significant.

Results

TERT Promoter Mutations are Associated with Gliomas
Among 152 tumor samples, TERT promoter mutations were

found only in gliomas, and not in meningiomas, pituitary

adenomas, cavernomas, intracranial metastases, normal brain

tissues, or in peripheral blood samples (Fig. 1A). Of 101 glioma

samples, mutations were detected in 45 (44.6%), including 33

(73.3%) that were –124 C.T and 12 (26.7%) that were –146 C.

T. Clinical, pathological, and molecular features of the glioma

cases were examined according to mutation status (Table 1).

TERT promoter mutations were significantly associated with

patient age (P=0.004). Moreover, compared to tumors with wild-

type TERT promoters, tumors with TERT promoter mutations

were more likely to be of a high pathological grade (P=0.039).

Mutations in the TERT Promoter Increase mRNA
Expression in Gliomas
TERT promoter mutations create new binding motifs for Ets/

TCF transcription factors close to the transcription start site, and

in reporter assays, have been shown to cause increases in

transcriptional activity of up to two-fold [3]. Thus, the effect of

TERT promoter mutations on TERT mRNA expression in

gliomas was examined by qRT-PCR. The presence of mutations

2124 C.T and 2146 C.T was associated with increased

expression of TERT mRNA in gliomas (Fig. 1B).

Mutations in the TERT Promoter Predict Patient Survival
in High-grade Gliomas
The impact of TERT promoter mutations on patient survival in

high-grade gliomas was assessed. Compared to patients with wild-

type TERT promoters, those with TERT promoter mutations had

higher overall mortality (univariate HR 2.735; 95% CI: 1.611 to

4.641; P,0.001) (Table 2). In the multivariate Cox model adjusted

for potential predictors of patient outcome, TERT promoter

mutations were associated with a significant increase in overall

mortality (HR 4.148; 95% CI: 1.973 to 8.721; P,0.001) (Fig. 2A).

The two-year survival was also examined with respect to TERT

promoter mutations. Survival at 2 years was 31.03% (9/29) for

patients with wild-type TERT promoters, compared to 3.03% (1/

33) for those with mutations (P=0.001). The 2124 C.T and 2

146 C.T mutations were also analyzed separately; however,

there was no significant difference between these mutations in

terms of mortality rate (data not shown). TERT promoter

mutations were examined across the strata of age and tumor

grade, and were found to be associated with poor OS in all

subgroups.

Figure 1. TERT promoter mutation and mRNA expression. A: DNA sequence chromatograms of glioma tissue samples with mutations in the
TERT promoter. Single nucleotide transitions (C.T) were observed at 2124 bp or 2146 bp from the ATG translation start site of the TERT gene. B:
Detection of TERTmRNA levels in glioma tissue samples with and without TERT promoter mutations, and in two normal brain tissue samples. Gliomas
with mutations include four samples with the 2124 C.T mutation, and two with the 2146 C .T mutation. Wild-type gliomas lacked mutations in
TERT promoter region. N1 and N2 are normal brain tissues. TERT gene expression was significantly higher in mutated TERT promoter glioma samples
compared to normal tissue samples, while this was not observed in wild-type TERT promoter glioma samples. The reference, N1, was considered as
having a value of one. *P,0.05; **P,0.01; ***P,0.001 (compared with N1).
doi:10.1371/journal.pone.0100297.g001
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Mutations in the TERT Promoter Predict Patient Survival
in Astrocytomas
The effect of TERT promoter mutations on survival was

examined in astrocytoma (grade II) patients. Compared to patients

with wild-type TERT promoters, those with mutated promoters

had higher overall mortality (univariate HR 3.208; 95% CI: 2.114

to 4.868; P,0.001) (Fig. 2B and Table 3). In the multivariate Cox

model adjusted for potential risk factors, TERT promoter

mutations were associated with a significant increase in overall

mortality for grade II gliomas (HR 3.058; 95% CI: 1.886 to 4.958;

P,0.001).

Increased Transcriptional Activity Under Hypoxia and
TMZ Treatment are Associated with Mutations in the
TERT Promoter
A luciferase reporter assay was used to test whether transcrip-

tional activity from the mutated TERT promoter changed as a

result of hypoxia and TMZ treatment in the U87 glioma cell line.

Compared to the wild-type TERT promoter, 2124 C.T and 2

146 C.T mutations induced increases of approximately 3- and

1.5-fold, respectively, in transcriptional activity (Fig. 3). Cells

treated with 50 mMTMZ or the equivalent volume of DMSO had

nearly identical luciferase activity, suggesting that TERT tran-

scription in glioma cells was not blocked by TMZ (Fig. 3A). Cells

treated with CoCl2 had luciferase activity levels comparable to

control cells, indicating that chemically induced hypoxia had no

effect on TERT transcription (Fig. 3B). Similarly, no difference in

luciferase activity was observed between cells exposed to normoxic

and hypoxic conditions (Fig. 3C). Taken together, these results

indicate that mutations in the TERT promoter lead to persistently

high transcriptional activity even under hypoxic or TMZ

treatment conditions.

Discussion

Glioblastoma is the most common type of primary brain tumor,

yet the prognosis for glioma patients remains poor. Since 2005, a

standard protocol of radiotherapy combined with TMZ chemo-

therapy has been used to treat high-grade gliomas, with a 2-year

Figure 2. Survival function of TERT promoter mutation in glioma patients. A: Kaplan-Meier analysis showing the OS of high-grade glioma
patients with wild-type (blue line) and mutated (orange line) TERT promoters. The difference in OS was significant between the two groups. B:
Kaplan-Meier analysis showing the overall survival (OS) of low-grade glioma (i.e., astrocytoma) patients with wild-type (blue line) and mutated
(orange line) TERT promoters. The difference in OS was significant between the two groups.
doi:10.1371/journal.pone.0100297.g002

Table 2. Univariate and Multivariate Analysis of Different Prognostic Parameters for Overall Survival of High-grade Glioma Patients.

Variable Univariate analysis Multivariate analysis

P HR 95% CI P HR 95% CI

Sex 0.944 0.982 0.586 to 1.644 0.837 0.942 0.532 to 1.666

Age 0.063 1.017 0.999 to 1.035 0.760 1.003 0.981 to 1.026

Extension 0.093 0.593 0.322 to 1.090 0.532 0.792 0.382 to 1.644

Size 0.595 1.000 0.998 to 1.001 0.898 1.000 0.998 to 1.002

Preoperative KPS 0.662 1.006 0.980 to 1.032 0.621 1.007 0.980 to 1.035

Resection 0.699 1.113 0.648 to 1.911 0.271 1.453 0.748 to 2.823

Grade (III vs IV) 0.017 1.415 0.845 to 2.368 ,0.001 3.652 1.785 to 7.473

TERT promoter mutation ,0.001 2.735 1.611 to 4.641 ,0.001 4.148 1.973 to 8.721

doi:10.1371/journal.pone.0100297.t002
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survival rate of about 26.5% [10]. Predicting tumor recurrence is a

significant challenge for glioma treatment. Although it has been

reported that methylation of the O6-methylguanine-DNA meth-

yltransferase (MGMT) gene promoter predicts patient response to

radio- and chemotherapy as well as prognosis [11,12,13,14,15], it

did not apply to all patients, and other studies were unable to find

a correlation between MGMT methylation and prognosis [16].

This is complicated by the fact that MGMT methylation status

can change between the first surgery for newly diagnosed

glioblastomas, and the second surgery for a recurring tumor

[17]. Therefore, the identification of new prognostic biomarkers

for glioblastoma is critically important. Such markers could also be

used to screen for individuals who are at a higher risk for tumor

recurrence, so that treatment approaches can be tailored to each

patient, thereby potentially sparing patients from some of the

inevitable complications that accompany the current forms of

therapy.

Table 3. Univariate and Multivariate Analysis of Different Prognostic Parameters for Overall Survival of Astrocytoma Patients.

Variable Univariate analysis Multivariate analysis

P HR 95% CI P HR 95% CI

Sex 0.700 0.923 0.615 to 1.385 0.813 0.948 0.612 to 1.470

Age 0.005 1.019 1.005 to 1.032 0.822 1.002 0.985 to 1.019

Extension 0.410 0.823 0.517 to 1.309 0.553 0.847 0.490 to 1.464

Size 0.802 1.000 0.999 to 1.001 0.766 1.000 0.998 to 1.001

Preoperative KPS 0.899 1.001 0.983 to 1.020 0.832 1.002 0.982 to 1.023

Resection 0.023 2.108 1.363 to 3.260 0.009 1.846 1.168 to 2.917

TERT promoter mutation ,0.001 3.208 2.114 to 4.868 ,0.001 3.058 1.886 to 4.958

doi:10.1371/journal.pone.0100297.t003

Figure 3. Luciferase reporter assays for transcriptional activity from the TERT core promoter with 2124 C.T or 2146 C.T
mutations compared to wild-type promoter in U87 cell lines. Cells were treated with TMZ, or cultured under hypoxic conditions through
CoCl2 treatment or exposure to 1% O2. WT, wild-type; 124T, 2124 C.T mutation; 146T, 2146 C.T mutation. (A) Compared to wild-type, 124T and
146T displayed significantly higher TERT promoter activity in the presence of TMZ. No significant difference was observed between the DMSO
(control) and TMZ (50 mM) treatment groups. (B) Compared to wild-type, 124T and 146T displayed significantly higher TERT promoter activity under
hypoxic conditions. No significant difference was observed between control and CoCl2 treatment groups (B); similar results were observed when
hypoxia was induced by exposure to 1% O2 (C). The means of four measurements per experimental group are shown; error bars indicate standard
deviation. *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0100297.g003
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The results of the present study demonstrate that mutations in

the TERT gene promoter are associated with decreased survival in

glioma patients (Fig. 2 and Table 2). The role of telomerase in

tumorigenesis is well-established in many types of cancer, and high

telomerase activity is linked to high tumor malignancy [18] and

chemo-resistence [19,20,21]. The activation of telomerase is

tightly regulated at the transcriptional level, with several studies

indicating that TERT transcription is the rate-limiting step in

telomerase expression [22]. As such, TERT mRNA expression

level has been suggested as a biomarker for gliomas [23].

However, this may be unsuitable for a few reasons. First, the

expression of TERT is influenced by many environmental factors

[24,25], and individual differences may also undermine the

prognostic value. Second, tumor samples contain a mixture of

tumor and other cell types, such as immune and vascular

endothelial cells among others, making it difficult to measure

TERT expression levels in tumor cells exclusively. Moreover, due

to the heterogeneity of gliomas themselves, there is no baseline for

making comparisons of TERT expression. Genomic mutations

represent more reliable markers than gene expression. In

melanomas with TERT promoter mutations, TERT is stably

expressed at a high level [3]. Similarly, in gliomas with mutations

in the TERT promoter, high levels of TERT mRNA were detected

(Fig. 1B), possibly resulting from the specific mutations. The

sustained upregulation of TERT expression implies a continuous

activation of telomerase, which could contribute to the immortal-

ization of glioma cells and their resistance to therapeutic measures.

We proposed that the TERT promoter mutation may maintain its

ability of inducing high transcription activity even the microen-

vironment is changed, this was supported by the finding that

mutated TERT promoter constructs induced high levels of

transcriptional activity under conditions of hypoxia and TMZ

treatment (Fig. 3).

TERT promoter mutations were detected only in gliomas and

not in other types of brain tumor (Fig. 1A), indicating that the

identified mutations could serve as glioma-specific biomarkers to

predicting tumor occurrence or recurrence. Given that the

mutations were significantly correlated with high pathological

grade (Table 1), they may actually contribute to glioma

malignancy. It is well-established that hypoxia usually occurred

with glioma progression [26,27], and the present study found that

high levels of TERT gene transcription were maintained from the

mutated promoter during hypoxia [28].

The traditional methods for assessing the pathology of

aggressive gliomas have limitations. For instance, due to the

heterogeneity of gliomas, there may be biases in sample collection

that could interfere with diagnosis and the selection of a treatment

strategy. Screening for TERT promoter mutations could circum-

vent this bias to offer individualized, more effective treatments for

glioblastoma patients. Additionally, the poor prognosis of grade II

astrocytomas with TERT promoter mutations suggests that these

tumors can be classified into an aggressive subtype. There is an

ongoing debate about whether grade II astrocytoma patients

should receive chemotherapy alone or in combination with

radiotherapy. Distinguishing different astrocytoma subtypes based

on TERT promoter mutation status could provide a molecular

basis for pursuing more intensive treatments, although the present

results indicated that high-grade glioma patients harboring the

mutations did not respond well to chemo- and radiotherapy.

It was also found that TERT promoter mutation frequency was

significantly correlated with patient age (Table 1), consistent with

previous reports that age predicts poor prognosis in glioblastoma

[29]. The median OS in elderly patients after diagnosis is typically

less than 1 year [30], which was confirmed by this study. Taken

together, the findings suggest that TERT promoter mutations

could be a causal factor in the mortality of elderly patients. In

consistence with our study, Vinagre et al and Killele et al also

reported that TERT promoter mutation was associated with age

and prognosis in large glioma patient population [31,32].

The results of this study demonstrate that TERT promoter

mutations–specifically, 2124 C.T and 2146 C.T–can be used

alone or possible in conjunction with other mutations, such as the

isocitrate dehydrogenase 1 mutation and MGMT methylation, as

a prognostic biomarker and indicator of pathological grade of

gliomas. This can provide a means for making more accurate

predictions of treatment in patients. Future studies will focus on

elucidating the mechanisms by which TERT promoter mutations

confer resistance to TMZ treatment, and on examining the

association between these mutations and others that promote

glioma progression.
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