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Abstract

Airway remodeling is a pathophysiologic process at the clinical, cellular, and molecular level relating to chronic obstructive
airway diseases such as chronic obstructive pulmonary disease (COPD), asthma and mustard lung. These diseases are
associated with the dysregulation of multiple molecular pathways in the airway cells. Little progress has so far been made in
discovering the molecular causes of complex disease in a holistic systems manner. Therefore, pathway and network
reconstruction is an essential part of a systems biology approach to solve this challenging problem. In this paper, multiple
data sources were used to construct the molecular process of airway remodeling pathway in mustard lung as a model of
airway disease. We first compiled a master list of genes that change with airway remodeling in the mustard lung disease and
then reconstructed the pathway by generating and merging the protein-protein interaction and the gene regulatory
networks. Experimental observations and literature mining were used to identify and validate the master list. The outcome
of this paper can provide valuable information about closely related chronic obstructive airway diseases which are of great
importance for biologists and their future research. Reconstructing the airway remodeling interactome provides a starting
point and reference for the future experimental study of mustard lung, and further analysis and development of these maps
will be critical to understanding airway diseases in patients.
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Introduction

Airway remodeling is a term used to describe the dynamic

processes in obstructive airway diseases. It usually refers to

epithelial layer injury followed by structural changes in the airways

and lung architecture [1]. However, the cellular and molecular

processes depend on the type and the state of disease and the

patient. Consequences of airway remodeling could include a

decrease in pulmonary function and reduced responsiveness to

bronchodilator therapy. Airway remodeling is reported in complex

diseases such as asthma, chronic obstructive pulmonary disease

(COPD), and Mustard Lung as the main respiratory clinical sign.

Also, progressive dyspnea and airflow limitations, mucostasis and

mucosal inflammatory reaction are usually associated with airway

remodeling [2,3]. Mustard lung has an irreversible pattern of

airway obstruction like COPD [4] without any evidence of

emphysema. It is resistant to anti-asthma therapy and an

irreversible pattern of obstruction. Based on these similarities with

asthma and COPD, mustard lung can also be a good model for

evaluation of airway remodeling.

There is a need for a holistic approach to decode the massive

amount of data generated with modern biological approaches.

Systems biology can integrate multilevel views of cell physiology

data generated by low and high-throughput techniques into a

comprehensive understanding of nonlinear molecular properties.

Generation of high-throughput omics data, including genomics,

proteomics and metabolomics enable us to simultaneously

measure and analyze cellular components at any given condition.

Currently, large databases of heterogeneous biological data are

available including gene expression profiles (microarray, EST, and

SAGE), interaction data, and catalogs of gene or protein functions.

Also, many computational tools and algorithms have been

developed to identify biological modules or pathways in the

context of biological molecular networks [5]. Consequently, the

systems biology strategy may be able to identify and construct

novel pathways, and as such, is an emerging biological tool of great

interest [6].

Although individual components of this molecular interaction

data have been studied for decades, the accumulation of huge

datasets to create molecular networks is a topical advance in the

field of molecular medicine [7,8]. Moreover, recent progresses in

molecular biology have highlighted the necessity of a systems

biology approach. So, reconstruction and disruption of biological

networks and pathways, including metabolic pathways, protein-

protein interaction networks (PPI), signal transduction pathways,

and gene regulatory networks (GRN), has been a valuable tool in

the abstraction of biological concepts [8]. Most studies in this field

have focused on the reconstruction, analysis and modeling of

intracellular and extracellular networks [9]. This approach

becomes more important when applied to polygenic diseases for

complex etiologies [10,11], while disease or abnormal pathways

such as airway remodeling are given less consideration. Analysis of

disease pathways has the potential to elucidate the molecular
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mechanisms underlying disease progression and response to

treatment. Accordingly, novel genes, proteins and pathways are

reported in complex diseases such as cancer [12], Alzheimer

disease [11], atherosclerosis [13], and Parkinson’s disease [14],

and these can be understood by utilizing PPI network models

combined with gene expression data.

In this study, we attempt to describe the process of airway

remodeling pathway in mustard lung [15]. Interestingly, more

than 45,000 of 100,000 Iranian exposed patients are suffering

from the late effects of sulfur mustard (SM; 2-bis-chloroethyl-

sulfide) after almost 25 years post-exposure [4]. The chemical

warfare agent sulfur mustard as a potent alkylating agent is highly

reactive vesicant that can cause airway epithelial injury. Recent

studies on Iranians of about 20–25 years in age after exposure to

SM have shown the most common late complications in

descending order of frequency are found in the lungs, eyes, and

skin [4]. Damage to the epithelium layer is known as a key factor

driving airway remodeling. Airway remodeling is the greatest

cause of long-term disability among patients with combat-

exposure to SM gas [16–18]. COPD and mustard lung are

similar in clinical symptoms and signs, but differ at the molecular

level and interactions between them.

Accordingly, we have prepared a master list of mustard lung

related genes. PPI and GRN networks were then generated and

topological analysis was performed on merged network. Then, key

signaling paths in networks were identified and mapped manually.

The first reconstruction of an airway remodeling pathway in the

mustard lung model is presented. A schematic workflow of our

work is shown in Figure 1.

Materials and Methods

Static network modeling plays a central role in systems biology.

Therefore, the reconstruction process is highly related to our

knowledge base in characterizing mustard lung. However, owing

to the large amount of data, we need appropriate computational

tools for gathering, constructing, and analyzing generated

networks and pathways. A schematic workflow of our work is

shown in Figure 1 and is described in detail in the main text.

Data collection
Three chronic sulfur mustard exposed and three unexposed

individuals as the control group were selected for gene expression

profiling. Airway biopsy was used for microarray gene expression

experiment. Differential expression results were achieved during

our former work by one way ANOVA test that is equivalent to t-

test for two groups. (a P. value ,0.01 was accepted as statistically

significant after using Bonferroni correction for multiple tests) [19].

Statistical significance was validated using a two-tailed t-test

assuming unequal variance, whereby significance was achieved for

p,0.01. Therefore, 122 differentially expressed genes were

identified by microarray experiment. The raw and process data

were deposited in the http://lbb.ut.ac.ir/Download/LBBsoft/

Mustard-Lung-Miacroarray. Furthermore, related published gene

expression results (real-time PCR) were analyzed for completing

the microarray gene list. This investigation attempted for the first

time to identify gene profiles using whole human genome

microarray chips, so as to recognize potential new target molecules

and pathways involved in the pathophysiology of SM-induced

airway remodeling. For comparison, there have been several

microarray studies on animal models involving analysis of rodent

pulmonary tissue [20] and mouse skin [21] after exposure to SM.

Extensive literature surveys were then used to identify and

confirm factors (gene, protein and metabolite) involved in airway

remodeling. Literature mining was performed using keywords

including sulphur mustard, mustard gas, mustard lung, and airway

remodeling in Pubmed and google scholar databases without time

limitation. Chronic mustard lung studies were selected for further

detailed review (File S5). Finally, after removing redundant

reports, 50 genes were extracted and merged to the 122 genes

identified with microarray experiment (172 genes). iHOP [22] is a

Web-based tool and Agilent literature search is a plugin in

Cytoscape [23] that were used to automate analysis of abstracts in

search for gene names. Finally, data were manually curated. In all

cases, the HGNC official gene symbol was used to identify genes

and proteins. Gene set annotation enrichment analysis also were

performed using DAVID web tools (http://david.abcc.ncifcrf.gov)

that provides a set of functional annotation tools for the genes

categorized into Gene Ontology (GO) terms.

Ensemble network and pathway reconstruction
The network and pathways were reconstructed based on the

master gene list and the molecular interactions documented in

related papers and on-line interaction databases. The Pathway

Resource List (http://pathguide.org) is a meta-database that

provides an overview of more than 300 web-accessible biological

pathway and network databases [24]. Human-specific Interactions

of protein–protein interaction (PPI) data were abstracted from

Biomolecular Interaction Network Database (BIND) [25], Data-

base of Interacting Proteins (DIP) [26], Mammalian Protein-

Protein Interactions Database (MIPS) [27], Human Protein

reference Database (HPRD) [28], and Biological General Repos-

itory for Interaction Datasets (BioGRID) [29]. Furthermore, Gene

regulatory network (GRN) data were obtained from analysis of

related microarray experiments and search in GRN database such

as GeneMANIA [30] and Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING). To achieve the GRN and

PPI networks, we entered the mustard lung gene list to these

databases and got several GRN and PPI networks for our master

gene list. Some of these databases don’t accept a gene list; in these

cases, o each gene was entered into the database manually, and

resulting interactions added to the networks using Cytoscape

software. Also, Cytoscape plugins were used for extracting,

merging, visualizing, and analyzing unified interactive data.

Molecular species in generated networks are represented as nodes

and the interactions between these nodes as edges.

Some of the achieved interactions were checked by pathway

databases including Protein ANalysis THrough Evolutionary

Relationships (PANTHER), Reactome, the National Cancer

Institute Pathway Interaction Database (NCI-PID;), the Kyoto

Encyclopedia of Genes and Genomes (KEGG), and Pathway

Common, as the most widely used databases (table 1).

Also, generated networks were compiled in Simple Interaction

Format (SIF) amenable to Cytoscape for further topological

analysis. After merging networks, the topological and statistical

significance of the network was calculated using the Network

Analyzer plugin in Cytoscape. The degree (connectivity) of nodes,

the number of hubs (highly connected nodes), the shortest path

lengths between any two nodes, the mean path length (the average

of the shortest path lengths) and the network diameter (the

maximum of the shortest path lengths) in comparison with random

networks (Erdos-Renyi and Barabasi-Albert models; generated by

random networks, a plugin in Cytoscape) were analyzed.

Manual Pathway curation provides the most reliable means of

extracting information from the literature, databases, and exper-

iments. Thus, based on generated networks (PPI network and

GRN), functional modules, signaling pathway databases, and

previous knowledge, the airway remodeling pathway map was

Pathway Reconstruction of Airway Remodeling
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manually constructed by CellDesigner version 4.2 (www.

celldesigner.org) in Systems Biology Markup Language (SBML)

format, which provide graphical environment, pathway visualiza-

tion, and navigation. It can be used for building diagrammatic-

based biochemical networks represented as a process flow, with the

possibility of running functional simulations.

Based on functional modules derived from mustard lung

network, we used signaling pathway databases (Table 1) to map

the functional modules to signaling pathways. Each path was

identified in different signaling pathways and was manually

curated and reconstructed (drawn) using CellDesigner. This stage

requires multidisciplinary skills and a priori knowledge.

Figure 1. A schematic picture demonstrating the pathway reconstruction workflow. The workflow shows that the master gene list is
provided from two sources (microarray gene expression and literature mining). Protein-Protein interaction network (PPi) and Gene Regulatory
Network (GRN) are compiled using Cytoscape software and its plugins. Also, signaling pathway reconstruction is accomplished in CellDesigner
software based on biological knowledge accumulated in related literatures and public databases (e.g. Gene Ontology, Uniprot, and NCBI geneRIFs)
and related signaling pathways deposited in the signaling pathway databases such as Biocarta, Reactome, and NCI-PID. The final mustard signaling
pathway was drawn manually using CellDesigner.
doi:10.1371/journal.pone.0100094.g001
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Results

Candidate gene list
Following the workflow described in the Methods section for

data retrieval, 172 genes (122 genes from microarray and 50 genes

from literature) were selected according to databases, literature

mining and related microarray data. The genes that are known to

be involved in airway remodeling in sulfur mustard exposed

patients are given in the File S1. These genes are annotated and

described based on molecular process and functionality in the gene

ontology (GO) and other annotation databases.

Mustard lung networks
We compiled a gene list (nodes) involved in airway remodeling

based on PPI resources and literature mining. Briefly, PPI

networks are commonly represented in an undirected graph

format, with nodes corresponding to proteins and edges

corresponding to physical protein-protein interactions. The PPI

network obtained from the master list are given in Cytoscape .sif

format in File S2. Based on current knowledge of physical

interactions in PPI databases, we could identify interactions for

just 96 of 172 nodes in the master list. Hence, a PPI network of 96

nodes and 211 edges was generated.

Gene expression data and co-expressed genes have become a

useful resource in representing of the molecular state of cells.

GRNs are commonly shown in a directed graph. GRNs consist of

nodes, representing the expression profile of a particular gene, and

edges representing significant associations between expression

profiles (for example Pearson correlation). By using our gene list

and co-expressed genes (extracted from GRN databases and

related microarray data), a mustard lung GRN was generated.

This network with 171 nodes and 1002 edges is shown in

Cytoscape .sif format in File S3. Also the pdf files of networks are

presented in File S6 (PPI) and File S7 (GRN).

The mustard lung network was created by merging networks.

The complex network is likely composed of several sub-networks

or functional modules contributing to various diverse biological

processes in mustard lung disease. Three major functional modules

are illustrated in figure 2.

Proposed signaling pathway
Pathway extraction or static modeling of networks (PPI network

and GRN) has become a very active area of research. Figure 3

shows a schematic pathway that is generated by CellDesigner in

SBML format (File S4). This pathway has been extracted from the

generated mustard lung network. There are several signaling paths

such as ERK/MAPK, EGFR activation, and EPAS1/ARNT

paths in this disease pathway that have high crosstalk together.

Network topology analysis
Network parameters were performed by using NetworkAnalyzer

plugin of Cytoscape for the mustard lung network. Topological

analysis of a network identifies the global qualitative properties of

the system. Network topology is used to provide the significance of

a node in communicating with other nodes. Scale-free networks

share two important functional characteristics. First, they are

differently sensitive to damage. So if a small, peripheral node stops

functioning, the network is very likely to continue working without

problem. By contrast, if a hub is damaged, the functionality of the

entire network is likely to be jeopardized. These topological

characteristics are seen in biological networks [31]. In other words,

if a hub node such as MMP9 is closed, most of the nodes and edges

will be affected. Since biological networks satisfy power-law degree

distribution, we have checked the mustard lung network for basic

network properties. Degree distribution of a scale-free network

having k connections to other nodes satisfies the following relation

[32]:

P(k)*kc

where c is power-law parameter. For mustard lung network, we

have applied curve fitting to aforementioned relation and

calculated values of c and r2 (coefficient of determination or R-

squared). According to the r2, the results show that mustard lung

network is scale-free (Figure 4-right). The betweenness centrality

Cb(n) of a node n is computed as follows:

Cb(n)~
X

s=n=t
(sST (n)=sST )

where s and t are nodes in the network different from n, sst denotes

the number of shortest paths from s to t, and sst (n) is the number of

shortest paths from s to t that n lies on (Figure 4-left).

Topological parameters such as the average clustering coeffi-

cient, topological coefficient, average degree and power law

distribution of degrees and betweenness centrality have been

assessed to predict the topology of the networks. The distribution

of clustering coefficient is an important characteristic of biological

scale-free networks. The clustering coefficient Cn of a node n is

defined as Cn = 2en/(kn(kn-1)), where kn is the number of neighbors

of n and en is the number of connected pairs between all neighbors

of n. Therefore, the clustering coefficient, characteristic path

Table 1. Pathway and interactome databases used to identify interaction (edge) between genes in the master list.

Database Version/date Graph type Address

STRING v8.2 Directed/Undirected http://string-db.org

Reactome v43 Directed www.reactome.org

KEGG 2012 Directed www.genome.jp/kegg

GeneMania 3.1.1 Undirected www.genemania.org

NCI-PID 2012 Directed http://pid.nci.nih.gov

Biocarta 2012 Directed/Undirected http://www.biocarta.com/

GeneGO v2.5 Directed www.genego.com

Pathway Commons v 3.1.17288 Directed http://www.pathwaycommons.org

PANTHER 2012 Directed www.pantherdb.org

doi:10.1371/journal.pone.0100094.t001
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length, network centralization and network density of the Mustard

lung network were compared with simulated randomized model

networks (Erdos-Renyi and Barabasi-Albert models; generated by

random networks, a plugin in Cytoscape) as shown in Table 2.

The general structure of the network is far from random as shown

by the comparison with the simulated network. In particular, the

clustering coefficient of the Mustard lung network greatly differs

from random network. These data indicate that the interactome

possesses its own peculiar structure, and not a random one, which

is a sign of a highly organized architecture.

The clustering coefficient (table 2) is the average of the

clustering coefficient for all nodes in each network. The

characteristic path length gives the expected distance between

two connected nodes in each network and the network density and

network centralization show how densely the network is populated

with edges and reflect the tendency of a network to contain hub

nodes.

Discussion

Cellular signaling is a complex system governing the events in

the organism that can be considered as communication both

within and between cells. Airway remodeling occurs in many

chronic lung disorders. The bronchial epithelium, sub-epithelial

myofibroblasts and ASM (airway smooth muscle) cells are the

major cell types involved in tissue repair processes in the airway

tissue. Highly dynamic interactions and crosstalk between these

resident cells via signaling proteins through autocrine or paracrine

mechanisms dictate how tissue repair should progress. Signaling

proteins from different pathways may interact directly (e.g. by

phosphorylation) or influence each other indirectly (e.g. via

regulation of gene expression). One component may also act in

more than one pathway. Such cross-talk events can result in

unexpected behavior.

For the first time, we reconstructed an enriched network and a

pathway that comprehensively catalogs major signaling pathways

in the field of airway remodeling associated with sulfur mustard

exposure. Disease pathway construction is essential to decipher

complex regulatory patterns in deranged cellular processes.

Therefore, identifying disease networks and pathways is important

for understanding the pathology of disease and improving clinical

diagnosis and treatment. Based on network topology analysis in

comparison with random network, the generated networks have a

larger clustering coefficient, higher network density, higher

network centralization, and shorter characteristic path length

than generated random networks. All of these features reveal a

Figure 2. Major disease-risk modules in mustard lung network. Colored nodes are selected based on fold change ranking in microarray gene
list and previous reports. They have a central role in these modules as driver nodes. The A, B, and C sub-networks extract from the mustard lung
network using Hubba, a plugin in Cytoscape software.
doi:10.1371/journal.pone.0100094.g002
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high degree of connectivity found in biological scale free networks.

This type of network with high levels of global connectivity and

high-degree hubs is often found in biological systems that respond

to changing external conditions [33]. However, while this system

design is useful for normal tissue, in abnormal conditions such as

mustard lung, the effects of network disruptions can spread

rapidly. We have assembled a comprehensive map of putative

regulators of airway remodeling in human airway epithelial layer

of mustard lung. This pathway is composed of complexes of

physically interacting genes and proteins, which are investigated

with molecular biology approaches in genomics, proteomics, and

metabolomics.

Figure 3. The proposed pathway of airway remodeling in mustard lung. Pathway nodes are indicated by color coding; Green: single protein;
White: protein complex; Yellow box: gene; Bisque: receptor protein; Purple: biological process. The pathway illustrates several paths such as ERK/
MAPK, ERBB1/ERBB2 complex activation via TFF3, and EPAS1/ARNT transcription factor activation. Different paths were extracted from pathway
databases (table 1) and then were curated and reconstructed manually in the CellDesigner graphical interface.
doi:10.1371/journal.pone.0100094.g003
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Previous studies have shown various signaling processes such as:

angiogenesis, inflammation, oxidative stress, mucous secretion,

apoptosis/antiapoptosis, and ECM degradation in airway remod-

eling [15,34,35]. Clinical and pathological signs of mustard lung

also confirmed these processes. Disruption of a pathway may be a

good thing. Thus, the detailed understanding of molecular

pathways is an important step in diagnosis and treatment of

disease. Eventually, it can help to determine biomarkers for

complex diseases, which may lead to new approach for treatment

and diagnosis [36,37].

Several signaling paths were identified in the generated mustard

lung pathway, including EPAS1/ARNT path, ERK/MAPK path,

MMPs path, and EGFR path. These highly connected paths can

lead to various processes and phenotypes. Details and functions of

these processes are discussed below.

Extracellular Matrix and adhesion molecules regulation
The extracellular matrix (ECM) is a complex composition of

different combinations of collagens, proteoglycans, hyaluronic

acid, laminin, fibronectin, and many other glycoproteins, includ-

ing proteolytic enzymes involved in the degradation and

remodeling of the extracellular matrix. One of the major roles of

ECM is to serve as a structural framework for cell attachment and

migration. Among proteases, matrix metalloproteinases (MMPs)

are extracellular degrading enzymes that play a critical role in

degrading components of the ECM and epithelial cell junctions,

cancer metastasis, and liberation of tethered growth and chemo-

tactic factors in response to wounding [38]. One of the lung

disorders that has both inflammatory and remodeling features is

mustard lung. Imbalance between levels of MMPs and TIMPs in a

particular location can lead to accumulation of ECM protein at

that site. The most well-known profibrotic cytokine TGF-b is

known to crosstalk with the ECM pathway. Also, TGF-b signaling

has a critical role in activation of angiogenesis [39].

Mucus hyper-secretion
Mucus hyper-secretion is a major pathophysiologic feature in

chronic inflammatory airway diseases. Trefoil Factor3 (TFF3) is

one starting point in the airway remodeling pathway as shown in

figure 3. Trefoil family has three homologous (TFF1, TFF2, and

TFF3) [40,41]. Although the exact function of TFF3 in the

respiratory tract remains largely unknown, experiments using

recombinant human TFFs (hTFF) show that they may serve

several roles in maintaining intestinal homeostasis such as by

potentiating intestinal permeability, increasing the mucous integ-

rity through mucin interactions, or directing epithelial restitution

by promoting cellular migration. Also, Greeley et al. have shown

that TFF1, TFF2, and TFF3 have roles in proliferation, as well as

migration, cell death and differentiation phases of airway epithelial

repair [42]. In our pathway, TFF3 acts as a ligand and binds to

ErbB1/ErbB2 complex (ERBB1 also known as EGFR). Hetero-

dimerization of ErbB1/ErbB2 stimulate ERK kinase cascade.

ErbB1 and ErbB2 recruit Son of Sevenless homolog (SOS) via

adaptor protein GRB2 and SHC transforms protein (Shc),

respectively. SOS is a guanine-nucleotide exchange factor for

small GTPases, including H-Ras. Following this activation, the

Figure 4. Analysis of mustard lung network with 172 nodes and 1169 edges. These graphs were generated using NetworkAnalyzer plugin
of Cytoscape. The scatter plot of betweenness centrality vs. number of neighbors (left) indicates that a limited number of nodes control the
information flow between other nodes within the biological network. This means that a limited number of nodes with high interactions (hubs)
control other nodes with lower interactions. The node degree distribution (right) shows that the network is scale-free considering the power-law
degree distribution P(k),kc (fitting result is c= 0. 790 and R-squared = 0.667). This means that the mustard lung network is a biological network which
differs from random networks.
doi:10.1371/journal.pone.0100094.g004

Table 2. Basic network parameters of the two generated networks, compared with simulated randomized model networks.

Mustard lung network Simulated Barabasi Albert model, (scale free) Simulated Erdos-Renyi model

Number of nodes 172 172 172

Clustering coefficient 0.208 0.127 0.054

Characteristic path length 2.419 3.206 2.610

Network density 0.079 0.023 0.051

Network centralization 0.150 0.225 0.049

doi:10.1371/journal.pone.0100094.t002
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MAPK/ERK path is activated and we have shown MAP2K2

over-expression that has a critical role in ERK pathway. Then,

this cascade continues with the activation of downstream

pathways. At the end of the pathway, Muc5B gene is expressed

which leads to enhanced mucus secretion. Also, this cascade causes

expression of TFF3 gene, leading to increased TFF3 protein in

airway tissue.

Angiogenesis
Angiogenesis is a hallmark in the pathology of many diseases,

including cancer, ischemia, atherosclerosis, and inflammatory

diseases. Angiogenesis has additional roles in normal development

and physiological processes in adults, including wound healing and

tissue regeneration. Most previous studies have shown that

hypoxia inducible factor 1alpha (HIF1A) and endothelial PAS

domain protein 1 (EPAS1) transcription factors promote the

transcription of vascular endothelial growth factor (VEGF) when

they interact with aryl hydrocarbon receptor nuclear translocator

(ARNT). Moreover, in-vitro experiments showed that EPAS1 (or

HIF2A) mRNA is expressed in the epithelial cells of pulmonary

alveoli [43]. This complex binds to the promoters and then

activates target genes involved in proliferation and differentiation,

such as MMP9, VEGFA, CYP1B1, CCND1, and MUC5B. The

two subunits EPAS1/ARNT are together forming a transcription

factor that regulates expression of VEGF that enhances angio-

genesis in airway tissue. Also EPAS1/ARNT regulates more than

100 genes which regulate important mechanisms such as

angiogenesis, apoptosis, and anaerobic metabolism. In mucus

hyper-secretion and hypoxia, the EPAS1/ARNT complex is

activated, and thus expression of downstream genes is increased as

a result. EPAS1 protein increases its own promoter activity as well

as the transcription of the VEGF gene.

It has also been noted that in prolonged hypoxia in lung

epithelial cells, the up-regulation of HIF1a was transient, whereas

increases in HIF2a were sustained [44]. A transient up-regulation

of HIF1a could not be ruled out in these conditions, but the

expression of HIF1a was significantly lower than HIF2a under all

conditions.

CXCL17 is a chemokine involved in tumor angiogenesis and is

an anti-inflammatory factor that we have also observed to be over-

expressed in mustard lung. CXCL17 induces the production of

proangiogenic factors such as VEGFA. Also, CXCL17 is

expressed in some aggressive types of gastrointestinal, lung and

breast cancer cells [45].

TGF-beta1 is involved in extracellular matrix regulation,

leading to airway remodeling in chronic airway diseases. Will-

ems-Widyastuti et al. proved that TGF-beta1 acting through ECM

regulation could also play a critical role in bronchial angiogenesis

and vascular remodeling via VEGF pathway in asthma [46].

Inflammation and oxidative stress
Oxidative stress plays a pivotal role in the pathogenesis of many

chronic inflammatory lung diseases, especially in mustard lung.

Oxidative stress induced cellular and molecular changes in the

airway epithelium layer may significantly contribute to the

pathogenesis of chronic inflammatory airway disorders and induce

apoptotic or inflammatory responses in the lower respiratory tract

[47].

Airway cells are constantly challenged by environmental (e.g.

xenobiotics, UV, and drugs) and endogenous stressors (e.g.

reactive oxygen species (ROS), hydroproxides, carbonyls, and

quinones). If unchecked, these stresses lead to airway and lung

inflammation. FMO2/FMO3 complex is one of the key enzymes

that catalyze ROS to O2. With decreasing expression of this

complex, ROS increases and therefore, leads to oxidative stress

and inflammation. In addition, ROS is a second messenger

required for regulating MUC5B expression and mucus secretion

via EGFR signaling path [48].

Apoptosis and anti-apoptosis regulation
Apoptosis (programmed cell death) and necrosis are the two

major types of cell death. The process of apoptosis is triggered by a

diverse range of cellular signals. Either the extrinsic or intrinsic

death pathways can lead to apoptosis. Extracellular signals include

toxins, hormones, growth factors, cytokines, nitric oxide, heat,

radiation, nutrient deprivation, viral infection, hypoxia, the

binding of nuclear receptors by glucocorticoids, or increased

intracellular calcium concentration can damage DNA or cause

cellular stress, triggering the release of intracellular apoptotic

signals. There are some genes in File S3 that are connected to

apoptosis, including CRIP2, PACS-2, and IFI35. Over-expression

of CRIP2 induces apoptosis through activation of caspases 3 and 9

[49]. CRIP2 acts as a transcription repressor of the nuclear factor-

kB-mediated proangiogenic cytokine expression [50]. TRAIL/

DR5 triggers PACS-2 to traffic Bim and Bax to lysosomes to

release cathepsin B and induce apoptosis [51] and IFI35 is induced

by IFN-gamma [52]. Some of the identified factors (such as

TSPAN8, CXCL17, CRIP2, STARD10, CSNK2A1) and path-

ways (i.e. apoptosis, TGFb, VEGF and ERK signaling) are known

to participate in cancer as well as their identification here linked

with airway remodeling in mustard lung. Our data suggest that

cancer and airway remodeling share several overlapping processes.

This work has a few limitations. First, airway biopsy sampling is

an invasive technique (especially for normal group), and most of

the chronic mustard patients have about 25-year difficulties in

their life style and strongly refuse to be included in the study.

Combined with various exclusion criteria including age, smoking,

and lung performance, the study population was quite small, thus

gene profiling of each biopsy sample was performed in duplicate

for further accuracy. Second, our analysis necessarily includes data

from mouse models of airway remodeling which may or may not

be representative of human disease.

Conclusions

Our findings demonstrate that the analysis and modeling of

complex biological networks are beyond the capabilities of existing

computational techniques that are needed for this type of scientific

endeavor. Therefore, manual curation and pathway reconstruc-

tion was followed after computational results. Current diagnosis of

the airway remodeling diseases, in particular mustard lung and

COPD, is mainly based on a combination of lung function

evaluation and an observation of symptoms. There is no sole and

exact clinical or laboratory test available. This highlights the need

for biomarkers to diagnose disease or identify disease phenotypes.

Therefore, the identification of key candidate genes, and their

roles in regulating pathways, shows the need for bringing systems

biology to the clinic as a powerful new approach. TFF3, ERBB2,

EPAS1, and COL7A1 are the candidate factors identified here as

potentially centrally involved in the pathophysiology of airway

remodeling in mustard lung. The regulation of these proteins may

be potentially useful in the treatment of airway remodeling.

Finally, a comprehensive understanding of biological pathways

can aid in the development of drugs to target specific cellular

mechanisms while avoiding unwanted side effects.
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File S1 List of Genes that are known to be involved in
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(XLS)
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File S3 The GRN network with 171 nodes and 1002
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(SIF)
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File S5 The reference list is used in literature mining
for gene selection.

(DOCX)
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(PDF)

File S7 The pdf file of GRN network.
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