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Abstract

Obtaining accurate small area estimates of population is essential for policy and health planning but is often difficult in
countries with limited data. In lieu of available population data, small area estimate models draw information from previous
time periods or from similar areas. This study focuses on model-based methods for estimating population when no direct
samples are available in the area of interest. To explore the efficacy of tree-based models for estimating population density,
we compare six different model structures including Random Forest and Bayesian Additive Regression Trees. Results
demonstrate that without information from prior time periods, non-parametric tree-based models produced more accurate
predictions than did conventional regression methods. Improving estimates of population density in non-sampled areas is
important for regions with incomplete census data and has implications for economic, health and development policies.
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Introduction

Estimates of the distribution and growth of human population

are invaluable. They are used as input to research-focused and

operational applications, including emergency response, infectious

disease early warning systems, resource allocation projections and

food security analysis, to list only a few examples. However,

obtaining reliable population estimates at the spatial resolutions

required for many of these applications is a significant challenge.

Census data, the primary source of population size, is often

incomplete or unreliable - particularly in less-developed countries -

which causes considerable problems for policy planning and

decision makers. For this reason, models that can refine existing

estimates of human populations or that can estimate populations

in areas that lack population data altogether are of considerable

importance.

Small area estimation (SAE) refers to methods for estimating

small-scale characteristics of populations when there is little data,

or in some cases no data at all. SAE methods are often used to

produce estimates of population counts for small geographical

areas, and to assess the accuracy of these estimates. Two distinct

components make up SAE: design-based methods and model-

based methods, which may be further divided into area-level

models and unit-level models that employ either frequentist or

Bayesian frameworks [1–2]. Unit-level models correspond to

models for which information on the covariate and response

variables are available for individuals, whereas area-level models

only require area-averaged data for the covariates and the

response. Design-based methods calculate the bias and variance

of estimates from their randomization distribution induced by

repeated application of the sample, while model-based methods

produce inferences that are with respect to the underlying model.

A significant limitation of design-based methods is that they have

no means of producing predictions for areas in which no samples

exist. SAE models, however, will draw information either from

previous time periods or from similar areas in lieu of accurate

population information [2]. This paper explores the extent to

which the availability of data from previous time periods affects

the choice of optimal model structure for area-level SAE models.

The paper will focus on model-based methods for estimating

population when no direct samples are available in the adminis-

trative unit of interest. The analysis and models discussed are

limited in scope to spatial population estimation and should not be

considered interchangeable with problems of temporal population

prediction.

A variety of model-based methods are applicable to SAE

problems, including microsimulation, areal interpolation and

statistical modeling. While microsimulation and areal interpolation

are valid approaches to SAE problems, this paper focuses on an

assortment of statistical modeling methods. The brief review of

relevant model-based estimation methods offered below is

intended only to position the current research in relation to

previous work on the same problem, and should not be considered

a complete review of SAE as a whole.

Microsimulation produces SAE population estimates by mod-

eling specific individuals or households and, in the case of dynamic
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microsimulation, life events of those individuals [3–4]. Spatial

microsimulation builds upon static or dynamic microsimulation by

explicitly representing the spatial dimension inherent in popula-

tion modeling. Because the method is so computationally

intensive, the simulation is often limited in its scope of application

but has the unique advantage of being able to model the impact of

detailed alternative policy scenarios.

In contrast to the bottom-up approach of microsimulation, areal

interpolation entails distributing administrative level census data

across a finer scale to produce a detailed population surface. Areal

interpolation is of interest for SAE problems when coarse scale

population information is available, but small-scale measurements

in areas of interest are not. The most commonly used technique

for producing heterogeneous population density surfaces from

homogeneous zones is dasymetric mapping, which uses ancillary

information to divide each zone of the source data into subzones

[5]. Each subzone is assigned a population density such that the

sum of population over all subzones equals the population of the

original source zone [6]. In recent years areal interpolation has

been used to produce gridded estimates that are more readily

compatible with external modeling frameworks.

Statistical modeling in the context of SAE refers to model-based

methods of producing estimates, often described as synthetic

estimates, which may be used directly or blended with design-

based measurements to produce a final estimate [1–2]. The phrase

‘‘synthetic estimate’’ alludes to the fact that these estimates are

inferred using a model of relationships drawn from a larger

domain. Synthetic estimates may be produced using either indirect

implicit methods, meaning that the model assumes a homogenous

relationship between dependent and independent variables across

the entire small area, or indirect explicit methods, meaning that

the model takes into account the spatial heterogeneity present

within the small area domain. This paper analyzes both indirect

implicit and indirect explicit methods, as discussed further in the

following section. We emphasize that the analysis is not a complete

assessment of SAE methods, but is specifically focused on methods

of producing estimates when no direct estimates are available for a

particular administrative unit of interest.

Many statistical models employed for SAE are regression based.

One of the fundamental models is the area level model, originally

employed by Fay and Herriot (1979), which takes the form

yi~hizE; hi~xibzu1,

Table 1. Summary of model structures, strengths and weaknesses.

Model Description Advantages Disadvantages

Linear Model
(LM)

Linear model Simple to implement,
transparent model
structure

Unable to capture nonlinear
relationships

Linear Mixed
Model (LMM)

Linear model
incorporating
spatial correlation

Explicitly accounts for spatial
correlation, transparent
model structure

Unable to capture nonlinear
relationships

Generalized
Additive Model
(GAM)

Non-linear extension
of a LM using a
smoothing function

Able to represent
nonlinear relationships

Vulnerable to model over fit,
which degrades predictive accuracy

Multiple Adaptive
Regression
Splines (MARS)

Penalized spline,
extension of a LM
using multiple basis
functions

Able to represent
nonlinear relationships

Vulnerable to model over fit,
which degrades predictive accuracy

Random Forest
(RF)

Bagged
classification and
regression tree
(CART) method

Nonparametric, designed to reduce
variance and improve
predictive accuracy of
CART methods

Complex model structure, more
difficult to succinctly measure
variable importance

Bayesian Additive
Regression
Tree (BART)

Sum-of-trees
method

Nonparametric, provides a
flexible inference of the
relationship between response
variables and covariates

Complex model structure, difficult
to interpret variable
importance,
computationally intensive

doi:10.1371/journal.pone.0100037.t001

Figure 1. Population count by district for all regions included
in the analysis for A) 1993 and B) 2007.
doi:10.1371/journal.pone.0100037.g001
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ui~N(0,s2
u), E~N(0,s2

E ) ð1Þ

where yi is the direct estimator of hi, xi is the associated covariate

for area i and b is a coefficient for fixed effects [7]. ui and e are

mutually independent error terms where ui represents the random

effects of area characteristics not accounted for in the covariates.

The best linear unbiased predictor (BLUP), ĥhi, under this model is

defined as

ĥhi~ciyiz(1{ci)xib̂b ð2Þ

where ci is a tuning coefficient defined using the variances of ui

and e as ci~s2
u

�
s2

uzs2
E

� �
. Note that Eq. 2 reduces to ĥhi~xib̂b for

areas without any direct samples. This model may be adapted to

the unit level as proposed by Battese, Harter and Fuller (1988);

however, in the present application the covariate and response

variables are available at the area-level only [8].

The BLUP, ĥhi, in Eq. 2 is also the Bayesian predictor under

normality of the error terms when using a diffuse prior for b.

When the variance s2
u is unknown – as is often the case – it is

common to replace it with a sample estimate, yielding the

empirical BLUP under the frequentist approach, or the Empirical

Bayes predictor under the normality assumption (the prediction

then being the mean of the posterior). For area-level data, the

error variance (s2
e) must be specified from external sources. The

posterior distribution of hi may alternatively be calculated by

specifying prior distributions for s2
u and b, a technique known as

the Hierarchical Bayes method [1].

The linear model outlined in equation (1) may be expanded to

include spatial autocorrelation to address problems that are

inherently spatially dependent. These models are often used, for

example, in problems of disease mapping [9]. One such model

used to account for spatial autocorrelation is a linear mixed model

[10]. Our analysis includes versions of both linear models and

linear mixed models as established linear modeling structures

against which the performance of nonlinear methods may be

evaluated.

Recent studies have explored semi-parametric variations of the

area-level model (equation 2), including penalized splines [11] and

the M-quantile method [12–13], in an effort to produce a more

robust inference. Models using penalized splines allow for a more

flexible representation of the relationship between covariate and

response variables, while an M-quantile method uses area-specific

models for the regression M-quantiles of the response for

estimation. A variation of the penalized splines method is included

in this study, as discussed further in the following section.

The work described above demonstrates the potential of using

parametric and non-parametric regression-based models to

improve small area estimates. Despite this potential, the applica-

tion of SAE methods in resource-poor areas is somewhat limited.

In Peru, for example, although the Center for International Earth

Science Information Network (CIESIN) has produced gridded

estimates of population density following from statistical data, the

only attempt to utilize SAE models has been in the area of poverty

estimation and follows from the methods outlined in Ghosh & Rao

(1994) and Rao (1999) [14–19]. One potential barrier to using

models outlined in the SAE literature may be a lack of expertise.

In our analysis we propose a number of model structures that

provide accessible alternatives to more complicated methods,

which often require precise user specification to produce accurate

estimates. In fact, two of the models explored in our analysis – the

tree-based models – require no tuning or parameterization at all,

as do regression models. This makes them particularly accessible

tools for providing robust model estimates.

In order to systematically identify and understand alternative

model structures for population prediction in data-limited regions,

we compare the predictive accuracy of six different model

techniques–including both regression and tree-based methods.

Each model predicts population density for districts in Peru with

no available direct samples in two separate circumstances: once in

which population from a previous time period is available and

once in which it is not. The models use information on

transportation corridors, satellite-derived land surface conditions,

economic indicators and – when included – population informa-

tion from the 1993 census to predict population density in 2007.

Sporadic population data collection such as the gap between the

1993 and 2007 census in Peru is common in low- and middle-

income countries. In the following sections we will detail the

structure of the models included (Section 2), describe data sources

and the required data processing (Section 3), present and discuss

results (Section 4), and offer general conclusions (Section 5). The

analysis is relevant for regions with limited reliable census data. In

the circumstance that policy or planning scenarios require

population counts as opposed to density, the area of each district

can be used to transform model estimated population density back

to count estimates.

Materials and Methods

Understanding and selecting the appropriate model structure is

perhaps the most important decision in the process of population

modeling. The fundamental act of choosing a model structure will

significantly affect the population estimate and the understanding

of covariate influence. The most appropriate model structure often

depends on the data available. In this analysis, six regression and

Table 2. Population counts for the five regions included in the analysis.

1993 Population 2007 Population

Apurimac 381,997 404,190

Arequipa 916,806 1,112,858

Ayacucho 483,341 584,959

Cusco 1,001,898 1,154,969

Madre de Dios 67,008 102,577

Total: 2,851,050 3,359,553

Districts excluded due to irresolvable redistricting issues (see Data Consistency) are not included in the table.
doi:10.1371/journal.pone.0100037.t002
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tree-based models were chosen to explore how predictive accuracy

and variable importance changes in the presence or absence of

population information. The regression-based model structures

include a linear model (LM), linear mixed model (LMM), a

generalized additive model (GAM), and a multivariate adaptive

regression spline (MARS) structure. The tree-based models

Figure 2. Political boundaries and topographical features of Peru. A) Classified land cover. B) Regions included in the analysis (Apurimac,
Arequipa, Ayacucho, Cusco and Madre de Dios). C) Population density at the district level derived from the 2007 census.
doi:10.1371/journal.pone.0100037.g002
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include Random Forest (RF) and Bayesian additive regression tree

(BART). A no model alternative was also included in the suite of

models for reference. The strengths and weaknesses of each model

structure are described in the following sections and summarized

in Table 1.

The models were run twice: once with population density from

1993 included as a covariate, and once with it excluded, leaving

only socioeconomic and environmental covariates. The two

groups are intended to contrast the efficacy of model structures

in the presence or absence of consistent census data. Previous

population information, when included, was not modeled as a

lagged effect, but rather as part of the covariate matrix. These two

analyses are hereafter referred to as being with or without

population data, although neither uses current period population

information to estimate population density.

Linear Models (LM)
A LM is a linear function of the form

E(Y )~XbzE; E~N(0,s2
E ) ð3Þ

where Y is the vectorized form of the response variable, X is the

covariate matrix, b is a vector of coefficients and e is a vector of the

normally distributed errors [20]. In this case b may be interpreted

as the relative influence of each variable. The LM model structure

provides a point of comparison with the LMM to determine the

marginal benefit of adding spatial correlation, and provides

perspective on the performance of each of the more complex

models.

Linear Mixed Models (LMM)
A LMM is a LM in which the linear predictor may contain

random effects with correlated errors [21], and takes the form:

E(Y )~gzE; g~Xbzu;

E~N(0,s2
E ) u~N(0,s2

u); ð4Þ

where g is the linear predictor, b is a coefficient for fixed effects, X

denotes the explanatory variables associated with these fixed

effects and u is a set of district-specific and possibly spatially

correlated random effects that model between district variability in

the response. For the purpose of population estimation in this

study, errors between districts are modeled using exponential

spatial autocorrelation according to the centroid of each district.

Generalized Additive Models (GAM)
A GAM is an extension of the LM, in which the assumption of

linear relationships between covariates and response variables is

relaxed by replacing the linear relationship with a nonparametric

smoothing function, e(X), such that the form of the function

becomes

Y~f1(X1)zf2(X2)z:::zfn(Xn)zE; E~N(0,s2
E ) ð5Þ

In this case a cubic spline was chosen for the nonparametric

smoother with restricted degrees of freedom. In this way the GAM

allows for non-linear relationships between the covariates and

response variables [22]. The GAM model structure was included

in this study as a relaxation of the linear features of LMs and
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LMMs, and as an additional non-parametric alternative to the

MARS model.

Multivariate Adaptive Regression Splines (MARS)
MARS is an extension of the linear class of models that allows

for nonlinearity in the relationship between covariates and

response variable by way of multiple basis functions that take

the form (x2t)+ or (t2x)+ where t is a ‘‘knot point’’ determined in

the model training process and x is the covariate. The model first

enumerates basis functions to fit the data and then prunes back

these functions, as would a tree-based model [23]. This gives the

model the form

Y~b0z
XM

m~1

bmhm(X ) ð6Þ

where hm(X) is a basis function, or product of basis functions, and

bm are coefficients estimated by minimizing the sum-of-squares.

The MARS model was included in this study as a variation of a

penalized spline, which has been previously explored as a means of

providing more robust inferences [12].

Random Forest (RF)
Tree-based methods are often most useful for models that are

highly non-linear. The most basic tree-based structure is the

Classification and Regression Tree (CART), which recursively

partitions the data into i subspaces and applies a very simple model

to each subspace. If the loss measure used is the sum of squares,

the model takes the form mi = mean(Yi|xiMAi) where mi is the

parameter to be predicted in subspace Ai, Yi is the set of values of

the response variable on which the model is trained in that

subspace and xi is the matrix of the associated covariates.

One downside of CART is that the hierarchical nature of the

model means relatively small changes in the data set can result in

drastically different partitions within the data space, which makes

drawing insight from the model structure difficult. One approach

to reduce the variability inherent in predictions from CART

models is to use model averaging based on bootstrapping, a

method known as bagging [22]. The RF model structure is similar

to a bagged CART method, except that a random subset of

variables less than the total number of variables are chosen to use

at the splitting point for each tree. The method originally proposed

by Breiman [24] to grow B trees, each denoted by Tb is

summarized below for a training dataset X containing M classifier

variables:

1. Form bootstrap datasets xb by sampling with replacement from

X.

2. Select m , M variables at each node of tree Tb. Calculate the

best split for the bootstrapped dataset based on the m selected

variables. Repeat this step until the specified minimum node

size is reached.

3. Repeat steps 1 and 2 for each of the B trees.

Each tree is thus grown to its maximal depth. This process may

be represented as:

f
(B)

RF (X )~
1

B

XB

i~1

f
(b)

RF (xb) ð7Þ

T
a

b
le

8
.

M
e

as
u

re
s

o
f

va
ri

ab
le

im
p

o
rt

an
ce

,
p

o
p

u
la

ti
o

n
d

at
a

n
o

t
in

cl
u

d
e

d
in

th
e

co
va

ri
at

e
s.

P
re

v
io

u
s

P
o

p
D

e
n

si
ty

R
o

a
d

s
R

iv
e

r
W

a
te

r
X

co
o

rd
in

a
te

Y
co

o
rd

in
a

te
N

D
V

I
L

S
T

D
a

y
G

D
P

P
e

rm
W

a
te

r

L
M

B
e

ta
V

a
lu

e
s

N
A

0
.1

5
4

–
0

.1
8

4
0

.1
1

7
–

0
.1

0
2

-
-

-
-

L
M

M
B

e
ta

V
a

lu
e

s
N

A
0

.1
6

6
-

N
A

N
A

-
-

-
-

G
A

M
P

e
rc

e
n

t
re

d
u

ct
io

n
in

M
S

E
N

A
–

4
.3

7
–

1
.3

-
–

2
.3

3
–

2
.5

9
-

-
-

M
A

R
S

G
C

V
N

A
1

0
0

4
5

.9
1

5
.8

2
6

2
2

.2
1

6
.8

-
-

R
F

P
e

rc
e

n
t

re
d

u
ct

io
n

in
M

S
E

*
N

A
3

.1
9

-0
.9

1
2

.4
5

4
.7

4
.8

8
5

.6
1

4
.3

3
-0

.6
3

R
F

In
c.

N
o

d
e

P
u

ri
ty

*
N

A
1

1
6

.7
9

4
5

.3
6

3
5

.2
3

4
7

.6
7

3
2

.6
1

4
1

.1
4

7
.7

8
0

.1
8

B
A

R
T

M
e

a
n

n
u

m
b

e
r

o
f

sp
li

ts
N

A
5

5
.0

3
2

8
.4

3
1

8
.0

9
3

3
.0

1
3

0
.3

3
3

9
.6

2
3

7
.1

9
2

6
.6

1

St
ar

s
in

d
ic

at
e

th
e

m
o

d
e

ls
p

ro
d

u
ci

n
g

th
e

m
o

st
ac

cu
ra

te
e

st
im

at
e

s.
D

as
h

e
s

in
d

ic
at

e
va

ri
ab

le
s

th
at

w
e

re
d

is
ca

rd
e

d
b

y
th

e
m

o
d

e
l

d
u

ri
n

g
va

ri
ab

le
se

le
ct

io
n

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
0

0
3

7
.t

0
0

8

Population Density Models for Data-Limited Areas

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e100037



The randomization process is intended to produce uncorrelated

trees (although in reality some correlation may remain) such that

the aggregate result is a reduction in the variance [24]. If s2 is

taken to be the variance of an individual tree, and r is the

correlation between tree predictions, then the variance may be

represented as

Var f
(B)

RF (X )
� �

~rs2z (1{r)
B

s2 ð8Þ

Figure 3. Random Forest model error by district.
doi:10.1371/journal.pone.0100037.g003

Figure 4. Census population density vs. Random Forest estimated density. 1:1 line plotted for reference.
doi:10.1371/journal.pone.0100037.g004
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Bayesian Additive Regression Tree (BART)
The BART model builds on regression and classification trees as

a ‘‘sum-of-trees’’ method. The model places a prior probability on

the nodes of each tree such that the tree is constrained to be a

‘‘weak learner,’’ biasing the tree towards a shallower, simpler

structure [25]. This constraint ensures that each tree contributes

only minimally to the overall fit. The model is designed to produce

a flexible inference of the relationship between the sum of trees

and the response variable.

Following the notation of Chipman et al. (2010), let T represent

a single binary tree containing a set of interior decision nodes,

terminal nodes and M = {m1, m2, … mn} parameter values

associated with each of the n terminal nodes [25]. Each decision

rule is a binary split of the form {x M A} vs {x 1 A}, where A is a

subset of the range of x. Each value of x, by means of binary

decision nodes, is assigned to a single terminal node and therefore

to a value mi. for a given T and M, g(x; T, M) denotes the function

that assigns mi M M to x. A single tree model is therefore

represented as:

E(Y Dx)~g(x; Y ,M)zÊE; ÊE~N(0,s2) ð9Þ

Where ÊE represents the normally distributed residual term centered

on 0 with variance s2. In the single tree model represented by Eq.

9, E(Y|x) equals the parameter mi assigned by g(x; T, M). Using

the same notation, the sum of m trees model may therefore be

expressed as:

E(Y Dx)~
Xm

j~1

g(x; Tj ,Mj)zÊE; ÊE~N(0,s2) ð10Þ

Under the sum of trees model (Eq. 10), E(Y|x) equals the sum of

all mijs assigned to x by the g(x; Tj, Mj)s. Each mij therefore only

represents part of E(Y|x) under the sum of trees model. Because

each g(x; Tj, Mj) may be based on one or more x’s, each tree has

the ability to represent either a ‘‘main effect’’ (single component of

x, single variable tree) or an ‘‘interaction effect’’ (multiple

components of x, multi-variable tree).

The final specification of the BART model is a prior that is

imposed on all parameters in the sum of trees model (i.e. (T1,

M1)…(Tm, Mm) and s). The prior is designed to regularize

individual tree influence such that the effect from no one tree

dominates the model. The prior on T puts a larger weight on small

trees and the prior on m shrinks the fit of each terminal node

proportional to the number of trees such that the contribution of

any one tree decreases as number of trees increases. The full

specifications of this prior may be found in Chipman et al. [25].

Mean Model
Each of the previously described models was compared against

the no-model mean alternative. The no-model mean estimate was

simply calculated as the mean of available response data in the

holdout dataset.

Data
Peru is divided administratively into regions then provinces

followed by districts. The variables used, discussed below, were

calculated annually at the district level for five regions (Ayacucho,

Cusco, Madre de Dios, Arequipa and Apurimac). Table 2 and

Figure 1 provide descriptive statistics of the population in the five

chosen regions. The total population count of all five regions

increased from 1993 to 2007 (see Table 2) with a slight skew

towards growth in more populous districts (see Figure 1), which

broadly reflects the overall population dynamics of the country as

a whole [16].

Combined, these regions contain 42 provinces, 417 districts and

span a reasonable cross section of Peruvian land cover (see Fig. 2).

The country exhibits a broad range of climatic variability with

land cover including rainforest, mountains and coastal areas. The

five regions included in the study were chosen to be representative

of Peruvian topography and to minimize redistricting within the

study domain. Eight districts were created due to redistricting

between 1993 and 2007, seven of which resulted from splitting an

existing administrative area into two separate districts. Affected

districts were recombined to pre-2007 boundaries, and all relevant

variables were re-calculated.

Figure 5. Random Forest uncertainty analysis. Observations of district population density (black points) are ordered from lowest to highest
density. The Random Forest mean (red point), median (blue point) and interval between the 5th/95th percentiles (blue lines) illustrate the uncertainty
in each corresponding model estimate.
doi:10.1371/journal.pone.0100037.g005

Population Density Models for Data-Limited Areas

PLOS ONE | www.plosone.org 10 July 2014 | Volume 9 | Issue 7 | e100037



Response variable
Population density in 2007 was used as the response variable (Y)

and was calculated using the 2007 census data downloaded from

the Peruvian Institute of Statistics and Information (El Instituto

Nacional de Estadı́stica e Informática; INEI). Information on the

area of each district was obtained from the GADM Global

Administrative Database [26].

Covariates
While obtaining past measures of population is a priority for

improving the accuracy of population estimates, previous model-

ing efforts have also used a variety of ancillary variables to improve

model accuracy, including information on roads, slope, nighttime

lights, measures of urban areas, land use, socioeconomic

characteristics and dwelling counts [27–28]. The scale of our

study precluded the use of direct estimates of density such as

counting dwellings, but measures of the land surface conditions

were incorporated in the form of NDVI and daytime LST, as

described in detail below. We chose to expand upon past studies

that demonstrated the utility of including information on roads by

selecting measures of potential transportation corridors such as

rivers and inland open water. In addition to the physical

characteristics of the study region, we used an index of GDP as

an economic indicator for each region. In the following sections we

describe the model covariates in detail and provide a brief

explanation of why each was chosen for the analysis.

Population Density in 1993. Population density obtained

from the 1993 census was incorporated as a measure of population

in a previous time period. Peru conducted a census in 2005, but

the methodology and results were considered flawed resulting in

the 2007 census When data are available, previous population

metrics have obvious value for predicting current population. The

population density for 1993 was calculated similarly to that for

2007.

Connectivity Variables. Proximity to transportation corri-

dors has previously proven useful in mapping population, as

demonstrated by the LandScan Global Population Project, which

uses the Digital Chart of the World to incorporate distance to

major roads as part of a population estimation model [27]. In this

study, we have extended the idea of incorporating information on

transportation corridors to include navigable bodies of water. A

map detailing inland roads, rivers and permanent bodies of water

in Peru was downloaded from the Digital Chart of the World and

aggregated to the third administrative level (districts) to obtain the

density of roads, rivers and permanent bodies of water in each

district. All data that originates from the Digital Chart of the

World represents infrastructure circa 1992, and is static across

analyses.

Density of inland roads is an indicator of urbanization and

accessibility for each district. Proximity to transportation corri-

dors–both roads and navigable rivers–may be especially important

in the Amazon where large tracts of forest make transportation

difficult.

Information on inland water was included because urban areas

have a history of developing around bodies of water. Rivers are a

valuable natural resource and provide a method of transportation.

The predictive accuracy of river density may be understated in the

Amazon basin because the river network is so dense that almost all

land areas are accessible by river. Data for density of permanent

bodies of water was categorized as a variable as well, separate from

density of rivers.

Satellite Derived Land Surface Conditions. Remotely

sensed data derived from aircraft or satellite has a fairly long

tradition in population modeling. Remote sensing provides a

method for detailing landscape characteristics for each district,

which may in turn be linked to the population density [27,29–31].

Early uses of remote sensing for population estimation were logical

extensions of aerial photography, which has been used to count

dwellings since the mid 1950s in areas without reliable population

information [32–33]. Although counting dwellings becomes

prohibitively time-consuming as the size of the study region

increases, high-resolution remote sensing has still been used to

disaggregate population counts in urban spaces under the

assumption that areas with similar land cover will have similar

population densities. In recent years, remote sensing has become a

prominent source of environmental information, including land

use and transportation patterns, which can provide valuable input

to population models.

In addition to being used to disaggregate population densities,

remote sensing is perhaps even more valuable for statistical

population models in which it is used to estimate population

density. The most common way that this is done is to relate the

remotely sensed data to land use and to include that information in

a regression-based model that is identified and trained using one

dataset and evaluated using a separate dataset from a culturally

and demographically similar area [30,34]. While remotely sensed

data are often used to derive social or economic information

relevant to population density, satellite observations may also be

included directly in a population model. Liu and Clarke (2002)

demonstrated this by using high-resolution satellite-derived

reflectance and landscape texture information to estimate popu-

lation distribution within a single city [35]. The inclusion of these

remotely sensed data-either directly or indirectly-allows modelers

to draw insight into the underlying drivers of local population

processes. For this study, remote sensing data collected by the

MODIS Terra sensor was included directly as an indicator of land

surface conditions. The two chosen characteristics were the

Normalized Difference Vegetation Index (NDVI) and the daytime

land surface temperature (LST).

NDVI measures the difference between reflectance in the near

infrared and the visible spectrum. The chlorophyll in healthy

vegetation strongly absorbs visible radiation while the plant cell

structure reflects it. NDVI may therefore be used both as a

measure of vegetative distribution and as an indicator of vegetative

health. The difference in vegetative distribution may also provide

information on patterns of topographical features in the landscape,

as vegetative differences are often indicative of topography. NDVI

was available as a 1 km resolution gridded product, but was

aggregated to district averages using the administrative boundaries

to match the resolution of the other covariates. Data were

available as monthly composites. For this study a consistent month

during the dry season was chosen (July).

Daytime LST may act to differentiate between the diverse land

cover of Peru, which includes open water, bare soil, forested areas,

rock and urban areas. The diurnal thermal signal of each category

of land cover may provide insight into the potential habitability of

that area. Daytime LST can also give an indication of the heat

island effect of cities for some of the smaller districts in which

impervious cover is an appreciable portion of total surface area.

LST was available at 1 km resolution in 8-day composites. For this

study the same composite was chosen from each year (mid July to

match the NDVI). LST was aggregated to the district level using

the GADM Global Administrative Areas dataset.

NDVI and LST are not perfect or comprehensive indicators of

land surface conditions or specific land use. However, they are

well-understood and physically meaningful variables that are

indicative of differing land cover patterns and physiographic

conditions that are likely to be relevant to the distribution of

Population Density Models for Data-Limited Areas
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population. As satellite-based thematic land use classification in

humid tropical regions is still a topic of active research [36–40], we

choose to use NDVI and LST instead of relying on an error-prone

land use dataset.

Economic Variables. While transportation networks and

land cover and conditions may be important predictors of

population density, they are unlikely to provide useful information

for areas that have already been urbanized. A GDP index derived

from the 2007 and 1993 censuses was downloaded from the INEI

as an economic indicator for the analysis. Although the available

GDP index is on a coarse spatial scale (provincial), it may provide

significant information on interannual variability not present in

other predictors.

Data Consistency
Not all of the data from the Digital Chart of the World matched

the INEI districting, although discrepancies between datasets were

minor. After standardizing the data, out of 417 districts present in

each year (according to the most recent INEI report) 412 districts

mapped to those in the Digital Chart of the World. Districts that

were omitted from the study include Jesus Nazareno, Llochegua,

Huepetuhe, Majes and Kimbiri. The missing districts were due to

redistricting between 1992–the year that the Digital Chart of the

World was created–and the 1993 census.

Analysis Structure
The analysis may be broadly categorized into two sections: one

in which population density from 1993 is included as a covariate

and one in which it is excluded, leaving only socioeconomic and

environmental covariates to predict population density in 2007.

The predictive accuracy of each model, both with and without

population information, was evaluated using 300 repetitions of a

random 10% holdout analysis. This process involves withholding

10% of the data at random (response variable and associated

covariates), fitting the parameters of each model using the

remaining 90% of data, and then producing predictions for the

withheld 10%. The absolute difference between the prediction

from each model k for each district i and the actual withheld value

was calculated as mean absolute error (MAE), displayed below:

MAEkj~

Xm

i

D ~YY i{Yi D

m
and AMAEk~

XN

j~1

MAEkj

� �

N
ð11Þ

Where ~YYi is the actual population density of district i, Yi is the

model prediction for district i, m is the total number of districts in

the holdout dataset, MAEkj is the mean absolute error of all

predictions for model k in repetition j and N is the total number of

repetitions. AMAEk is the average mean absolute error for model k

over all repetitions j. Only one year of census data was available

for the response variable dataset, meaning that every prediction

made in the holdout analysis was an out-of-sample prediction.

Models are therefore drawing strength from the surrounding

districts in that they formulate inferences based on the 90% of

districts not in the holdout dataset and make predictions for the

10% of districts in the holdout sample. Such an approach is useful

in many contexts but still has important limitations. Our holdout

analysis cannot be generalized to countries or large regions that

completely lack population data and does not test the ability of

models to predict current population following calibration using

old data from the same region. While calibrating each model using

past data is a feasible alternative to using the information from

surrounding administrative units, we were unable to test the

relative strength of this methodology due to the limited temporal

availability of our covariates.

The suite of models is assessed using average mean absolute

error (AMAE) as a measure of general model accuracy as well as

average root mean square error (ARMSE). The ARMSE penalizes

large model errors more heavily than does AMAE, meaning that

the difference between AMAE and ARMSE is used to assess the

skill of each model in providing population density estimates for

the outlier districts in the dataset. In evaluating the results of each

analysis, reported levels of statistical significance are measured to a

significance level of 0.05 following a Bonferroni correction for

multiple pair-wise comparisons and are based on AMAE (See

Tables 3 through 6). Tables 3 and 5 provide measures of model

accuracy when measured using population density, while Tables 4

and 6 measure model accuracy using population count error as a

proportion of actual district population to provide a more intuitive

measure of model performance.

The diversity of model structures included in the analysis

required the use of multiple measures of variable influence in the

analysis of the results. The relative importance of each variable in

the LM and LMM was measured using the b coefficient from the

final fitted model. In this case the b coefficient indicates the linear

relationship between covariate and response variable. Variable

influence in the MARS model was based on the contribution of a

variable towards reducing the model’s generalized cross-validation

(GCV) score. GCV is an approximation of the leave-one-out cross-

validation using a squared error loss measure [22]. The measure of

variable importance used for a GAM was the increase in average

MSE that results from removing a specific variable. Variable

importance in the RF model was evaluated using two separate

indices. The first is based on perturbing each variable and

recording the effect on the out-of-bag accuracy as measured by

average MSE, while the second measures the decrease in node

impurities- measured by the residual sum of squares- that results

from splitting on a variable. Variable importance in the BART

model was evaluated by the number of times a variable was used

as a splitting decision in a tree, averaged over all trees. Due to the

discrepancy between measures of variable influence, direct

comparisons between models cannot be made. Instead, the shift

in relative variable influence between analyses is explored within

each model to understand how each model is affected by the

presence of population density information in the covariates.

The analysis was conducted using R, with the following

packages and functions: the linear model was fit using the glm()

function from the stats package with a Gaussian link function and

variable selection conducted using the step() command; the

generalized additive model was fit using the gam() function from

the mgcv package with added penalty terms for each new variable

using the select command; the linear mixed model was fit using the

glmmPQL() function from the MASS package with exponential

spatial correlation and a Gaussian link function; the random forest

model was fit using the function randomForest() from the package

of the same name; the multivariate adaptive regression splines

model was fit using the earth() function from the package of the

same name; and the Bayesian Additive Regression Tree was fit

using the bart() function from the BayesTree library. No additional

specifications were required for the RF, MARS or BART models.

Results and Discussion

Despite the fact that the regression based models (LM, LMM,

GAM and MARS) provided the most skilled predictions of

population density when 1993 population density was included in
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the covariates, these models- with the exception of the LMM-

provided among the worst predictions when no population

information was included (see Tables 3 and 5). The inclusion of

spatial correlation (represented by the LMM) produced the best

predictive accuracy among regression models, but the model still

performed no better than the no-model alternative (Table 5).

Although there are minor differences in model performance when

assessed using population counts, notably the improved perfor-

mance of GAM, the relative model accuracy remains unchanged

(see Tables 4 and 6). This result indicates that when population

information was not available regression-based models (both

parametric and non-parametric) were unable to capture the

relationship between indicator variables and current population

density.

In contrast to the regression models, the RF model – a non-

parametric tree-based model - provided among the most skilled

estimates when 1993 population density was not included in the

covariates, but among the least skilled estimates when it was (see

Tables 3 through 6). Notably, when population information was

not included the RF model was the only model to significantly

outperform the no-model alternative as assessed by population

density. When measured using population counts instead of

density, both tree-based models (RF and BART) significantly

outperform the no-model alternative. The shift in relative model

performance indicates that the relationship between previous

population and current population at a district scale can be

modeled effectively using regression methods, but the relationships

between ancillary variables and population require a more flexible

model structure better able to handle nonlinearity and high

variance. This discrepancy in predictive accuracy demonstrates

the potential of tree-based models for estimating population in

data-limited areas.

The differences in model accuracy as evaluated by ARMSE as

opposed to AMAE are minimal in terms of ordinal rank but entail

consistently larger mean error estimates with increased standard

errors. The systematic difference in model accuracy as measured

by AMAE and ARMSE (results not shown) implies that the model

estimates contained disproportionately large errors in a small

number of predicted districts. Although an expanded dataset

containing a greater number of districts may help to reduce the

standard error of the model estimates across models, in data-scarce

regions it’s very likely that the data available to train models is

limited.

The covariate influence of all models was explored to

understand the differences in variable importance between the

two analyses. Although the most direct measure of variable

importance is model dependent, which precludes direct compar-

isons between measures of variable importance, relative compar-

isons between analyses are instructive. When population density

from 1993 was included in the covariates, LM, LMM and MARS

– the three models that provided the best population density

estimates for the analysis– all indicated that previous population

density was the most significant variable as assessed by their

respective measures of variable importance (Table 7). This relative

variable importance is not surprising, but is an important point of

comparison for evaluating the models that do not include 1993

population density information in the covariates.

When 1993 population information was not included in the

analysis, nearly all of the models indicated a greater number of

covariates were significant, many of which the models had

previously excluded (see Tables 7 and 8). Random Forest – the

model that provided the best population density estimates for the

analysis - indicated that the majority of remaining covariates had

comparable variable importance (Table 8). The flexibility of the

RF model structure compensated for a lack of previous population

density information more effectively than regression-based models

by incorporating information from the available covariates. The

second tree-based method, BART, similarly produced estimates

that were more accurate than all regression-based models (both

parametric and non-parametric), although not statistically distinct

from the mean model.

Random Forest population density estimates and model errors

are explored spatially and in their relation to actual district

population density to better understand the performance of the

model. Figure 3 demonstrates some spatial dependencies in the

model errors, particularly in the southeast, although performance

was mixed across much of the study domain. Isolated districts

across the domain display large model errors, which demonstrates

the limitations of using model-based population estimates alone.

The population dynamics in these districts are likely controlled by

variables not captured in our analysis or exhibit an anomalous

relationship between the covariates and response variable. This

serves as a point of caution when interpreting any single prediction

from a model optimized for predictive skill across a large and

diverse study region. Figure 4 shows that RF tended to

overestimate population density in general but slightly underesti-

mated the population density of the most dense ,10% of districts.

The overestimation bias for lower-density districts is not surprising

given the relatively small margin available for underestimation in

such districts. The inability of the RF model to produce accurate

population density estimates for the most population dense districts

implies that the resolution of the analysis – which in this case is the

district level – may have been insufficient to capture the upper

extreme of population-density due to heterogeneity of the response

variable within each district. Dense urban areas may account for

the majority of a district’s population but a relatively minimal

proportion of its land area, on which many covariates were based.

To explore the uncertainty in estimates made using the

Random Forest model, a Quantile Regression Forest (QRF) was

used to characterize the distribution around each model estimate

[41]. Just as the RF model is used to estimate the conditional mean

of a response variable, E(Y |X = x), the QRF model is used to

estimate quantiles in the conditional distribution of a response

variable as E(1{Y #y}|X = x). Figure 5 depicts the actual district

population densities, ordered from smallest to largest, the RF

mean estimate for each district and the QRF estimate of the 5th,

50th and 95th percentiles. The RF mean is shown to overestimate

density in all districts with the exception of the ,10% of districts

with the highest population density. Although nearly all of the

population density observations fall within the bounds defined by

the 5% and 95% QRFs, these bounds are often quite wide,

demonstrating the uncertainty inherent in predicting population

density without prior information on population.

Figure 5 demonstrates that the RF mean is significantly skewed

towards the high end of the QRF distribution, at times falling

outside of the 95th percentile. Such behavior is an indicator that

the RF model is producing some trees in the ensemble with

significantly higher population density estimates than the rest of

the ensemble. This is likely another indicator that, as previously

discussed, the data is highly nonlinear and may not be well

represented in some of the area-level covariates due to heteroge-

neity within individual districts. The QRF median (50th percentile)

was included in Figure 5 as an illustration of a potential alternative

to the RF mean for problems that demonstrate such nonlinearities.

While the QRF median provides a more stable estimate that is

more accurate for all but the highest density districts, it also

significantly reduces the range of the estimates. Therefore, while

the median may be preferable in this particular model, it is still
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logical to begin with the RF mean as an estimate in most

situations.

Conclusions

For regions in which data limitations preclude the use of reliable

demographic information, it is important that model structures

effectively incorporate all available data. Producing reliable small

area estimates of population density for areas that lack direct

samples is a problem of interest for resource allocation, disease

early warning, and food security analysis. Such estimates are vital

for decision makers operating in regions limited by incomplete or

unreliable census data. It is often these same data-limited regions

that lack information from previous time periods for use in training

and testing models.

The improvement in predictive accuracy demonstrated by the

RF model represents practical value for decision makers and

policy makers. The average MAE of MARS, GAM and LM are

twice as large as for RF, and that of LMM is one and a half times

as large. Even when compared to the average model in which

population information is available, the RF model produces errors

that are only two to four times greater and therefore still useful in

an applications context. While the improvements to predictive

accuracy are limited to the case in which no previous population

information is available, it is in just such cases that model estimates

must be relied upon most heavily.

The results of this study illustrate that for non-sampled areas a

regression-based model may not be the most effective model

structure depending on the continuity and consistency of available

census data. Without information from prior time periods, the

flexibility provided by the non-parametric tree-based models

produced more accurate predictions than did conventional

parametric and non-parametric regression methods. The predic-

tive accuracy of tree-based non-parametric models in population

modeling is an area that has been largely unexplored, but which

warrants further study as a flexible alternative to conventional

regression based methods.
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